
An experimental study of 
olor-basedsegmentation algorithms based on the mean-shift
on
eptK. Bitsakos, C. Fermüller and Y. AloimonosCenter for Automation Resear
h,University of Maryland, College Park, USAkbits�
s.umd.edu, {fer,yiannis}�
far.umd.eduAbstra
t. We point out a di�eren
e between the original mean-shiftformulation of Fukunaga and Hostetler and the 
ommon variant in the
omputer vision 
ommunity, namely whether the pairwise 
omparison isperformed with the original image or with the �ltered image of the pre-vious iteration. An optimization perspe
tive on these te
hniques leads toa new hybrid algorithm, 
alled Color Mean Shift, that roughly speaking,treats 
olor as Fukunaga's algorithm and spatial 
oordinates as Comani-
iu's algorithm. We perform experiments to evaluate how di�erent kernelfun
tions and 
olor spa
es a�e
t the �nal �ltering and segmentation re-sults, and the 
omputational speed, using the Berkeley and WeizmannInstitute segmentation databases. A number of 
on
lusions arise fromthe experiments, among them, that the new method gives better resultsthan existing ones based on the mean shift 
on
ept on four standard 
om-parison measures (∽ 15%, 22% improvement on RAND and BDE mea-sures respe
tively for 
olor images), with slightly higher running times(∽ 10%). Overall, the new method produ
es segmentations 
omparablein quality to the ones obtained with 
urrent state of the art segmentationalgorithms.1 Introdu
tionMean shift is an unsupervised 
lustering te
hnique that over the last de
adegained popularity and is now widely used in 
omputer vision for 
olor basedsegmentation. Though 
on
eptually simple, an extensive amount of mathemati-
al formalism has been used to pre
isely des
ribe the method. As a result, someof the important 
hara
teristi
s of the method were �hidden underneath thesurfa
e�. This paper simpli�es the formulation and brings forth its importantfeatures by des
ribing mean shift as an optimization problem. This leads to two
ontributions; a) we propose a new variation, denoted Color Mean Shift, that
ombines Fukunaga's mean shift superior 
luster ability with most of the 
ompu-tational advantages of Comani
iu's variant, and b) we experimentally 
omparedi�erent variations of the algorithm both in terms of the 
omputational speedand the segmentation quality. Color Mean Shift is found to outperform the 
ur-rent methods in terms of the quality of segmentation, while it is slightly (∽ 10%)
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i�
ally, it produ
ed ∽ 15%, 22% better results on the Berkeleydataset with the RAND and the BDE measure respe
tively.1.1 Related WorkDespite its existen
e for more than three de
ades [1℄, mean-shift only re
entlygained popularity in the 
omputer vision 
ommunity. Cheng [2℄ �rst modi�ed themethod and used it for non-parametri
 
lustering and then, Comani
iu and Meer[3℄ used it for image �ltering and segmentation. Sin
e then, mean-shift has beenused in 
omputer vision for obje
t tra
king [4℄, 3D re
onstru
tion [5℄, image�ltering [3℄, texture 
lassi�
ation [6℄ and video segmentation [7℄ among otherproblems. The relatively high 
omputational 
ost of a naive implementation ofthe method 
ombined with the need for fast image pro
essing led resear
hers topropose fast approximate variations of it. Most notably, two solutions for �ndingpairs of points within a radius have been proposed; the Improved Fast GaussTransform based mean shift [8℄ for Normal kernels and the Lo
ality SensitiveHashing based mean shift [6℄.Cheng [2℄ was the �rst to re
ognize the equivalen
e of mean shift to astep-varying gradient as
ent optimization problem, and mu
h later Fashing andTomashi [9℄ showed that it is equivalent to Newton's method with pie
ewise
onstant kernels, and is a quadrati
 bound maximization for all other kernels.Still the dominant way to des
ribe it is by using density estimation terms [3℄,namely using kernels and their shadow and pro�le fun
tions.1.2 ContributionsIn this paper, we des
ribe mean shift as an optimization problem. The simpli
-ity of the formulation not only leads to a better understanding of the method,but also brings forth the di�eren
e between the original method and its variationthat is used in 
omputer vision1. In the same se
tion (i.e., Se
. 2), we propose ourown variant of mean shift, denoted Color Mean Shift (CMS), that lies betweenthe two methods. The next two se
tions 
ontain an experimental 
omparison be-tween the methods. First, in Se
. 3, we present the �ltering results for di�erentkernel fun
tions and 
olor spa
es. Then, we study the �ltering speed of the algo-rithms with respe
t to a number of optimization parameters. In Se
. 4 we showresults on two di�erent segmentation datasets (the Berkeley [10℄ and WeizmannInstitute [11℄ databases) 
ontaining 300 images and 1387 human segmentations(in total) using 4 standard 
omparison measures. In these experiments the newmethod (i.e, 
olor mean shift) exhibits an improvement of > 15% 
ompared tothe existing method on 
olor images. A similar improvement was also a
hievedfor the grays
ale images of Weizmann dataset. Summary and future work (Se
.5) 
on
lude this paper.1 In the re
ent papers, the original �mean shift� approa
h is 
alled �blurring meanshift�. In the rest of the paper we use the abbreviations FHMS and CMMS forFugunaga and Hostetler's and Comani
iu and Meer's method of mean shift respe
-tively.



