
1

Visual Segmentation of “Simple” Objects for Robots
Ajay K. Mishra and Yiannis Aloimonos
University of Maryland, College Park

Maryland, 20742

Abstract—The ability to automatically segment a “simple”
object of any size from its background is important for an
active agent (e.g. a robot) to interact effectively in the real world.
Recently, we proposed an algorithm [12] to segment a “simple”
object in a scale invariant manner, given a point anywhere
inside that object. However, in [12], a strategy to select the
point inside a “simple” object was not provided. In this paper,
we propose a new system that automatically selects the points
inside different “simple” objects in the scene, carries out the
segmentation process for the selected points, and outputs only
the regions corresponding to the “simple” objects in the scene.
The proposed attention mechanism for the segmentation problem
utilizes, for the first time, the concept of border ownership [17].

I. MOTIVATION

For the robots interacting with their surroundings, object
perception is as important a capability as navigation. Robots
need the navigation capability to reach objects of interest
which are the outcome of object perception. Without object
perception, the robots would not have any dynamic target to
navigate to except the static targets such as doors in a room or
a fixed location using GPS. In this respect, object perception
and navigation are complementary capabilities.

However, unlike navigation, object perception is not well
defined. In fact, the exact definition of an object and what
constitutes perception are both open questions. Perception
is an intricate phenomenon involving not only visual inputs
but also other cognitive modalities. To simplify, we define
a minimal form of object perception: knowing the boundary
of an object. This minimal object perception might even be
sufficient for some basic interactions with the object such as
picking, moving, and pushing it. But in order to complete the
definition of object perception, we have to define an object.

We define a “simple” object in terms of only low-level
visual cues without using any high-level semantics as they
are hard to quantify. A “simple” object is a compact region
in the scene enclosed by the edge pixels at depth and/or con-
tact boundaries with “correct” border ownership. The border
ownership of a boundary pixel is the information about the
side containing the object. Since the boundary pixels of both
types and their border ownership can be determined using low-
level visual cues (read sections V,VI), “simple” objects can
be extracted in a truly bottom-up fashion without any prior
knowledge. Figure 1a shows the examples of “simple” objects.
Figure 1b shows a complex object consisting of multiple
“simple” objects. In the rest of the paper, we are going to
use the term “object” in place of “simple” object for better
readability.

Segmenting objects in a purely bottom-up fashion has
two main advantages: first, a recognition module can take

(a) (b)

Figure 1: (a) and (b) show “simple” objects and a complex
object respectively. In (a), depth and contact boundaries are
shown by the solid and dotted lines respectively while the
border ownership of the boundary pixels are shown by the
arrows. In (b), a hole is shown as well which is a “simple”
object with reverse border ownership.

advantage of the known shape and scale of the segmented
entities to reliably assign them semantic labels; second, the
number of segmented entities to be processed by a recognition
module is only a few more than actual number of objects in
the scene. While recognition following segmentation seems
logical, it is in contrast with the standard approach wherein
objects are recognized before being localized and segmented.
The standard techniques, although successful in some mul-
timedia systems [5], are challenged when used in robotics.
For instance, localization, using standard techniques, usually
means a bounding box around a detected object which is
not enough for robotics purposes. Our proposed segmentation
approach will first identify different parts of visual space as
candidate “objects” to which we then devote our efforts to
recognize and interact.

II. INTRODUCTION

The system, proposed in this paper, builds upon our pre-
viously proposed point-based segmentation strategy [12] that
finds the “optimal” closed contour around a given point in
the scene. If that point lies inside an object, the resulting
closed contour is the boundary of that object. However, if
that point does not lie inside any object, the output is still a
closed contour that does not correspond to the boundary of
any object in the scene. We will call this a non-object closed
contour. Thus, we propose strategies to select points inside
objects, and to reject the non-object closed contours due to
the points selected outside of objects.

The key concept used in this paper is the border ownership
[17] of the boundary pixels, which means knowing their object
side. Besides helping select points inside the objects, the
border ownership information also helps differentiate between
the closed contours corresponding to the objects and the non-
object closed contours. A closed contour corresponding to

2

an object is made up of the boundary pixels whose border
ownership points to the interior of that closed contour whereas
the pixels on a closed contour corresponding to the boundary
of a hole will have border ownership pointing outside of it.
See figure 1b for an example of a hole.

