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Abstract— There has been a recent interest in utilizing
contextual knowledge to improve multi-label visual recognition
for intelligent agents like robots. Natural Language Processing
(NLP) can give us labels, the correlation of labels, and the
ontological knowledge about them, so we can automate the
acquisition of contextual knowledge. In this paper we show
how to use tools from NLP in conjunction with Vision to
improve visual recognition. There are two major approaches:
First, different language databases organize words according
to various semantic concepts. Using these, we can build special
purpose databases that can predict the labels involved given a
certain context. Here we build a knowledge base for the pur-
pose of describing common daily activities. Second, statistical
language tools can provide the correlations of different labels.
We show a way to learn a language model from large corpus
data that exploits these correlations and propose a general
optimization scheme to integrate the language model into the
system. Experiments conducted on three multi-label everyday
recognition tasks support the effectiveness and efficiency of our
approach, with significant gains in recognition accuracies when
correlation information is used.

I. INTRODUCTION

Recognition tasks for robots are not independent. They
are correlated [6]. Researchers from computer vision and
robotics disciplines have conducted a great amount of work
utilizing the correlation between recognition tasks to boost
individual performance, e.g. human identification and action
[13], object and action [31]. However, correlation learned
from hard-coded boolean charts or human labeling limits the
possibility of deploying the approach into an real intelligent
agent, aka a robot. In this paper, we show that the field
of Natural Language Processing (NLP) has produced many
tools that we can use to obtain the correlation. We discuss
the different usages of language tools and how to combine
natural language and vision tools in a robot.

Computational linguistics have created large text corpora
and statistical tools so that we can obtain probability distri-
butions for the co-occurrence of any two words, such as how
likely a certain noun co-occurs with a certain verb. Here we
present a framework to learn the correlation from corpus
and apply it to several correlated multi-label recognition
tasks. While we do not claim credits for introducing corpus
statistics, we introduce a general way to combine it with
vision. Experimental results on three different multi-label
recognition tasks support our conjecture that the corpus
guided method is able to boost recognition performance.

Classical and computational linguists are interested in
modeling lexical semantics and have created resources where
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information about the conceptual meaning of lexical items
and how these items relate to each other [5], such as
“cause-effect” or “performs-functions”, is organized. For
example, the WordNet database [20] relates words through
synonymy (words having the same meaning, like argue and
contend) and hypernymy (“is-a” relationships, as between
car and vehicle), among many others [21].

From another perspective, it is widely known that recog-
nition tasks, like many other Artificial Intelligence tasks,
require a high level knowledge base. Fanya Montalvo defined
any such AI task as an AI-complete problem [18]. Tremen-
dous amount of work has been devoted into building such a
knowledge base, from early experts systems, to IBM’s recent
Watson project. In this work, we build a small database of
common daily activities using linguistic tools. We show here
how one can exploit the relationships in such a database to
predict reasonable language labels for mining a large textual
corpus dynamically.

In this paper, we focus on using as labels “nouns” (objects)
and “verbs” (actions). Language and vision extract different
information about the same entity, and we integrate them
at the last computational stage in the recognition. However,
we believe that the true power of using language and vision
in combination will come through an integration at earlier
stages. Both statistical and classical linguistic tools can
provide in addition to correlation of labels, other information
useful for visual recognition, such as spatial and temporal
relations, and information on the visual appearance of ob-
jects and actions. We collectively call these information the
entities’ attributes. In some sense, language creates a multi-
layer, hierarchical representation. Using this information, we
can potentially address visual recognition as a problem of
reasoning about the scene, instead of just classifying labels.
For example, instead of recognizing a hammer using a
classifier, we can verify that the segmented image patch
“contains a wooden handle”, “has a metal part” and “is next
to a nail”. Although we do not have all the tools yet to fully
demonstrate these ideas, we include here some preliminary
work on utilizing visual attributes for recognition.

