
An experimental study of olor-basedsegmentation algorithms based on the mean-shiftoneptK. Bitsakos, C. Fermüller and Y. AloimonosCenter for Automation Researh,University of Maryland, College Park, USAkbits�s.umd.edu, {fer,yiannis}�far.umd.eduAbstrat. We point out a di�erene between the original mean-shiftformulation of Fukunaga and Hostetler and the ommon variant in theomputer vision ommunity, namely whether the pairwise omparison isperformed with the original image or with the �ltered image of the pre-vious iteration. An optimization perspetive on these tehniques leads toa new hybrid algorithm, alled Color Mean Shift, that roughly speaking,treats olor as Fukunaga's algorithm and spatial oordinates as Comani-iu's algorithm. We perform experiments to evaluate how di�erent kernelfuntions and olor spaes a�et the �nal �ltering and segmentation re-sults, and the omputational speed, using the Berkeley and WeizmannInstitute segmentation databases. A number of onlusions arise fromthe experiments, among them, that the new method gives better resultsthan existing ones based on the mean shift onept on four standard om-parison measures (∽ 15%, 22% improvement on RAND and BDE mea-sures respetively for olor images), with slightly higher running times(∽ 10%). Overall, the new method produes segmentations omparablein quality to the ones obtained with urrent state of the art segmentationalgorithms.1 IntrodutionMean shift is an unsupervised lustering tehnique that over the last deadegained popularity and is now widely used in omputer vision for olor basedsegmentation. Though oneptually simple, an extensive amount of mathemati-al formalism has been used to preisely desribe the method. As a result, someof the important harateristis of the method were �hidden underneath thesurfae�. This paper simpli�es the formulation and brings forth its importantfeatures by desribing mean shift as an optimization problem. This leads to twoontributions; a) we propose a new variation, denoted Color Mean Shift, thatombines Fukunaga's mean shift superior luster ability with most of the ompu-tational advantages of Comaniiu's variant, and b) we experimentally omparedi�erent variations of the algorithm both in terms of the omputational speedand the segmentation quality. Color Mean Shift is found to outperform the ur-rent methods in terms of the quality of segmentation, while it is slightly (∽ 10%)



2 K. Bitsakos, C. Fermüller and Y. Aloimonosslower . More spei�ally, it produed ∽ 15%, 22% better results on the Berkeleydataset with the RAND and the BDE measure respetively.1.1 Related WorkDespite its existene for more than three deades [1℄, mean-shift only reentlygained popularity in the omputer vision ommunity. Cheng [2℄ �rst modi�ed themethod and used it for non-parametri lustering and then, Comaniiu and Meer[3℄ used it for image �ltering and segmentation. Sine then, mean-shift has beenused in omputer vision for objet traking [4℄, 3D reonstrution [5℄, image�ltering [3℄, texture lassi�ation [6℄ and video segmentation [7℄ among otherproblems. The relatively high omputational ost of a naive implementation ofthe method ombined with the need for fast image proessing led researhers topropose fast approximate variations of it. Most notably, two solutions for �ndingpairs of points within a radius have been proposed; the Improved Fast GaussTransform based mean shift [8℄ for Normal kernels and the Loality SensitiveHashing based mean shift [6℄.Cheng [2℄ was the �rst to reognize the equivalene of mean shift to astep-varying gradient asent optimization problem, and muh later Fashing andTomashi [9℄ showed that it is equivalent to Newton's method with pieewiseonstant kernels, and is a quadrati bound maximization for all other kernels.Still the dominant way to desribe it is by using density estimation terms [3℄,namely using kernels and their shadow and pro�le funtions.1.2 ContributionsIn this paper, we desribe mean shift as an optimization problem. The simpli-ity of the formulation not only leads to a better understanding of the method,but also brings forth the di�erene between the original method and its variationthat is used in omputer vision1. In the same setion (i.e., Se. 2), we propose ourown variant of mean shift, denoted Color Mean Shift (CMS), that lies betweenthe two methods. The next two setions ontain an experimental omparison be-tween the methods. First, in Se. 3, we present the �ltering results for di�erentkernel funtions and olor spaes. Then, we study the �ltering speed of the algo-rithms with respet to a number of optimization parameters. In Se. 4 we showresults on two di�erent segmentation datasets (the Berkeley [10℄ and WeizmannInstitute [11℄ databases) ontaining 300 images and 1387 human segmentations(in total) using 4 standard omparison measures. In these experiments the newmethod (i.e, olor mean shift) exhibits an improvement of > 15% ompared tothe existing method on olor images. A similar improvement was also ahievedfor the graysale images of Weizmann dataset. Summary and future work (Se.5) onlude this paper.1 In the reent papers, the original �mean shift� approah is alled �blurring meanshift�. In the rest of the paper we use the abbreviations FHMS and CMMS forFugunaga and Hostetler's and Comaniiu and Meer's method of mean shift respe-tively.