We also introduce the concept of contact boundary to
identify the portion of the boundary of a static object touching
the surface such as a table or floor. A significant part of the
boundary of a static object in the scene has a depth discontinu-
ity across it. But, across the portion of the boundary where the
object meets with the resting surface, depth varies smoothly.
We call this portion of the boundary contact boundary. Figure
1a shows the contact boundary of the objects as the dotted
line.

The likelihood of a pixel to be at the boundary of an object is
stored in a probabilistic boundary edge map of the scene. The
pixels on the boundary of a moving object can be identified as
they also lie on the motion boundaries in the scene. Identifying
the pixels on the boundary of a static object, however, depends
upon the state of the camera. If the camera is moving, depth
boundary can be located using discontinuity in the optical flow
map. If a stereo pair of cameras is used, depth boundary can be
located using discontinuity in disparity map. While the pixels
at a depth discontinuity can be determined using optical flow
or disparity maps, the pixels at a contact boundary needs some
additional information. In this paper, we assume to know the
color distribution of the surface, the objects are resting on.
With this information, an edge pixel at contact boundary has
significantly different color distribution on its two sides and
the color distribution on one of the side is similar to that of
the surface. More about this later in section IV-C.

In this paper, we explain the system assuming that there
is a moving camera which is looking at the static objects
on a table of known color distribution. Although this is just
one of different scenarios possible considering the state of
camera and the objects, the principles illustrated in the paper
can be easily applied to any of the other cases to segment
the objects. An overview of our system is as follows: A
probabilistic boundary edge map is generated using color,
texture and motion cues (see section IV). For the pixels with
significant boundary likelihood, the border ownership is also
estimated. Using the border ownership information, a set of
points inside different objects are automatically selected (see
section V). Around each point, [12] finds the closed contour
in the probabilistic boundary edge map (a brief overview is
given in section VI). A subset of resulting closed contours
that uniquely corresponds to the objects is finally selected as
the output of the system (section VII). To purge any spurious
closed contour still remaining in the output, we also enforce
temporal persistence as explained in section VII-C.

Our two main contributions are:
• A new attention mechanism, designed for the segmen-

tation problem. The only requirement on this attention
system is that the points should lie inside the objects for
the point-based segmentation strategy[12] to successfully
segment them.

• A method to select only those closed contours that
correspond to the objects in the scene while rejecting

duplicate and non-object closed contours.

III. RELATED WORK

Attention is classified into two categories based on whether
its deployment over a visual scene is guided by scene features
or by intention: the first is called bottom-up and is driven by
low-level processes; the second refers to top-down processes.
Most work has happened in bottom-up attention. The feature
integration theory [15] has inspired many bottom-up models of
visual attention [8, 1]. The most popular is the one proposed
by L. Itti et al. [10] and it has become a standard model of
bottom-up visual attention, in which saliency due to primitive
features such as intensity, orientation and color are computed
independently. A model like this is not appropriate for our
robots, because it often fails when attention needs to be
focused on an object.

Less known are two recent works in fixation and attention
[9, 16], that do not follow the main stream of thought. [9]
shows, using systematic experiments, that humans are looking
at objects as if they knew them before they became aware of
their identity. That is, humans look as if they know, before they
know! How could that be possible? [16] offers an alternative to
the traditional saliency theories built on the assumption that
“early” features (color, contrast, orientation, motion, and so
forth) drive attention directly. Specifically, through meticulous
experiments, it suggests that observers attend to objects, and
this hypothesis has a better predictive power in the data than
any other theory. But how can we look at an object without
knowing about it, since we haven’t looked at it yet?

The border ownership has been reported to be registered
by the neurons in a primate’s visual cortex [17, 4]. Zhou
et al. show that the depth information is most important in
determining the border ownership of a pixel at the boundary
of an object. They also report that the determination of the
border ownership happens as a result of local processing of
visual cues. In computer vision literature, a popular term for
border ownership is figure/ground assignment. Fowlkes et al.
[6] use local shape information to determine the figure/ground
side for an edge pixel. But, compared to static monocular cues,
depth and motion information are stronger cues in determining
border ownership of a boundary edge pixel.