II. MOTIVATION

Human perception has a crucial but straightforward princi-
ple: Principle of Totality [6], which states that the conscious
experience must be considered globally (by taking into
account all the physical and mental aspects of the individual
simultaneously) because the nature of the mind demands
that each component be considered as part of a system of
dynamic relationships. If any individual recognition task can
be regarded as “some part of the system” here, then where



Fig. 1. Overview of framework for two sequences: (above) drinking, (below) cleaning. Hands, tools and action features (1) are extracted. From the visual
detection scores (2), a correlation matrix (3) learned from a textual corpus (4) is used to improve the final label predictions (5).

do the “dynamic relationships” come from? Obviously for
human beings, such dynamic relationships are from knowl-
edge we accumulate through either learning or experience.
We argue here that for a robot, such dynamic relationships
can be obtained from linguistic resources, either from lexical
databases and/or estimated by mining a corpus.

Fig. 1 shows a sketched overview of the proposed frame-
work that uses the above mentioned principle. Consider the
following scenario: A robot is observing a human being, e.g.
drinking a cup of coffee (Fig. 1 left), and it is required
to recognize the action and the tool. Current Computer
Vision applications require that all entities, that the robot can
distinguish, are predefined. Using our Knowledge database,
which stores information about common daily activities, the
robot can obtain the possible entities (objects and activities
in a kitchen setting). Then the agent may be challenged
from the uncertainty between a white cup or a white towel.
However, by tracking the hand trajectories, it is confident that
the action is “drinking” rather than “cleaning”. If the agent
has knowledge that humans normally use a cup to drink but
not a towel, it should be easy to resolve the uncertainty. The
knowledge needed here can be achieved by “teaching” the
agent with several hard-coded propositional facts, such as
[drink use cup], [clean use towel]. However, if we
want to extend the knowledge, we have to enumerate all
the possible facts required. On the other hand, such kind
of knowledge is not deterministic: sometimes we do use a
cup to clean by pouring water onto a dirty desk. The system
should also assign a small possibility to [clean use cup].
Another way of learning is to learn the correlation from
a large corpus automatically. Sentences like “Wellington’s
first chance to sip from the cup” are indicative of a strong
correlation between cup and drink. Using NLP we can
examine synonyms from WordNet to find out that sip is a
form of drink. Sec. IV-A reports an experiment inspired
from this scenario. We extend the framework to show how
one can similarly exploit the correlation between scenes and
objects in sec. IV-B. Finally, we know that the appearance
of objects and actions can vary greatly, and visual object
classifiers don’t appear to be scalable. The problem is even
harder for action recognition; descriptors robust to view-
point and variation in movement have not been developed

yet. Instead, as was advocated in the last part of sec. I, if
we can obtain knowledge about the attributes of labels that
do not change under environmental influences, we can use
them in a reasoning process within the framework. This is
demonstrated here for the case of object attributes in sec. IV-
C.

In general, it is reasonable to expect the robot to learn the
correlation between labels from the corpus and use it as an
approximation of knowledge to guide the recognition task.
Our proposed framework (sec. III) details how the corpus
is mined, as well as the optimization method for integrating
information from language and visual processing so as to
help the robot achieve higher recognition accuracies when it
is doing several correlated recognition tasks.

III. THE MULTI-LABEL RECOGNITION FRAMEWORK

Consider a multi-label recognition task with two sets of
possible labels: t1 ∈ T1 and t2 ∈ T2, m and n is the size of
the two label sets. Our framework first predicts the possible
labels given some initial knowledge of the domain. From
these labels, we show how we compute corpus statistics,
essentially label correlations, to guide recognition in both
T1 and T2. We then show how this framework can be
generalized to a situation with three or more tasks.

A. Predicting Language Labels

An important prerequisite before corpus statistics can be
computed is that we need to determine the relevant task
labels that are appropriate for the dataset. The simplest and
most direct approach, for e.g. in [28], is to predefine all the
labels prior to any computation of the corpus statistics. While
this may work for standalone evaluations of the proposed
framework, a system that is fully autonomous should be
able to make reasonable predictions of labels, given some
knowledge of the domain. In this work, inspired by [22]
we build a small ontology of relations inherent in common
daily activities, with bidirectional relations all organized in
a symmetric, labeled graph. Fig. 2 shows an example result
of querying the knowledge base with the prior knowledge
“kitchen” corresponding to one of our experimental datasets.
The output is a list of relevant kitchen related tools, together
with the possible associated actions linked to each tool.