A study of mean shift based olor segmentation algorithms 32 Image Filtering using the Mean Shift algorithm2.1 NotationWe onsider the image on the 5D spae with spatial and olor dimensions. Morespei�ally, xi is a 2D vetor representing the spatial oordinates and si ≡ s(xi)is a vetor that represents the three olor hannels of pixel i (i = 1 . . .N).In the following paragraphs we use bold letters to represent vetors and thenotation [xi, si] to indiate a onatenation of vetors. To indiate the evolutionof a vetor over time we use supersripts, eg. [x0
i , s

0
i ] indiates pixel xi havingthe initial intensity values s

0
i .2.2 Kernel FuntionsIn our experiments we use two di�erent kernel funtions; the Epanehnikov andthe Normal (Gaussian) kernel. The Epanehnikov kernel has the analyti form
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, (1)where cE is the normalization onstant).The multivariate Normal kernel with variane 1 has the analyti form
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x). (2)The Normal kernel is symmetrially trunated to obtain a kernel with �nitesupport.2.3 Fukunaga and Hostetler's Mean Shift (FHMS)The original mean shift formulation [1℄ (applied to a olor image) treats theimage as a set of 5 − D points. Eah point is iteratively moved proportionallyto the weighted average of its neighboring points. At the end, lusters of pointsare formed. We de�ne mean shift to be the gradient desent solution of theoptimization problem

arg min
[xi,Si]

−
∑

i,j

K([xi, si] − [xj , sj ]), (3)where∑
i,j

de�nes the summation over all pairs of pixels in the image. This prob-lem has a global minimum when all the pixels �ollapse� into a single point. Weseek a loal minimum instead. That's why we initialize the features [xi, si] withthe original position and olor of the pixels of the image and perform gradientdesent iterations till we reah the loal minimum. The instabilities aused bythis behavior are studied in a reent work by Rao et al. [12℄.



4 K. Bitsakos, C. Fermüller and Y. Aloimonos2.4 Comaniiu and Meer's Mean Shift (CMMS)The modi�ed mean shift formulation proposed by Comaniiu and Meer [3℄(CMMS) an also be expressed as a gradient desent solution of the optimizationproblem
arg min

[xi,Si]
−

∑

i,j

K([xi, si] − [x0
j , s

0
j ]). (4)There is a subtle di�erene between CMMS and FHMS, that signi�antlya�ets the behavior. In the former formulation eah feature point is omparedagainst the original set of 5−D points [x0

j , s
0
j ], while in the latter ase the pointis ompared against the set of points from the previous iteration [xj , sj].Fig. 1 presents the results of both methods in a smoothly varying intensityimage. Notie that the gradient of the kernel funtion, everywhere but in theboundaries, is zero and so CMMS �ltering only hanges the intensity on theboundaries (that hange is not very visible). FHMS, on the other hand, pro-dues arti�ial segments of uniform intensity. Intuitively, eah iteration of theproess results in more lustered data whih in turn leads to better lusteringresults in the next iteration. On the downside, a fast FHMS implementation ishallenging (if not impossible) due to the fat that the feature points and theomparison points do not lie on a regular spatial grid anymore. Thus in a naiveimplementation one would have to ompare the urrent feature [xi, si] againstall the remaining feature points.2.5 Color Mean Shift (CMS)Our method alleviates the omputational problem of FHMS by using the originalspatial loation of the points for omparison, while it uses the updated intensityvalues of the previous iteration for improved lustering ability. In a sense, weperform FHMS on the olor dimensions and CMMS on the spatial dimensions(that is the reason for naming the method �olor mean shift�). As above, CMSan be expressed as the gradient desent solution of the optimization problem

arg min
[xi,Si]

−
∑

i,j

K([xi, si] − [x0
j , sj ]). (5)We have inluded the results of olor mean shift �ltering in the smoothlyvarying image of Fig. 1. It is lear that individual lusters of uniform intensitiesare formed (as in the ase of the original mean shift). Note that in this examplethere is not a single right solution for the segmentation problem and one anargue that a single segment is the best solution. We present this example onlyto exhibit one �weakness� of the CMMS algorithm, that is addressed in both oursolution and the original mean shift algorithm. In Fig. 2 we present both CMSand CMMS algorithms.