A study of mean shift based 
olor segmentation algorithms 32 Image Filtering using the Mean Shift algorithm2.1 NotationWe 
onsider the image on the 5D spa
e with spatial and 
olor dimensions. Morespe
i�
ally, xi is a 2D ve
tor representing the spatial 
oordinates and si ≡ s(xi)is a ve
tor that represents the three 
olor 
hannels of pixel i (i = 1 . . .N).In the following paragraphs we use bold letters to represent ve
tors and thenotation [xi, si] to indi
ate a 
on
atenation of ve
tors. To indi
ate the evolutionof a ve
tor over time we use supers
ripts, eg. [x0
i , s

0
i ] indi
ates pixel xi havingthe initial intensity values s

0
i .2.2 Kernel Fun
tionsIn our experiments we use two di�erent kernel fun
tions; the Epane
hnikov andthe Normal (Gaussian) kernel. The Epane
hnikov kernel has the analyti
 form

KE(x) =

{

cE(1 − x
T
x) x

T
x ≤ 1

0 otherwise
, (1)where cE is the normalization 
onstant).The multivariate Normal kernel with varian
e 1 has the analyti
 form

KN (x) = (2π)−
d
2 exp(−

1

2
x

T
x). (2)The Normal kernel is symmetri
ally trun
ated to obtain a kernel with �nitesupport.2.3 Fukunaga and Hostetler's Mean Shift (FHMS)The original mean shift formulation [1℄ (applied to a 
olor image) treats theimage as a set of 5 − D points. Ea
h point is iteratively moved proportionallyto the weighted average of its neighboring points. At the end, 
lusters of pointsare formed. We de�ne mean shift to be the gradient des
ent solution of theoptimization problem

arg min
[xi,Si]

−
∑

i,j

K([xi, si] − [xj , sj ]), (3)where∑
i,j

de�nes the summation over all pairs of pixels in the image. This prob-lem has a global minimum when all the pixels �
ollapse� into a single point. Weseek a lo
al minimum instead. That's why we initialize the features [xi, si] withthe original position and 
olor of the pixels of the image and perform gradientdes
ent iterations till we rea
h the lo
al minimum. The instabilities 
aused bythis behavior are studied in a re
ent work by Rao et al. [12℄.



4 K. Bitsakos, C. Fermüller and Y. Aloimonos2.4 Comani
iu and Meer's Mean Shift (CMMS)The modi�ed mean shift formulation proposed by Comani
iu and Meer [3℄(CMMS) 
an also be expressed as a gradient des
ent solution of the optimizationproblem
arg min

[xi,Si]
−

∑

i,j

K([xi, si] − [x0
j , s

0
j ]). (4)There is a subtle di�eren
e between CMMS and FHMS, that signi�
antlya�e
ts the behavior. In the former formulation ea
h feature point is 
omparedagainst the original set of 5−D points [x0