IV. PROBABILISTIC BOUNDARY EDGE MAP

In the probabilistic boundary edge map, the intensity of a
pixel is set to be the probability to be either depth or contact
boundary in the scene. The probability to be at a depth bound-
ary can be determined by checking for a discontinuity in the
optical flow map at the corresponding pixel location because
depth discontinuity introduces discontinuity in the optical flow
map as well. But the exact location of discontinuities in optical
flow maps often do not match with the true object boundaries,
a well known issue for optical flow algorithms. To account
for this, we use static cues such as color and texture to, first,
find all possible boundary locations in the image which are
the edge pixels with positive color and/or texture gradient.
Then, the probability of these edge pixels to be on depth
and contact boundary is determined. The maximum of two

3

(a) (b) (c) (d)

Figure 2: (a) The first frame of the image sequence. (b) 2D optic flow map. (c) All the edge pixels with non-zero color and
texture gradient overlaid on the flow map. (d) The final probabilistic boundary edge map (the darkness of an edge pixel is
proportional to its probability of being at an object boundary).

0 22.5 45 67.5 90 112.5 130 152.5

w w w w
w w w w

Figure 3: The oriented disc filters with opposite polarity. The
corresponding orientation values (in degrees) are shown at the
bottom of the figure. The middle zone (of width w) in the
filters are suppressed to tolerate the misalignment between the
optical flow boundary, and the actual boundary of the objects.
The radius of the disc is 0.015 times the image diagonal and
w is 0.2 times the disc radius.

probability is assigned as the probability of an edge pixel to
be on object boundary, PB(x, y). Note that color and texture
gradient values do not participate in determination of the
boundary probability.

A. Boundary localization using static cues

Using color and texture cues, all locations in frame 1 with
positive color and/or texture gradient are detected and stored
in a binary edge map [11]. See Figure 2c for an example of
the binary edge pixels overlaid on the optical flow map. At all
the edge pixels, the dominant tangential direction, which can
be one of eight quantized values between 0 and π is calculated
as well. The binary edge map, by selecting only a subset of all
pixels, effectively assigns zero probability to the pixels from
inside smooth areas in the scene to be on the boundary of an
object.

However, the boundary probability of the edge pixels can
not be estimated using the color or texture gradient at their
locations. An edge pixel with a high color or texture gradient
value can be both inside and on the boundary of an object.
We use motion cues and color information of the surface
to determine the probability of the edge pixels to be depth
boundary and contact boundary respectively.

B. Probability to be depth boundary

Firstly, we compute the optical flow flow gradient at binary
edge pixels. [3] is used to calculate optical flow map using
two consecutive frames, an example of a color-coded flow
map is shown in figure 2b. Eight disc filters for the eight
possible orientations of the edge pixels are designed (Figure 3.)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

Result of logistic regression of optic flow gradient

Magnitude of optic flow vector difference

p
ro

b
a

b
ili

ty
 (

P
(x

))

internal edge

boundary edge

estimated logistic Fn

Figure 4: The estimated logistic function for converting the
optic flow gradients across edge pixels into their probability
of being at a depth discontinuity.

By placing the appropriately oriented disc filter in the optical
flow map at the location corresponding to an edge pixel, we
compute the optical flow gradient as the magnitude of the
difference in the mean optical flow vectors || ~V+− ~V−||, where
~V+ and ~V− are the mean optical flow vectors in the two halves

of opposite polarity indicated by indicated by ” + ” and ”− ”
in Figure 3. Figure 3(c) shows the binary edge pixels overlaid
on the flow map.

Secondly, the optical flow gradient is converted into proba-
bility. The relation between the magnitude of the gradient and
the probability is not linear because larger depth discontinuity
does not mean proportionally higher likelihood of the edge
pixels to be depth boundary. That is why we use a logistic
function g given below to map the gradient value to [0, 1]:

g(x) =
1

1 + e−β1(x−β2)
(1)

To determine β1and β2, we select 200 edge pixels at regular
intervals on the boundary and inside the objects and calculate
the optical flow gradients for these edge pixels. This will form
a training set where the gradient values for the boundary pixels
are mapped to 1 and for the internal edge pixels to 0. Using
logistic regression, we fit the logistic function to this data as
shown in Figure 4. β1and β2 are found to be 4.519 and 0.4313
respectively. All our experiments were performed with these
values.