A study of mean shift based olor segmentation algorithms 5
(a) CMMS (b) CMS () FHMSFig. 1: All the desribed algorithms applied on a 256 × 100 pixels smoothly varyingimage. All the �ltering algorithms were exeuted with spatial resolution hs = 21 andrange resolution hr = 10 and used a Normal kernel.
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]||2)Conneted Components GroupingInput:set of pixels xi with intensities sigrouping threshold tOutput:label li for pixel xiAlgorithm:repeat until onvergenefor all pixels xifor all xj adjaent to xiif ||si − sj ||

2 < t and xi, xj have di�erent labels:merge the labels of xi and xj (li ≡ lj)Fig. 2: All the algorithms. g(x) = [x ≤ 1] (indiator funtion in Iverson notation) forthe Epanehnikov and g(x) = exp(−x/2) for the Normal kernel.



6 K. Bitsakos, C. Fermüller and Y. Aloimonos3 Filtering ComparisonCMMS CMS CMMS CMS
E.
N.E.N.Fig. 3: Epanehnikov vs Normal kernel. We use hs = 5 and hr = 19. All images areproessed on the RGB olor spae. E., N. stand for Epanehnikov kernel and Normalkernel respetively. The Normal kernel produes smoother regions. Also, CMS produesmore uniform regions even in heavily textured areas, eg. the grass and the roof.Following the example of Comaniiu and Meer [3℄, we normalize the spatialand olor oordinates of eah pixel vetor by dividing by the spatial (hs) andolor (hr) resolutions. Thus, the original feature vetor [xi, si] is transformedto [ xi

hs
, si

hr
] (not inluded in the equations for simpliity). The spatial resolution

hs a�ets the size of the neighborhood around eah pixel that the algorithmonsiders and in all the experiments is onstant (hs = 5 orresponding to a
11× 11 window). Then, we perform the optimization; one pixel at a time in thease of CMMS (Fig. 2, top right), or one iteration of the whole feature set at atime in the FHMS and CMS ases (Fig. 2, top left). FHMS has a omplexity thatis quadrati on the number of pixels of the whole image. Thus, its running timefor a reasonably size image (eg. 640 × 480 pixels) is several minutes, making itprohibitively slow for any omputer vision appliation. For that reason, we omitthe results of this algorithm in the experiments.



A study of mean shift based olor segmentation algorithms 73.1 Filtering using an Epanehnikov or a Normal KernelFirst we present the e�et of using di�erent kernels: Epanehnikov and Normal(Fig. 3). Eah olumn of the �gure depits the �ltering result with a di�erentalgorithm (CMMS or CMS) and eah row for a di�erent kernel funtion (N., E.stand for Normal and Epanehnikov kernels respetively). In all ases the Normalkernel produes smoother results, while still preserving edge disontinuities. As amatter of fat, the olor resolution hr is the parameter that de�nes the gradientmagnitude above whih there is an edge (to be preserved). So for the �hand�image, a olor range of hr = 19 results in smoothing most of the texture of thebakground, while a value of hr = 10 retains most of it (in RGB with a Normalkernel).Overall CMS seems to produe more risp boundaries between segments whilereating more uniform regions within a segment (eg. it suppresses the skin olorvariation on the �hand� image). The former is partiularly important for thesegmentation step as we will see in Se. 4.CMMS CMS CMMS CMS
R.
L.R.L.Fig. 4: Filtering in RGB vs Luv olor spae. We use hs = 5 and hr = 5. All images areproessed with a Normal kernel. R, L stand for RGB and Luv respetively. Filteringin Luv makes smoother images. Moreover, CMS produes more uniform regions.