j , s
0
j ], while in the latter 
ase the pointis 
ompared against the set of points from the previous iteration [xj , sj].Fig. 1 presents the results of both methods in a smoothly varying intensityimage. Noti
e that the gradient of the kernel fun
tion, everywhere but in theboundaries, is zero and so CMMS �ltering only 
hanges the intensity on theboundaries (that 
hange is not very visible). FHMS, on the other hand, pro-du
es arti�
ial segments of uniform intensity. Intuitively, ea
h iteration of thepro
ess results in more 
lustered data whi
h in turn leads to better 
lusteringresults in the next iteration. On the downside, a fast FHMS implementation is
hallenging (if not impossible) due to the fa
t that the feature points and the
omparison points do not lie on a regular spatial grid anymore. Thus in a naiveimplementation one would have to 
ompare the 
urrent feature [xi, si] againstall the remaining feature points.2.5 Color Mean Shift (CMS)Our method alleviates the 
omputational problem of FHMS by using the originalspatial lo
ation of the points for 
omparison, while it uses the updated intensityvalues of the previous iteration for improved 
lustering ability. In a sense, weperform FHMS on the 
olor dimensions and CMMS on the spatial dimensions(that is the reason for naming the method �
olor mean shift�). As above, CMS
an be expressed as the gradient des
ent solution of the optimization problem

arg min
[xi,Si]

−
∑

i,j

K([xi, si] − [x0
j , sj ]). (5)We have in
luded the results of 
olor mean shift �ltering in the smoothlyvarying image of Fig. 1. It is 
lear that individual 
lusters of uniform intensitiesare formed (as in the 
ase of the original mean shift). Note that in this examplethere is not a single right solution for the segmentation problem and one 
anargue that a single segment is the best solution. We present this example onlyto exhibit one �weakness� of the CMMS algorithm, that is addressed in both oursolution and the original mean shift algorithm. In Fig. 2 we present both CMSand CMMS algorithms.
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olor segmentation algorithms 5
(a) CMMS (b) CMS (
) FHMSFig. 1: All the des
ribed algorithms applied on a 256 × 100 pixels smoothly varyingimage. All the �ltering algorithms were exe
uted with spatial resolution hs = 21 andrange resolution hr = 10 and used a Normal kernel.

CMSInput:set of pixels x
0
i with intensities s

0
ia fun
tion gOutput:feature ve
tor [xi, si]Algorithm:initialize feature points [xi, si]← [x0

i , s
0
i ]repeat until 
onvergen
efor all features [xi, si]

[xi, si]←
P

j [xj ,sj ]g(||[xi,si]−[x0

j ,sj ]||2)
P

j g(||[xi,si]−[x0

j
,sj ]||2)

CMMSInput:set of pixels x
0
i with intensities s

0
ia fun
tion gOutput:feature ve
tor [xi, si]Algorithm:initialize feature points [xi, si]← [x0

i , s
0
i ]for all features [xi, si]repeat until 
onvergen
e

[xi, si]←
P

j [xj ,sj ]g(||[xi,si]−[x0

j ,s0j ]||2)
P

j g(||[xi,si]−[x0

j
,s0

j
]||2)Conne
ted Components GroupingInput:set of pixels xi with intensities sigrouping threshold tOutput:label li for pixel xiAlgorithm:repeat until 
onvergen
efor all pixels xifor all xj adja
ent to xiif ||si − sj ||

2 < t and xi, xj have di�erent labels:merge the labels of xi and xj (li ≡ lj)Fig. 2: All the algorithms. g(x) = [x ≤ 1] (indi
ator fun
tion in Iverson notation) forthe Epane
hnikov and g(x) = exp(−x/2) for the Normal kernel.



6 K. Bitsakos, C. Fermüller and Y. Aloimonos3 Filtering ComparisonCMMS CMS CMMS CMS
E.
N.E.N.Fig. 3: Epane
hnikov vs Normal kernel. We use hs = 5 and hr = 19. All images arepro
essed on the RGB 
olor spa
e. E., N. stand for Epane
hnikov kernel and Normalkernel respe
tively. The Normal kernel produ
es smoother regions. Also, CMS produ
esmore uniform regions even in heavily textured areas, eg. the grass and the roof.Following the example of Comani
iu and Meer [3℄, we normalize the spatialand 
olor 
oordinates of ea
h pixel ve
tor by dividing by the spatial (hs) and
olor (hr) resolutions. Thus, the original feature ve
tor [xi, si] is transformedto [ xi

hs
, si

hr
] (not in
luded in the equations for simpli
ity). The spatial resolution

hs a�e
ts the size of the neighborhood around ea
h pixel that the algorithm
onsiders and in all the experiments is 
onstant (hs = 5 
orresponding to a
11× 11 window). Then, we perform the optimization; one pixel at a time in the
ase of CMMS (Fig. 2, top right), or one iteration of the whole feature set at atime in the FHMS and CMS 
ases (Fig. 2, top left). FHMS has a 
omplexity thatis quadrati
 on the number of pixels of the whole image. Thus, its running timefor a reasonably size image (eg. 640 × 480 pixels) is several minutes, making itprohibitively slow for any 
omputer vision appli
ation. For that reason, we omitthe results of this algorithm in the experiments.