In Fig. 2(a), “kitchen” is one of the subclasses (aka “is-
a” relationship) under the superclass “scenes”, and every
associated tool is a subclass of “tools” in purple lines. In
Fig. 2(b), the visualization shows every associated action
with each tool in dotted yellow lines. Every concept in this
knowledge base starts from the superclass “Thing”. Although
querying the knowledge base does not provide probabilities
that we need directly, the list of possible tool and action
labels can then be used as seeds to create the corresponding
language model.

(a)

(b)

Fig. 2. Label prediction using the Embodied Knowledge Base. Purple
lines indicate “subclass” relationships (aka “is-a”) while dotted yellow
lines indicate “association” relationships (one class is related to another
class semantically). (a) The “kitchen” concept with its associated tools. (b)
Various tools classes with their associated actions.

B. Correlation Mining

The key component of our approach is the language model
that predicts the correlation between T1 and T2. We use the
Gigaword Corpus [12] as a large text resource that contains
the information. We do this by training a language model
PL(T1, T2) that returns the maximum likelihood estimates
of any label t1 given the other label t2. This can be done
by counting the number of times t1 co-occurs with t2 in
sentences in the corpus: PL(t1|t2) = #(t1,t2)

#(t2)
.

As many English words share common meanings, a simple
count of the words (labels) defined in T1 or T2 is likely

to grossly underestimate PL(t1|t2). For example, in the
Gigaword Corpus counting how often drink co-occurs with
cup where the actual words are used will not be significantly
larger than pick and cup. The reason is that cup can mean
a normal drinking cup or a trophy cup. In order to ensure that
PL captures the correct sense of the word: nouns or verbs,
we use WordNet to determine the synonyms and hyponymns
of the words considered.

We then recompute PL using these enlarged word classes
to capture more meaningful relationships between the co-
occurring words. Fig. 3(a) shows the m × n co-occurrence
matrix of likelihood scores over the set of tools and actions
considered in the UMD Sushi-Making dataset (sec. IV-A.1),
denoted as PL(T1|T2) when we normalize the correlation
scores over all labels in T2. Similarly we obtain PL(T2|T1)
when we normalize over all labels in T1.

(a)

(b)

Fig. 3. (a): Gigaword co-occurrence matrix over tools and actions. (b):
Gigaword co-occurrence matrix over objects and scenes

A quick analysis shows that for most of the tool classes,
the predicted actions are correct (large values along the
diagonals): e.g peeler predicts peeling with high proba-
bility (0.94). However, there are many co-occurrences which
we could not anticipate: e.g. sprinkling has some syn-
onyms such as drizzle moisten splash splosh



which have uses that are also close to cup, resulting in
a higher score (0.29) versus drinking (0.17). Other mis-
selected tools-action are also due to the confusion at the syn-
onyms/hyponymns levels. We also notice that more general
actions such as picking have a more uniform distribution
across the tools, which is expected. Despite this simplistic
model, most of the entries in PL make sense – and it properly
reflects the innate complexity of language. As will be shown
in sec. IV-A.4, although the prior from language is weak, it
is still helpful for the task of action and tool recognition. We
used the same approach to extract the relationship between
objects and scenes. Fig. 3(b) shows the m×n co-occurrence
matrix of likelihood scores over the set of objects T1 and
scenes T2 considered in Sec. IV-B.2.

C. Correlation Guidance

We use state-of-the-art features and machine learning
techniques (specifically SVM) to train two classifiers on
both recognition tasks that take in the labels and return a
recognition confidence score on every label. The confidence
scores are converted to probabilities using Platt’s method
[17]. We then normalize the scores over all possible labels
to get PV (T1) and PV (T2), where the subscript PV is used
to denote probabilities from visual processing.

Together with PL(T1|T2) and PL(T2|T1), the joint prob-
ability of the multi-recognition task can be modeled as:

P (t1, t2) = PV (t1)PL(t2|t1) = PV (t2)PL(t1|t2). (1)

We first focus on predicting t1. We can get an estimated
probability from language correlation, PL(t1), by marginal-
izing over T2:

PL(t1) =
∑
t2∈T2

P (t1, t2) =
∑
t2∈T2

PV (t2)PL(t1|t2). (2)

By introducing λ ∈ [0, 1] as a regularization factor that con-
trols the balance between the influence of visual detections
PV and corpus statistics PL, as well as taking logs on both
PV (t1) and PL(t1), we obtain the log-likelihood L of the
labeling task by:

L(t1) = log(PV (t1)) + λ log(PL(t1)). (3)

We can derive L(t2) in a similar manner. The final label
prediction pair (tf1 , t

f
2 ) is then obtained by:

tf1 = arg max
t1∈T1

L(t1) and tf2 = arg max
t2∈T2

L(t2) (4)

As |T1| and |T2| are usually small, an exhaustive search over
every label t1 or t2 is practical which guarantees a global
optimal solution.