8 K. Bitsakos, C. Fermüller and Y. Aloimonos3.2 RGB vs Luv Color SpaeIn Fig. 4 we present the results when �ltering on the RGB or Luv olor spae.In general, �ltering in Luv produes smoother images.This is due to two fats;the Eulidean distane between two Luv values is pereptually meaningful, i.e.,it is proportional to the distane of olors as pereived by a human observer,and the range of values for eah omponent (L, u, v ) is di�erent (for examplein our implementation L ∈ [0 . . . 100], u ∈ [−100 . . .180], v ∈ [−135 . . .110].),while eah of the red, green and blue omponents have values from 0 to 255.Overall, CMS smooths the image more than CMMS, while preserving theboundaries better.3.3 Filtering Speed ComparisonWith the inreasing demand for proessing large volumes of data omputationalspeed has beome an important harateristi of any algorithm, that along withauray determines its usefulness. That is the reason why a number of ap-proahes to speed up mean shift �ltering have been proposed [6,8,13℄. In thissetion we try to ompare the speed of the two methods.An objetive omparison of the �ltering speed of the di�erent methods isnot a simple task. Besides the implementation details that greatly a�et thespeed, there is also a number of algorithmi parameters that an signi�antlyspeedup or slow down the onvergene of the optimization proedure. We startour omparison by evaluating the role of these parameters and then we disusswhether general speed up tehniques that have been proposed in the literaturean be applied to the di�erent methods or not. For fairness sake, we use our ownimplementation of all the �ltering methods that onsists of Matlab �les for theimage handling and the general input/output interfae, while the optimizationode is written in C2. We perform all the experiments on a desktop omputerwith an Intel Core2 Quad CPU @3GHz3.Image Size In theory the omplexity of both CMS and CMMS inreaseslinearly with the number of pixels (if the kernel is bounded), sine eah pixelrepresents a feature vetor that needs to be proessed4. The theoretial predi-tion is veri�ed in pratie as Fig. 5a shows.Spatial Resolution hs Theoretially, both �ltering methods depend quadrat-ially on the spatial bandwidth. In pratie, other parameters, explained below,make the dependene less than quadrati. Fig. 5b displays the �ltering speedwith respet to the spatial resolution for the methods, when all the other pa-rameters are the same.Epanehnikov vs Normal kernel For eah pair of pixels, omputation ofthe weight using the Epanehnikov kernel only requires a omparison, while the2 All the ode is available and an be downloaded from the author's websitehttp://www.s.umd.edu/~kbits/ode.htm3 Due to Matlab's limitation only one ore is used in the experiments.4 FHMS's omplexity, on the other hand, is not linear with respet to the image sizesine whole areas an ollapse into single points.
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(a) Speed vs Image Size (hs =
5) (b) Speed vs hs () Speed vs ConvergenethresholdFig. 5: We use the �workers� image (size 321 × 481 pixels) and perform the �lteringon the RGB olor spae with hr = 15. A solid line denotes the use of Epanehnikovkernel while the dotted line (middle �gure) the use of Normal kernel. We also limitthe number of iterations to 20 and the onvergene threshold is 0.001. We perform the�ltering 5 times for eah image size and only plot the median value.alulation of an exponential number is neessary for the ase of the Normalkernel. As a result the former operation is muh heaper than the latter andthus �ltering with an Epanehnikov kernel is faster ompared to �ltering with aNormal kernel as is shown in Fig. 5b.The overall speed of the segmentation proess is also a�eted by the qualityof the result of the �ltering proess. We experimentally found, that a Normalkernel produed better results and as a onsequene sped up the grouping step.The use of a Normal kernel still resulted in slower segmentation times, but thetime di�erene was not as large as Fig. 5b shows.Convergene Threshold On eah iteration of the optimization proedureeah pixel vetor is ompared against its neighbors and shifted. If this shift isless than a prede�ned value (denoted onvergene threshold) then we ignorethat pixel in subsequent iterations of the optimization proedure. Intuitively theonvergene threshold denotes how lose to the �true� solution the optimizationshould reah before termination. Note that in CMMS the shift of eah pixel is amonotonially dereasing funtion of the iteration number, while for CMS it isnot. Fig. 5 displays the �ltering speed with respet to the onvergene threshold.The higher the threshold the faster the �ltering. Espeially for thresholds lessthan 0.1 the �ltering time dereases almost exponentially.Overall, from Fig. 5, CMS is ∽ 10% slower than CMMS. A number of teh-niques an be used to perform the �ltering faster. In the ore of all �lteringalgorithms the pairwise distane between feature points needs to be omputed.As suggested in [3℄ employing data strutures and algorithms for multidimen-sional range searhing an signi�antly improve the running time of all methods.In CMMS the trajetory of most feature points lay along the path of other featurepoints. Christoudias et al. [14℄ report a speed up of about �ve times when they�merge� the feature points together. This trik an diretly be used in CMMS.A variation of the same onept ould also be used to speed up CMS. The in-