A study of mean shift based 
olor segmentation algorithms 73.1 Filtering using an Epane
hnikov or a Normal KernelFirst we present the e�e
t of using di�erent kernels: Epane
hnikov and Normal(Fig. 3). Ea
h 
olumn of the �gure depi
ts the �ltering result with a di�erentalgorithm (CMMS or CMS) and ea
h row for a di�erent kernel fun
tion (N., E.stand for Normal and Epane
hnikov kernels respe
tively). In all 
ases the Normalkernel produ
es smoother results, while still preserving edge dis
ontinuities. As amatter of fa
t, the 
olor resolution hr is the parameter that de�nes the gradientmagnitude above whi
h there is an edge (to be preserved). So for the �hand�image, a 
olor range of hr = 19 results in smoothing most of the texture of theba
kground, while a value of hr = 10 retains most of it (in RGB with a Normalkernel).Overall CMS seems to produ
e more 
risp boundaries between segments while
reating more uniform regions within a segment (eg. it suppresses the skin 
olorvariation on the �hand� image). The former is parti
ularly important for thesegmentation step as we will see in Se
. 4.CMMS CMS CMMS CMS
R.
L.R.L.Fig. 4: Filtering in RGB vs Luv 
olor spa
e. We use hs = 5 and hr = 5. All images arepro
essed with a Normal kernel. R, L stand for RGB and Luv respe
tively. Filteringin Luv makes smoother images. Moreover, CMS produ
es more uniform regions.



8 K. Bitsakos, C. Fermüller and Y. Aloimonos3.2 RGB vs Luv Color Spa
eIn Fig. 4 we present the results when �ltering on the RGB or Luv 
olor spa
e.In general, �ltering in Luv produ
es smoother images.This is due to two fa
ts;the Eu
lidean distan
e between two Luv values is per
eptually meaningful, i.e.,it is proportional to the distan
e of 
olors as per
eived by a human observer,and the range of values for ea
h 
omponent (L, u, v ) is di�erent (for examplein our implementation L ∈ [0 . . . 100], u ∈ [−100 . . .180], v ∈ [−135 . . .110].),while ea
h of the red, green and blue 
omponents have values from 0 to 255.Overall, CMS smooths the image more than CMMS, while preserving theboundaries better.3.3 Filtering Speed ComparisonWith the in
reasing demand for pro
essing large volumes of data 
omputationalspeed has be
ome an important 
hara
teristi
 of any algorithm, that along witha