D. Generalizing to ≥ 3 Multi-Label Tasks

When generalizing the framework over three or more
labels tasks, (T1, T2 . . . Tn), the cost of the marginalization
step in eq. (2) increases exponentially and a naive brute force
summation over all possible labels in Tn becomes imprac-
tical. In this case, we cast the problem of determining the
optimal solution into a general graphical model optimization

(Fig. 4(a)) where approximate inference methods, such as
message passing [7] can be applied. This occurs, for e.g.
when a third task, such as attributes of tools and actions,
is added into the framework in which we solve a joint
likelihood over the entire graphical model.

Further simplification can be achieved if some of the task
labels are mutually independent, for e.g. object attributes and
scenes, which allows us to solve the inference problem via
a dynamical programming approach using Hidden Markov
Models (HMM). Fig. 4(b) shows the HMM that combines
PL and PV in a straightforward manner: the emissions
correspond to PV from visual processes (scenes, objects and
attributes) and the transition probabilities PL are obtained
from the language model.

(a) (b)

Fig. 4. (a): General case for a three labels task: PV denotes probabilities
from visual detection and PL denotes correlation probabilities from corpus
mining. (b): HMM model for three specific task labels: Scene-Object-
Attribute are denoted as T1, T2, T3 respectively.

IV. EXPERIMENTS

A. Tools and Actions

In this set of experiments, we validate our proposed
framework introduced in sec. III using a scenario where our
robot observes humans making sushi. We collect the UMD
Sushi-Making Dataset where we have computed the language
models from initial seed labels predicted by our Knowledge
Base.

1) The UMD Sushi-Making Dataset: The UMD Sushi-
Making Dataset1[28] consists of 12 actions, performed by
4 actors using 10 different kitchen tools. This results in
48 video sequences each of around 1000 frames (30 sec-
onds long). Other well known datasets such as the KTH,
Weizmann or Human-EVA datasets [25], [11], [27] do not
involve hand-tools. The dataset by Messing et al. [19] has
only 4 actions with tool use. The CMU Kitchen Dataset
[15] has many tool interactions for 18 subjects making 5
recipes, but many of the actions are blocked from view due
to the placements of the 4 static cameras. Our Sushi-Making
dataset provides a clear view of the actions and tools. The
12 actions are: cleaning, cutting, drinking, flipping, peeling,
picking (up), pouring, pressing, sprinkling, stirring, tossing,
turning. The tools are: tissue, knife, cup, rolling-mat, fruit-
peeler, water-pitcher, spoon, shaker, spatula, mixing-bowl.

1http://www.umiacs.umd.edu/research/POETICON/umd sushi



As was discussed in sec. III-B, some of the actions such
as picking or flipping are extremely general and are
easily confused. We made this choice to ensure that the
language prediction PL is not perfect and to show that our
approach works even under noisy data.

2) Active tool detection strategy: We pursue an active
strategy for detecting the relevant tools (denoted by T1) in
the video as illustrated in Fig. 5. This approach has two
important benefits. By focusing our processing only on the
relevant regions of the video frame, we dramatically reduce
the chance that the tool detector will misfire. At the same
time, by detecting the hand locations, we obtain the action
trajectory, which is used to describe the action as shown in
the next section.

Fig. 5. Overview of the tool detection strategy: (1) Optical flow [2] is first
computed from the input video frames. (2) We train a CRF segmentation
model [24] based on optical flow + skin color. (3) Guided by the flow
computations, we segment out hand-like regions (and removed faces if
necessary) to obtain the hand regions that are moving (the active hand that
is holding the tool). (4) The active hand region is where the tool is localized.
Using the PLS detector [26] (5), we compute a detection score PV (t1), the
probability that a tool t1 ∈ T1 exists given the video.