4

C. Probability to be contact boundary

An edge pixel at a contact boundary contains the pixels with
color distribution close to the known color distribution of the
surface on only one of its two sides. For any binary edge pixel,
the pixels from its two sides are gathered using the appropri-
ately oriented disc filter to form the 3D color histograms of
its two sides. The χ2 distances between the computed color
distribution with that of the surface are represented by d+ and
d−. Using these distances, the probability of the edge pixel
to be at a contact boundary is |g(d+) − g(d−)| where g is a
logistic function given in equation (1). The parameters of the
logistic function is determined empirically to be β1 = 8 and
β2 = 0.3. The color histogram of the surface is built using an
image of the surface alone.

The illumination invariant color representation (c1, c2, c3),
described in [7], is used to represent color, and the three color
axes are divided into 10 equally spaced bins to form 10×10×
10 color histogram.

V. FIXATION STRATEGY

The goal of the fixation strategy is to select points inside
objects so that the fixation-based segmentation method [12]
takes those points and generates the closed boundaries en-
closing those points. To select the points, we first pick the
edge pixels in the probabilistic boundary edge map with the
boundary probability greater than 0.5, and assume that they lie
on the boundary of some object in the image. We represent
this subset of boundary edge pixels by IB as given below:

IB(x, y) =

{
1 if PB(x, y) > 0.5

0 otherwise

Additionally, we estimate the border ownership (object side)
of the edge pixels in IB . A boundary edge pixel in IB can
either be a depth or a contact boundary. For a pixel at depth
discontinuity, the object side is the one that is closer to the
camera which means will have bigger mean optic flow value.
For a pixel at contact boundary, the object side is the one
with the color distribution different than the known color
distribution of the surface. We compute the difference between
the properties of the two sides of an edge pixel using the
appropriately oriented disc filter from figure 3 and assign +1
and −1 as their border ownership depending upon whether
the positive or the negative side of the filter is found to be
object side. The object side (border ownership) information is
calculated as:

OB(x, y) =

+1 if d+ < d− ∨ ~||V+|| > ~||V−||
−1 if d− < d+ ∨ ~||V−|| > ~||V+||
0 if IB(x, y) = 0

See figure 5a and 5b for an example of IB and OB respectively
for the table top scenario shown in figure 2.

Using OB , we could select the points inside objects by
just moving a fixed distance toward the “object” side in the
normal direction at all boundary edge pixels in IB . But this
would result in as many points as the number of edge pixels,

(a) (b) (c)

Figure 5: (a) The known boundary edge map IB . (b) Stubs
extended towards the object side calculated using the border
ownership OB of the pixels in IB . (c) The set of points
selected on the object side.

causing redundancy. Many points will lie inside the same
object meaning a large number of duplicate segmentation. To
reduce redundancy, we break the contours of IB into fragments
interrupted by either an end point or a junction. Instead of an
edge pixel, we now select a point for each edge fragment by
moving again towards the “object side” in the normal direction
at the middle of the fragment. The point is selected at a fixed
distance of 20 px from the edge pixel. For instance, see Figure
5cfor all the points selected in this case.

This leads to a more efficient fixation strategy, but there is
still some redundancy left. In fact, the object will roughly get
as many fixation points selected inside it as its sides. So, once
the segmentation is carried out for all the fixation points, the
output has some duplicate instances. Thus, we need a post-
segmentation step that will sift through the regions to extract
the regions corresponding to the objects in the scene. This step
is described in section VII.

VI. FIXATION BASED SEGMENTATION

For each selected point found in section V, the fixation-
based segmentation approach [12] finds the closed bound-
ary around the given point by combining the edge pixels
in the probabilistic boundary edge. The segmentation for
each point has two intermediate steps: first, the probabilistic
boundary edge map PB is converted from the Cartesian to
the Polar space using the given point as the pole for the
conversion, in order to achieve scale invariance. Following
this, a binary segmentation of the polar edge map generates
the optimal path through the polar edge map such that when
the curve is mapped back to the original Cartesian space,
it encloses the point. The two-step segmentation process is
repeated for all fixation points found in section V using
the same PB . Figure 6 shows an example of the entire
segmentation starting from the probabilistic boundary edge
map and the point in (a) to the final segmentation in (d).
The source code for the segmentation step is available at the
URL:http://www.umiacs.umd.edu/~mishraka/code.html.