ura
y determines its usefulness. That is the reason why a number of ap-proa
hes to speed up mean shift �ltering have been proposed [6,8,13℄. In thisse
tion we try to 
ompare the speed of the two methods.An obje
tive 
omparison of the �ltering speed of the di�erent methods isnot a simple task. Besides the implementation details that greatly a�e
t thespeed, there is also a number of algorithmi
 parameters that 
an signi�
antlyspeedup or slow down the 
onvergen
e of the optimization pro
edure. We startour 
omparison by evaluating the role of these parameters and then we dis
usswhether general speed up te
hniques that have been proposed in the literature
an be applied to the di�erent methods or not. For fairness sake, we use our ownimplementation of all the �ltering methods that 
onsists of Matlab �les for theimage handling and the general input/output interfa
e, while the optimization
ode is written in C2. We perform all the experiments on a desktop 
omputerwith an Intel Core2 Quad CPU @3GHz3.Image Size In theory the 
omplexity of both CMS and CMMS in
reaseslinearly with the number of pixels (if the kernel is bounded), sin
e ea
h pixelrepresents a feature ve
tor that needs to be pro
essed4. The theoreti
al predi
-tion is veri�ed in pra
ti
e as Fig. 5a shows.Spatial Resolution hs Theoreti
ally, both �ltering methods depend quadrat-i
ally on the spatial bandwidth. In pra
ti
e, other parameters, explained below,make the dependen
e less than quadrati
. Fig. 5b displays the �ltering speedwith respe
t to the spatial resolution for the methods, when all the other pa-rameters are the same.Epane
hnikov vs Normal kernel For ea
h pair of pixels, 
omputation ofthe weight using the Epane
hnikov kernel only requires a 
omparison, while the2 All the 
ode is available and 
an be downloaded from the author's websitehttp://www.
s.umd.edu/~kbits/
ode.htm3 Due to Matlab's limitation only one 
ore is used in the experiments.4 FHMS's 
omplexity, on the other hand, is not linear with respe
t to the image sizesin
e whole areas 
an 
ollapse into single points.
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(a) Speed vs Image Size (hs =
5) (b) Speed vs hs (
) Speed vs Convergen
ethresholdFig. 5: We use the �workers� image (size 321 × 481 pixels) and perform the �lteringon the RGB 
olor spa
e with hr = 15. A solid line denotes the use of Epane
hnikovkernel while the dotted line (middle �gure) the use of Normal kernel. We also limitthe number of iterations to 20 and the 
onvergen
e threshold is 0.001. We perform the�ltering 5 times for ea
h image size and only plot the median value.
al
ulation of an exponential number is ne
essary for the 
ase of the Normalkernel. As a result the former operation is mu
h 
heaper than the latter andthus �ltering with an Epane
hnikov kernel is faster 
ompared to �ltering with aNormal kernel as is shown in Fig. 5b.The overall speed of the segmentation pro
ess is also a�e
ted by the qualityof the result of the �ltering pro
ess. We experimentally found, that a Normalkernel produ
ed better results and as a 
onsequen
e sped up the grouping step.The use of a Normal kernel still resulted in slower segmentation times, but thetime di�eren
e was not as large as Fig. 5b shows.Convergen
e Threshold On ea
h iteration of the optimization pro
edureea
h pixel ve
tor is 
ompared against its neighbors and shifted. If this shift isless than a prede�ned value (denoted 
onvergen
e threshold) then we ignorethat pixel in subsequent iterations of the optimization pro
edure. Intuitively the
onvergen
e threshold denotes how 
lose to the �true� solution the optimizationshould rea
h before termination. Note that in CMMS the shift of ea
h pixel is amonotoni
ally de
reasing fun
tion of the iteration number, while for CMS it isnot. Fig. 5
 displays the �ltering speed with respe
t to the 
onvergen
e threshold.The higher the threshold the faster the �ltering. Espe
ially for thresholds lessthan 0.1 the �ltering time de
reases almost exponentially.Overall, from Fig. 5, CMS is ∽ 10% slower than CMMS. A number of te
h-niques 
an be used to perform the �ltering faster. In the 
ore of all �lteringalgorithms the pairwise distan
e between feature points needs to be 
omputed.As suggested in [3℄ employing data stru
tures and algorithms for multidimen-sional range sear
hing 
an signi�
antly improve the running time of all methods.In CMMS the traje
tory of most feature points lay along the path of other featurepoints. Christoudias et al. [14℄ report a speed up of about �ve times when they�merge� the feature points together. This tri
k 
an dire
tly be used in CMMS.A variation of the same 
on
ept 
ould also be used to speed up CMS. The in-
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tion of multi
ore CPUs and, espe
ially, GPUs has provided a new way toimprove the exe
ution speed of algorithms through a parallel implementation.Both �ltering algorithms are parallel in nature, so a 
areful implementation ona modern GPU is expe
ted to run in real time for VGA or even larger sizedimages.4 Segmentation ComparisonIn a number of appli
ations, like image denoising or deblurring, �ltering is the�nal step. In most other appli
ations �ltering is an intermediate step followedby image segmentation. We are interested in the latter 
ase. Thus, following theexample of [3℄, we use the 
onne
ted 
omponent grouping algorithm des
ribedin Fig. 2 to perform 
olor-based segmentation. The simpli
ity of the groupingstep allows for an obje
tive evaluation of the �ltering methods for the task ofimage segmentation. This algorithm has a single parameter, namely the groupingthreshold t. In all our experiments t = 0.5 ∗ hr
5.We use the Berkeley database of human segmentations [10℄ to evaluate theperforman
e of the two methods. This is the biggest, publi
ly available database
ontaining 200 
olor, training images and 1087 human 
reated segmentations.We also present the results from the Weizmann Institute segmentation database[11℄, that 
onsists of 100 grays
ale images and 300 segmentations into foregroundand ba
kground. Before presenting the results we need to des
ribe the di�erentmeasures that are used in the evaluation.We use all the standard measures for the evaluation of the two algorithms,namely the Global Consisten
y Error (GCE) [10℄, the Variation of Information(VI) [15,16℄, the Probabilisti
 Rand index (PR) [17℄ and the average BoundaryDispla
ement Error (BDE) [18℄6. From the previous measures for GCE, VI andBDE the lower the value the better the quality of the segmentation, while PR isa measure of similarity and as su
h a value of 0 indi
ates no similarity with thehuman 
reated database, while a value of 1 indi
ates the highest similarity.We 
reate the following graphs by only varying the 
olor resolution hr of the�ltering methods. More spe
i�
ally, we let hr to obtain values from 0.6 to 20 inin
rements of 0.3. We keep the remaining �ltering parameters 
onstant i.e., themaximum number of iterations for 
onvergen
e is set to 20 and the 
onvergen
ethreshold to 0.1. For 
omparison we use the algorithm by Felzenswalb and Hut-tenlo
her [20℄, denoted as GAT (Grouping with an Adaptive Threshold) on the�gures. Again we vary the grouping threshold k (k = [10 . . . 1500] in in
rementsof 20).5 This is the same value for t that the EDISON system [14℄ uses. In pra
ti
e, thethreshold does not a�e
t the resulting segmentation mu
h, as long as it is largerthan the 
onvergen
e threshold of the optimization problem. In our experiments