3) Action Recognition: Action labels are denoted as T2 in
this dataset. Tracking the hand regions in the video provides
us with two sets of (left and right) hand trajectories as
shown in Fig. 1. We then construct for every video a feature
vector Fd that encodes the hand trajectories. Fd encodes the
frequency and velocity components. Frequency is encoded by
using the first 4 real components of the Fourier transforms of
the position space in x- and y- direction which gives a 16-
dim vector over both hands. Velocity is encoded by averaging
the difference in hand positions between two adjacent frames
〈δx〉, 〈δy〉 which gives a 4-dim vector. These features are
then combined to yield a 20-dim vector Fd. A SVM classifier
is trained over these feature vectors to obtain the recognition
score PV (t2).

4) Results: A 4-fold cross validation was performed over
the 48 videos of the Sushi-Making dataset in order to
evaluate the effectiveness of our proposed approach. We first
obtained the recognition accuracy using PLS (for the 10
tools) and Action Features + SVM (for the 12 actions) alone
and used them as a baseline to highlight the improvement

in recognition accuracies when eq. (3) and eq. (4) were
applied over various values of λ ∈ [0, 0.5] as shown in
Fig. 6(a). Using corpus statistics, we obtained a relative
improvement of 6% in recognition accuracy in both action
and tool recognition compared to their baselines which had
a combined average of 4.5%. As λ represents our confidence
on the accuracy of the corpus-statistics versus the visual
detections, different values of λ are expected to have different
effects on the labels (tools or actions) considered. In this
case, the language model is more biased towards tools and
gives the largest improvement when λ is larger, compared
to actions which have the opposite effect. Such seemingly
divergent results can be explained from the inherent bias of
language itself, where tools (and objects in general) have
stronger correlations to specific (and limited) actions while
many similar actions can be performed by numerous different
tools, which results in a weaker (and hence more limited)
effect on the action recognition accuracy.

B. Objects and Scenes

In this set of experiments, we further evaluated our pro-
posed framework for the scenario in which our robot is
observing natural scenes with objects. We use a general
large scale image dataset as testbed. As the images were
taken from numerous domains, we found that it was easier
to use the given ground truth labels of scenes and objects
for this task, and we focus on showing the usefulness of the
proposed approach in improving object and scene recognition
accuracies.

1) SUN 20 scenes dataset: We evaluated the proposed
approach using a subset of the SUN 20 scenes dataset [3].
The dataset comprises of 20 scenes and 127 objects from
which we selected 1000 images. The large number of scenes
and objects over a large variety of domains make this an
extremely challenging dataset to evaluate the effectiveness
of our approach in more general situations.

2) UIUC Pascal sentence dataset: In addition, we per-
formed evaluations of our framework using the UIUC Pascal
sentence dataset, first introduced in [10]. It contains 1000 im-
ages taken from a subset of the Pascal-VOC 2008 challenge
image dataset, which are hand annotated with sentences that
describe the image. The ground truth labels for objects and
scenes are extracted from these sentences using the Berkeley
Parser [23]. We divided the images into 8 distinct scenes
[29] with 20 object classes defined in the Pascal-VOC 2008
challenge.

3) Results: For the SUN 20 scenes dataset, we randomly
divided the 1000 images into a training set of 600 images
with the remaining 400 as the testing set. Results are sum-
marized in Fig. 6(b). We first extracted GIST features and
used a SVM classifier over the 20 scene classes to obtain the
baseline scene recognition accuracy. For objects, we chose
the top 50 object classes from the original 127 which yielded
the best detection scores over the training set, and determined
the existence of the object in the test set by comparing it with
annotated ground truth labels to obtain the baseline object
recognition accuracies. The same parameters and trained



(a) (b) (c)

Fig. 6. Experimental results: (a) Action and Tool recognition vs individual recognition baselines on the UMD Sushi-Making dataset. (b) Scene and Object
recognition vs individual recognition baselines on the SUN 20 scenes dataset. (c) Scene and Object recognition vs individual recognition baselines on the
UIUC Pascal sentences dataset.

object models provided by the authors of the dataset were
used in all experiments. We repeat the same experimental
procedure with the UIUC Pascal sentence dataset (Fig. 6(c)),
using the same train-test splits, GIST+SVM classifiers over
8 scene classes and pre-trained object models over the 20
object classes provided by the authors.