VII. SELECTING CLOSED CONTOURS CORRESPONDING
TO OBJECTS

We have as many closed contours as the number points
selected by the fixation strategy. Since the selection of points
depends on the contour fragments in IB , the fragments
that are part of the same object boundary generate multiple

5

(a) (b) (c) (d)

Figure 6: Using the given point (a dot) as the pole, the
probabilistic boundary edge map, shown in (a), is transformed
to the polar space as shown in (b). The optimal path through
the polar space shown in (c) is transferred back to the Cartesian
space to find the region, shown in (d), containing that point.

points lying inside the same object; these points give rise to
duplicate closed contours. Also, sometimes due to error in
the estimation of border ownership of the edge fragment, the
corresponding point lies outside of any object in the image
which will lead to a closed contour that does not correspond
to an object. So, we need a process that sifts through all the
closed contours to pick only the ones that uniquely correspond
to the objects in the scene. We require a method to differentiate
between any two closed contours which will be described in
section VII-A. Following this, we describe our minimum set
cover formulation to select the subset of closed contours that
correspond to the objects in section 6.2.

Notation: IiC is the binary mask representing the ith closed
contour whose interior is represented by another binary mask
IiR. If I is a 2D matrix with binary entries, XI is the set of
2D coordinates of the non-zero pixels in I .

A. Coverage of a Closed Contour

We define the coverage of a closed contour such that
high coverage means the closed contour is more likely to
correspond to the boundary of an object in the scene. A closed
boundary of an object is composed of the edge pixels in IB
such that the border ownership of these edge pixels points to
the interior of the contour (see Figure 7(a) for an example of
an object). The opposite of this is the closed boundary of a
hole wherein the object side of all the boundary edge pixels
lie outside of the hole (see Figure.7(b) for an example of a
hole). So, the coverage of a closed contour is defined as:

Coverage(IC , IR) =
1

|XIC |
∑

x∈XIC

IB(x)Π(x) (2)

Π(x) =

{
+1 if IR(x+ λOB(x)u⊥) 6= 0

−1 otherwise

u⊥ =

[
cos(θ − π

2)
sin(θ − π

2)

]
where x is a 2D coordinate, θ is the orientation of the
tangential direction at the edge pixel x and λ is the distance
from the selected point on the “object” side to the edge pixel.
In our experiment, we keep λ to be 5 px.

B
J

I

H
G

E
D

C A

F

Figure 7: Left: A probabilistic boundary edge map with two
fixation points: one inside an object, other in a hole. Right:
The segmentation results for the fixations are shown along with
the border ownership (shown by arrows) for the pixels along
the region boundaries. The arrow showing border ownership
is pointing inward for the closed contour corresponding to the
object and outward for the closed contour corresponding to
the hole.

B. Selecting Closed Contours Corresponding to Objects

With the definition of the coverage of a closed contour
given above, simply looking at the sign of the coverage value
differentiates between the boundary of an object and of a non-
object. A closed contour outside of any object traces the edge
pixels in IB with “object” side lying outside of the contour and
thus has a coverage that is negative or close to zero if positive.
To handle the duplicate closed contours of the same object,
we can pick the one resulting in the highest coverage with
the object boundary. We formulate the process of selecting
the closed boundaries of objects from the set of all closed
contours as a type of a min-cover problem, whose standard
definition is:

Definition 1: Given an Universal set U and a set of subsets
S, find S

′ ⊆ S such that S
′

contains all the elements of U
and |S′ | is minimum.

In this case, XIB is the universal set U . {XIiC
}ni=1 is the set

of subsets since XIiC
, the pixels along each closed contour,

contains a subset of pixels in XIB . n is the total number of
closed contours. Our objective is to find the minimum number
of closed contours that together trace almost all the pixels in
IB . Since the minimum set cover problem is NP-Complete,
we propose a greedy solution. The pseudo-code is given in
Algorithm 1. The selected closed contours at the end of the
process are the boundaries of the different objects in the scene.

The greedy solution works iteratively. It starts with com-
puting coverage of all closed contours and then selects the
best contour in each iteration. At the end of the iteration, the
universal set is updated by eliminating all the pixels traced by
the current best contour. After updating, the coverage of the
remaining contours are recomputed for the next iteration. The
selection process repeats until the “best” closed contour in the
current iteration has a coverage below a certain threshold.