10 K. Bitsakos, C. Fermüller and Y. Aloimonostrodution of multiore CPUs and, espeially, GPUs has provided a new way toimprove the exeution speed of algorithms through a parallel implementation.Both �ltering algorithms are parallel in nature, so a areful implementation ona modern GPU is expeted to run in real time for VGA or even larger sizedimages.4 Segmentation ComparisonIn a number of appliations, like image denoising or deblurring, �ltering is the�nal step. In most other appliations �ltering is an intermediate step followedby image segmentation. We are interested in the latter ase. Thus, following theexample of [3℄, we use the onneted omponent grouping algorithm desribedin Fig. 2 to perform olor-based segmentation. The simpliity of the groupingstep allows for an objetive evaluation of the �ltering methods for the task ofimage segmentation. This algorithm has a single parameter, namely the groupingthreshold t. In all our experiments t = 0.5 ∗ hr
5.We use the Berkeley database of human segmentations [10℄ to evaluate theperformane of the two methods. This is the biggest, publily available databaseontaining 200 olor, training images and 1087 human reated segmentations.We also present the results from the Weizmann Institute segmentation database[11℄, that onsists of 100 graysale images and 300 segmentations into foregroundand bakground. Before presenting the results we need to desribe the di�erentmeasures that are used in the evaluation.We use all the standard measures for the evaluation of the two algorithms,namely the Global Consisteny Error (GCE) [10℄, the Variation of Information(VI) [15,16℄, the Probabilisti Rand index (PR) [17℄ and the average BoundaryDisplaement Error (BDE) [18℄6. From the previous measures for GCE, VI andBDE the lower the value the better the quality of the segmentation, while PR isa measure of similarity and as suh a value of 0 indiates no similarity with thehuman reated database, while a value of 1 indiates the highest similarity.We reate the following graphs by only varying the olor resolution hr of the�ltering methods. More spei�ally, we let hr to obtain values from 0.6 to 20 ininrements of 0.3. We keep the remaining �ltering parameters onstant i.e., themaximum number of iterations for onvergene is set to 20 and the onvergenethreshold to 0.1. For omparison we use the algorithm by Felzenswalb and Hut-tenloher [20℄, denoted as GAT (Grouping with an Adaptive Threshold) on the�gures. Again we vary the grouping threshold k (k = [10 . . . 1500] in inrementsof 20).5 This is the same value for t that the EDISON system [14℄ uses. In pratie, thethreshold does not a�et the resulting segmentation muh, as long as it is largerthan the onvergene threshold of the optimization problem. In our experiments

t = 0.5≫ 0.1 = onvergene threshold.6 We use the ode provided by J. Wright and A. Yang [19℄ to ompute them.



A study of mean shift based olor segmentation algorithms 11We ompute the omparison measures for eah image of the database andfurther aggregate the results for the whole database using the median value7.These values are plotted on the Y-axis of eah �gure. On the X-axis we plot theaverage segment size, instead of the olor resolution hr. Thus all the plots belowshow the impliit urve of one omparison measure with respet to the averagesegment size.4.1 Segmentation Results

Fig. 6: Segmentation results for the Berkeley database. The solid and dash-dot linesrepresent the use of the Epanehnikov (Ep.) and Normal (N.) kernel, and the blakand orange irle the use of the RGB and Luv olor spae respetively. Note that thenew method (CMS) is in green, while the existing method (CMMS) is in blue. Fromthe top graphs it is lear that the green plots are better than the orresponding blueones.First we present the olletive segmentation results from the Berkeley database.We ompare the two mean shift versions (CMMS and CMS) in two di�erent olorspaes (RGB and Luv) and using two di�erent kernel funtions (Epanehnikov7 Sine the omparison measures vary signi�antly for di�erent images we hoose themedian value as opposed to the mean value beause it is more robust to outliers.