t = 0.5≫ 0.1 = 
onvergen
e threshold.6 We use the 
ode provided by J. Wright and A. Yang [19℄ to 
ompute them.



A study of mean shift based 
olor segmentation algorithms 11We 
ompute the 
omparison measures for ea
h image of the database andfurther aggregate the results for the whole database using the median value7.These values are plotted on the Y-axis of ea
h �gure. On the X-axis we plot theaverage segment size, instead of the 
olor resolution hr. Thus all the plots belowshow the impli
it 
urve of one 
omparison measure with respe
t to the averagesegment size.4.1 Segmentation Results

Fig. 6: Segmentation results for the Berkeley database. The solid and dash-dot linesrepresent the use of the Epane
hnikov (Ep.) and Normal (N.) kernel, and the bla
kand orange 
ir
le the use of the RGB and Luv 
olor spa
e respe
tively. Note that thenew method (CMS) is in green, while the existing method (CMMS) is in blue. Fromthe top graphs it is 
lear that the green plots are better than the 
orresponding blueones.First we present the 
olle
tive segmentation results from the Berkeley database.We 
ompare the two mean shift versions (CMMS and CMS) in two di�erent 
olorspa
es (RGB and Luv) and using two di�erent kernel fun
tions (Epane
hnikov7 Sin
e the 
omparison measures vary signi�
antly for di�erent images we 
hoose themedian value as opposed to the mean value be
ause it is more robust to outliers.



12 K. Bitsakos, C. Fermüller and Y. Aloimonosand Normal kernel) for a total of 2 × 2 × 2 = 8 
ombinations. That is why wedisplay 8 
urves on ea
h graph of Fig. 6 plus a red 
urve for GAT.Before analyzing the results any further we want to emphasize two fa
ts. Theresults of the Global Consisten
y Error measure are misleading. As Martin et al.[10℄ mention, this measure only produ
es meaningful results when the numberof segments in the 
omputer segmentation is similar to the one in the humansegmentation. In all other 
ases, i.e., when the number of 
omputer generatedsegments is too high or too low GCE goes to zero. Indeed, as we observe inFig. 6, all the 
urves for the GCE measure start from 
lose to 0 (for very smallaverage segment size) and asymptoti
ally go to 0 (for very large average segmentsizes). In between the two extremes, GCE values are larger, but sin
e we displaythe average value for all the images it is impossible to determine the range ofaverage segment sizes where GCE values are meaningful. The se
ond fa
t is thatthe values of the Variation of Information measure for all the 
urves are really
lose together, making VI the least dis
riminative measure. On the opposite side,both the Probabilisti
 Rand index and the average Boundary Displa
ement Errorare dis
riminative enough to 
ompare the di�erent segmentation algorithms inthis setting.The segmentation results verify our earlier observations about the e�e
t ofthe di�erent kernels (Se
. 3.1) and 
olor spa
es (Se
. 3.2) on the amount ofsmoothing performed (for a given 
olor resolution hr). Filtering on the RGB
olor spa
e results in less smoothing of the images and as a 
onsequen
e inmore image segments (and smaller average segment sizes). This is denoted bythe 
lose pla
ement of the 
ir
les on the RGB plots 
ompared to their Luv
ounterparts. The same observation, i.e., smaller average segment sizes, is validfor the Epane
hnikov kernel fun
tion 
ompared to the Normal kernel.In the mean shift literature there are referen
es that the Normal fun
tionprodu
es better results than the Epane
hnikov kernel [3℄, but so far an thor-ough experimental 
omparison of the two kernels was not performed. A