An important step in the proposed greedy solution is the
the update of the remaining closed contours at the end of each
iteration. To handle the case of occluding contours, when one
of them is selected as the best contour in an iteration, the
remaining closed contours are updated such that the pixels
on the shared boundary do not affect their coverage as those
pixels have already been traced by the current best contour.

6

Algorithm 1 Selecting objects, tcoverage = 0.5, to = 0.05

Input:
IB . edge pixels predicted to be on object boundaries
OB . object side information
Sin = {IiR, IiC}

n
i=1 . closed contours for all n fixations

Output:
Sout = {IjR, IjC}

m
j=1 . final closed contours

Intermediate variables:
IkT . all closed contours traced until iteration (k-1)
IkM . accumulated region mask until iteration (k-1)

begin
Initialize k ← 0; I0B ← 0; I0A ← 0
while |Sin| > 0 do

Compute coverage of all closed contours ∈ Sin;
Let b be the index of the closed contour with maximum coverage;
if Coverage(IbR, IbC) < tcoverage then

Exit the loop;
else

Move the closed contour from Sin to Sout;
IkA ← IkA + IbR;
XIB ← XIB − (XIB ∩XIb

C
);

XIk
T
← (XIk

T
∪XIb

C
);

for IiC ∈ Sin do
overlap = |XIi

R
∩XIA |/|XIi

R
|;

if overlap < to then
XIi

C
← XIi

C
− (XIi

C
∩XIk

T
) . to handle occlusion

end if
end for
Increment k;

end if
end while

1
2

A

B

C

D

(a) (b) (c)

Figure 8: (a) and (b) are the closed contours likely to a moving
object and a hole respectively. (b) A closed contour hole. (c)
Two occluding closed contours. Note that the arrows indicate
the “object” side of the boundary pixels.

Consider, for instance, the two occluding closed contours
ABCA and ADBA in Figure 8(c). They share the pixels
along the segment AB and the “object” side indicates it
will contribute positively to the coverage of ABCA and
negatively to that of contour ADBA. After the selection
of ABCA, in the next iteration, we would like to make
ADBA prominent because the boundary portion AB that
was contributing negatively has already been traced by region
ABCA. So, the new coverage of ADBA will include the
contribution from the remaining pixels in the segment ADB.
But, this could have unintended consequence for overlapping
duplicate contours where once the best contour for the object
is selected, all the duplicate contours with a slight change
will become important just as the occluding contour case. To
avoid this situation, we check for the overlap of the inside of
the remaining closed contours with that of already selected
closed contours. Only the closed contours with no overlap are
updated.

C. Temporal Persistence

The regions selected by the greedy solution may still contain
spurious regions arising due to wrongly detected strong edges
in the probabilistic boundary edge map. One simple way to
get rid of the spurious regions without having to use high level
knowledge is based on the observation that the noisy edges in
the probabilistic boundary edge map is caused by the noise
in the flow map as we have used motion cues to determine
the object boundaries in our experiments. Since the effect of
noise is not localized but changes its locations in the flow map
over time, the wrongly detected boundary edge fragments will
change too. This means, the spurious regions formed by these
edge fragments would change as well. All of this suggests that
if we repeat the entire process for frame 2 and 3 and match
the selected regions with the regions obtained for the frames 1
and 2, and accept only the regions that occur in both cases, we
end up discarding most of the spurious regions. The regions
that persisted in time are more likely to be actual objects.

VIII. EXPERIMENTS

We evaluate the performance of the proposed system for the
scenario when the camera is moving and objects are static.
There are a number of motion segmentation algorithms[14]
to segmenting objects. But segmenting static objects using
motion cues is rather uncommon and is a distinguishing factor
for the proposed system. We choose to evaluate the efficiency
and robustness of the system in segmenting these static objects.