12 K. Bitsakos, C. Fermüller and Y. Aloimonosand Normal kernel) for a total of 2 × 2 × 2 = 8 ombinations. That is why wedisplay 8 urves on eah graph of Fig. 6 plus a red urve for GAT.Before analyzing the results any further we want to emphasize two fats. Theresults of the Global Consisteny Error measure are misleading. As Martin et al.[10℄ mention, this measure only produes meaningful results when the numberof segments in the omputer segmentation is similar to the one in the humansegmentation. In all other ases, i.e., when the number of omputer generatedsegments is too high or too low GCE goes to zero. Indeed, as we observe inFig. 6, all the urves for the GCE measure start from lose to 0 (for very smallaverage segment size) and asymptotially go to 0 (for very large average segmentsizes). In between the two extremes, GCE values are larger, but sine we displaythe average value for all the images it is impossible to determine the range ofaverage segment sizes where GCE values are meaningful. The seond fat is thatthe values of the Variation of Information measure for all the urves are reallylose together, making VI the least disriminative measure. On the opposite side,both the Probabilisti Rand index and the average Boundary Displaement Errorare disriminative enough to ompare the di�erent segmentation algorithms inthis setting.The segmentation results verify our earlier observations about the e�et ofthe di�erent kernels (Se. 3.1) and olor spaes (Se. 3.2) on the amount ofsmoothing performed (for a given olor resolution hr). Filtering on the RGBolor spae results in less smoothing of the images and as a onsequene inmore image segments (and smaller average segment sizes). This is denoted bythe lose plaement of the irles on the RGB plots ompared to their Luvounterparts. The same observation, i.e., smaller average segment sizes, is validfor the Epanehnikov kernel funtion ompared to the Normal kernel.In the mean shift literature there are referenes that the Normal funtionprodues better results than the Epanehnikov kernel [3℄, but so far an thor-ough experimental omparison of the two kernels was not performed. Aordingto the plots of Fig. 6 this predition is absolutely right. The use of a Normalkernel produed better results in both measures (PR and BDE) and for both�ltering methods (CMMS and CMS). Furthermore, the oupling of the Normalkernel with the Luv olor spae produed far superior results than all the otherombinations.Finally, the newly introdued variant of mean shift, i.e., Color Mean Shift,outperformed CMMS in all ombinations of kernel funtions and olor spaes.Overall, CMS �ltering on Luv olor spae with a Normal kernel produed thebest results ompared to all other methods. Compared to CMMS �ltering onLuv olor spae with a Normal kernel (i.e., the next best algorithm) the newmethod produed on average ∽ 17% better on the PR index and ∽ 22% betteron the BDE measure. Furthermore, this algorithm in most ases outperformedthe urrent state of the art GAT algorithm [20℄.On Fig. 7 we present the segmentation results for the Weizmann dataset on-sisting of 100 images and 300 manual segmentations into foreground and bak-ground. Before analysing them we want to mention that this dataset is di�erent



A study of mean shift based olor segmentation algorithms 13from the previous one in the following aspets. All the images are graysale andnot olor. Furthermore, the texture variation is signi�antly less than the onein the Berkeley database. The purpose of the dataset is to provide a testbed forsegmentation into objets and as suh only the single dominant objet per imageis marked as forground and the rest is bakground8. As a result many boundaryedges are not reported in the manual segmentation. Both algorithms performedvery well, with CMS performing better than CMMS on the BDE measure. Inthis database CMS performed slightly worse than GAT.

Fig. 7: Segmentation results for the Weizmann Institute database. The solid and dash-dot lines represent the use of the Epanehnikov (Epan.) and Normal kernel respetively.5 ConlusionsThis paper presents the urrent variations of the mean shift algorithm from anoptimization viewpoint and emphasizes the di�erene between Fukunaga andHostetler's and Comaniiu and Meer's versions of the method, namely whetherthe pairwise omparison for moving eah point is performed with the originalimage or with the �ltered image of the previous iteration. A new variation ofthe mean shift algorithm, denoted Color Mean Shift, that lies between the ex-isting two is also proposed. Extended experiments are presented both for theedge-preserving �ltering and the segmentation tasks. In �ltering, we mostly fo-us on the e�et of di�erent parameters on the speed of the �ltering proess. Forsegmentation, we use the Berkeley and the Weizmann Institute datasets to eval-uate the performane of the algorithms using di�erent kernel funtions and olorspaes. We onlude that Color Mean Shift performed on Luv olor spae us-ing a Normal kernel funtion outperforms all other mean shift based algorithms8 The PR measure is misguiding in this dataset beause of the existane of only twosegments. Thus, a uniform segmentation of the whole image produes a result of
∼ 0.97, i.e., very lose to the maximum 1.
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