ordingto the plots of Fig. 6 this predi
tion is absolutely right. The use of a Normalkernel produ
ed better results in both measures (PR and BDE) and for both�ltering methods (CMMS and CMS). Furthermore, the 
oupling of the Normalkernel with the Luv 
olor spa
e produ
ed far superior results than all the other
ombinations.Finally, the newly introdu
ed variant of mean shift, i.e., Color Mean Shift,outperformed CMMS in all 
ombinations of kernel fun
tions and 
olor spa
es.Overall, CMS �ltering on Luv 
olor spa
e with a Normal kernel produ
ed thebest results 
ompared to all other methods. Compared to CMMS �ltering onLuv 
olor spa
e with a Normal kernel (i.e., the next best algorithm) the newmethod produ
ed on average ∽ 17% better on the PR index and ∽ 22% betteron the BDE measure. Furthermore, this algorithm in most 
ases outperformedthe 
urrent state of the art GAT algorithm [20℄.On Fig. 7 we present the segmentation results for the Weizmann dataset 
on-sisting of 100 images and 300 manual segmentations into foreground and ba
k-ground. Before analysing them we want to mention that this dataset is di�erent
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olor segmentation algorithms 13from the previous one in the following aspe
ts. All the images are grays
ale andnot 
olor. Furthermore, the texture variation is signi�
antly less than the onein the Berkeley database. The purpose of the dataset is to provide a testbed forsegmentation into obje
ts and as su
h only the single dominant obje
t per imageis marked as forground and the rest is ba
kground8. As a result many boundaryedges are not reported in the manual segmentation. Both algorithms performedvery well, with CMS performing better than CMMS on the BDE measure. Inthis database CMS performed slightly worse than GAT.

Fig. 7: Segmentation results for the Weizmann Institute database. The solid and dash-dot lines represent the use of the Epane
hnikov (Epan.) and Normal kernel respe
tively.5 Con
lusionsThis paper presents the 
urrent variations of the mean shift algorithm from anoptimization viewpoint and emphasizes the di�eren
e between Fukunaga andHostetler's and Comani
iu and Meer's versions of the method, namely whetherthe pairwise 
omparison for moving ea
h point is performed with the originalimage or with the �ltered image of the previous iteration. A new variation ofthe mean shift algorithm, denoted Color Mean Shift, that lies between the ex-isting two is also proposed. Extended experiments are presented both for theedge-preserving �ltering and the segmentation tasks. In �ltering, we mostly fo-
us on the e�e
t of di�erent parameters on the speed of the �ltering pro
ess. Forsegmentation, we use the Berkeley and the Weizmann Institute datasets to eval-uate the performan
e of the algorithms using di�erent kernel fun
tions and 
olorspa
es. We 
on
lude that Color Mean Shift performed on Luv 
olor spa
e us-ing a Normal kernel fun
tion outperforms all other mean shift based algorithms8 The PR measure is misguiding in this dataset be
ause of the existan
e of only twosegments. Thus, a uniform segmentation of the whole image produ
es a result of
∼ 0.97, i.e., very 
lose to the maximum 1.
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olor images and is marginally better than 
urrent of the art segmentationalgorithms.In the future we want to investigate how the methods perform when they are
oupled with more sophisti
ated grouping te
hniques, su
h as [20℄.Referen
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