Data

The input is a sequence of three consecutive frames captured
using a camera moving roughly parallel to the objects in the
scene, and an image of the surface (e.g table or floor) on
which the objects are kept. The camera displacement between
the consecutive frames is less than 15 pixels for the optic flow
algorithm [3] to compute the optical flow map accurately. We
generate a dataset of 45 such test sequences with 35 distinct
objects of different shapes and sizes. (The ratio between the
biggest and the smallest object sizes is ∼ 10). Also, the shape
of the objects in the dataset ranges from a spherical ball to
an elongated pen to a cone. The appearance inside the objects
varies from smooth (apple) to a very textured pattern (a box
with a logo). The average number of objects present in each
test sequence is 5. The maximum and minimum number of
objects in a test sequence is 9 and 3 respectively. To check
for the robustness of using the color information of the surface
to locate contact boundary, we choose 6 different types of
surfaces, namely a wooden table, a smooth table cloth, a
textured table cloth, green grass, bricked floor. Finally, to make
the dataset representative of the typical scenarios faced by an
autonomous robot, we captured the dataset in both indoor and
outdoor conditions. Since the segmentation process does not
depend upon the actual appearance of the pixels but on the
probabilistic boundary edge map, the illumination condition
does not affect the accuracy in any significant manner.

7

Precision Recall
After TP 0.72± 0.21 0.85± 0.18

Before TP 0.42± 0.23 0.85± 0.19

Table I: Recall is the ratio between the number of objects
segmented by our system and the total number of objects in the
scene. Precision is the ratio between the number of segmented
contours corresponding to any object and the total number of
segmented contours. TP stands for temporal persistence.

Results

The performance is measured in terms how many of the
objects correspond to one of the segmented contours (recall)
and how many of segmented contours correspond to the
actual objects (precision). To decide about the correspondence
between a segmented closed contour and an object, we use
the manually segmented binary mask of the object. If the
overlap R1

⋂
R2

R1

⋃
R2

between the object mask R1 and the interior
of the closed contour R2 is more than 0.9, they are declared
to correspond to each other. The recall and precision values
are averaged over all test sequences, and the resulting mean
values are given in Table I. The first and second row of
the table corresponds to the performance of the system after
and before enforcing temporal persistence on the segmented
contours for two pairs of consecutive image frames. The
temporal persistence helps weed out closed contours arising
out of noisy edge pixels in the probabilistic boundary edge
map. It improves the precision of the system by almost 25%.
Further improvement in precision can be achieved by using
a recognition system which will match the contours with its
knowledge base to reject any unknown contours.

An important performance metric is the recall in Table I
which is about 85%. This means the proposed system will,
on average, segment 17 out of 20 objects kept on a table
given a three consecutive frames of the scene captured using a
moving camera. For a robot carrying the segmentation system,
repeating the segmentation process from different viewpoints
around the scene might result in the segmentation all objects
in at least one of the viewpoint.

To evaluate the efficiency of the fixation strategy, we calcu-
late the percentage of all selected fixation points that actually
lie inside an object and it is 85%. To measure the redundancy
in the fixation strategy, we compute the average number of
fixations lying inside each object which is 12.5. The final
evaluation is about the robustness of predicting the border
ownership (or object side) which is computed as the mean
of the percentage of the pixels on any object boundary with
correct object side prediction. It is 93.5%.

Computational complexity

The image size is 640 × 480. The timing analysis of the
system is done using a quad-core 32-bit processor. 1) Cue
computation step: our multithreaded C++ implementation of
the Berkeley edge detector takes about 6s to compute the the
edge map; [3] takes about 24s to compute the optical flow
map. 2) The segmentation for a given fixation point takes about

Figure 9: Left column: the first frame of three frame se-
quences. Middle column: the probabilistic boundary edge
map. Right column: The output of the proposed segmentation
system after enforcing temporal persistence.

2s. 3) The selection process in the end and the probabilistic
boundary edge detection process combined takes about 8s.

Since the system is completely modular, we can improve
the speed of each step dramatically. Instead of optic flow, we
can use the new device from Microsoft, Kinect, to compute
the disparity map which takes less than a second. Also, the
segmentation step can be carried out for all the selected points
in parallel as they do not depend on each other.

IX. DISCUSSION & CONCLUSION: TOWARD SEMANTIC
ACTIVE VISION

We described a system that segments objects of any size
or shape automatically. The system is based on the idea that
segmentation should produce a closed contour surrounding the
fixation point of attention, introduced in [12]. Two novel con-
tributions of this work are a fixation strategy (basic attention
mechanism) to select the points on the objects, and a strategy
to select only the regions corresponding to the objects.

The input to the system is a minimum of three images
of the scene. Any robot with a camera, which is capable of
moving in its environment and acquiring images from different
views, can use this system. In fact, the system is particularly
suitable to robotic applications for the two main reasons:
first, it is independent from any user parameter; second, it
can easily incorporate more cues even non-visual cues. The
second attribute is due to the modular structure of the system.

8

The cues are responsible only for generating the probabilistic
boundary edge map; the segmentation step is immune to how
the probabilistic boundary map is created. So, if a robotic
system has, say, a depth map coming from a Laser sensor, it
can be used to refine the boundary edge map. This provides the
flexibility of using different sensory inputs without changing
the basic algorithm.

Finally, there are ways to improve the proposed system. A
robust recognition step can help eliminate spurious regions
besides assigning the high-level semantics to the remaining
regions. It should be noted that if the object is segmented prior
to recognition, so the recognition process can proceed on the
basis of attributes (properties). Although the idea of attribute
based object recognition has existed for quite a while, it has
never been implemented because of the lack of segmentation
(recent work on attribute based object recognition[13] was
applied to a database of faces and segmentation was not an
issue). The ability to estimate object attributes leads naturally
to Semantic Active Vision, where robots can find objects.

The second important addition can be an efficient fixation
system that, instead of outputting all possible fixation points,
would sequentially suggest the next fixation point such that it
reduces the computational cost of segmenting the same object
multiple times. It is also possible to integrate the proposed
system with other systems[2], where the areas detected by
learning could be used to provide the initial fixation points.
Lastly, an interesting addition could be to incorporate shape
cues in addition to color, texture and motion/stereo cues to
segment the objects even in the absence of sufficiently strong
visual cues (e.g. in single images).

REFERENCES

[1] C.C. Williams A. Hollingworth and J.M. Henderson. To see and
remember: Visually specific information is retained in memory from
previously attended objects in natural scenes. Psychonomic Bulletin
and Review, 8:761–768, 2001.

[2] J. Kosecka B. Micusik. Semantic segmentation of street scenes by
superpixel co-occurrence and 3d geometry. In IEEE Workshop on Video-
Oriented Object and Event Classification, ICCV, 2009.

[3] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical
flow estimation based on a theory for warping. pages 25–36. Springer,
2004.

[4] Edward Craft, Hartmut Schütze, Ernst Niebur, and Rüdiger von der
Heydt. A neural model of figure-ground organization. Journal of
Neurophysiology, 6(97):4310–4326, 2007.

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes (voc) challenge. International
Journal of Computer Vision, 88(2):303–338, June 2010.

[6] C.C. Fowlkes, David R. M., and J. Malik. Local figure/ground cues are
valid for natural images. JV, 7(8):1–9, 2007.

[7] T. Gevers and A. Smeulders. Color based object recognition. Pattern
Recognition, 32:453–464, 1997.

[8] J. M. Henderson. Human gaze control during real-world scene percep-
tion. Trends in Cognitive Sciences, 7:498–504, 2003.

[9] J. Eriksson L. Holm and L. Andersson. Looking as if you know:
Systematic object inspection precedes object recognition. Journal of
Vision, 8(4):1–7, 2008.

[10] C. Koch L. Itti and E. Niebur. A model of saliency-based visual attention
for rapid scene analysis. T-PAMI, 20:1254–1259, 1998.

[11] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image
boundaries using local brightness, color and texture cues. T-PAMI,
26(5):530–549, May 2004.

[12] A. Mishra, Y. Aloimonos, and L. F. Cheong. Active segmentation with
fixation. In ICCV, 2009.

[13] P.N. Belhmeur S. K. Nayar N. Kumar, A.C. Berg. Attribute and simile
classifiers for face verification. In ICCV, 2009.

[14] D. Sinclair. Motion segmentation and local structure. ICCV, 93:366–
373, 1993.

[15] A.M. Treisman and G. Gelade. A feature-integration theory of attention.
Cognitive Psychological, 12:97–136, 1980.

[16] M. Spain W. Einhäuser and P. Perona. Objects predict fixations better
than early saliency. Journal of Vision, 8(14):1–26, 2008.

[17] H. Zhou, H.S. Friedman, and R. von der Heydt. Coding of border
ownership in monkey visual cortex. The Journal of Neuroscience,
20:6594–6611, September, 2000.