We evaluated our proposed framework and compared it
to the baseline accuracies in the two datasets by varying
λ. For the SUN 20 scenes dataset, we obtain a relative
improvement of 2.6% (objects) and 1% (scenes) and an
overall improvement of 1.4% (objects + scenes) over the
baselines. The results are more significant in the UIUC
Pascal sentence dataset where the relative improvements
range from 10% (objects) to 3% (scenes) with an overall
improvement of 8.1%. Although the task for these two
datasets are the same (objects+scenes), the vastly different
improvements from our approach highlights the need to
define the domain of the task prior to computing the relevant
corpus statistics. In the SUN 20 scenes dataset, the large
number of scenes and object classes meant that the corpus
statistics is diluted over all object/scene classes, limiting the
improvement of our approach over the baselines. This effect
is mitigated in the UIUC Pascal sentences dataset which has
fewer object and scene classes. This further emphasized the
importance of predicting the relevant task labels given the
domain knowledge (sec. III-A) in order to maximize the
benefits of using language. Finally, by comparing the results
task in sec. IV-A.4, we note that the divergence due to λ
between objects and scenes labels is not as significant. This
indicates that objects and scenes have stronger correlations
compared to actions and tools, which makes intuitive sense.

C. Scenes, Objects and Attributes

In the last experimental scenario, we require our robot to
recognize scenes, objects as well as object attributes. The
importance of recognizing objects through their attributes
has recently received attention in Computer Vision [9]. Our
proposed framework lends itself naturally to the use of such
high-level knowledge since mining the correlation between
attributes and objects is still doable from a large corpus,
under the condition that the attribute labels are commonly
used in daily life. By invoking the assumption that object
attributes are independent of the scenes in which they occur,

Fig. 7. Object recognition performance on the UIUC Pascal sentence
dataset when object attributes are used.

we are able to model the problem using the HMM introduced
in sec. III-D. We extend the experiments conducted over
the UIUC Pascal sentence dataset in sec. IV-B.3 by adding
human annotated attributes described in [9] as the third task
label T3 in the framework. As our focus is not on designing
attributes detectors in this paper, we have allowed PV (t3) to
be the human annotated attributes. From the original list of
64 attributes, we first select the top 20 semantically meaning-
ful attributes by hand (discarding those that have little or no
relevance to the 20 object classes) and then compute a new
language model PL(T2|T3) that relates these attributes to the
object classes. By considering the human annotated attributes
as a form of “attribute corpus” we compute PA

L (T2|T3)
which represents the upper-bound on the language model
that we can expect from mining the corpus. The object
recognition accuracy results are summarized in Fig. 7. The
first two plots (in green) are from Fig. 6(c), where no attribute
information was used. By adding attributes in the framework,
we obtained an additional improvement of 10% and 13.6%
for PL(T2|T3) and PA

L (T2|T3), respectively compared to the
case when no attributes were used. The strength of using
attributes for object recognition are clear here: we are able
to consistently improve upon the baseline (when no attributes
are used) and when a cleaner corpus that relates objects and
attributes directly are used.

V. RELATED WORKS

Our work is mostly related to Yang et al. [30], in which
they showed that correlation learned from corpus can guide
descriptions of natural images. Kulkarni et al. [14] proposed
to generate simple image descriptions by designing various



Conditional Random Field models. Both studies focused
on generating descriptions of images, while in our work,
we focus on using correlation and graphical models to
study fundamental recognition tasks. Additionally, advances
in Natural Language Processing and Computer Vision have
lead to several works that have focused on using sources
of data that are readily available “in the wild” to analyze
static images. The seminal work of Duygulu et al. [8]
showed how nouns can provide constraints that improve
image segmentation. Berg et al. [1] processed news captions
to discover names associated with faces in the images, and
Jie et al. [13] extended this work to associate poses detected
from images with the verbs in the captions. Some studies
also considered dynamic scenes. [4] studied the aligning of
screen plays and videos, [16] learned and recognized simple
human movement actions. These recent works had shown
that exploiting co-occurring text information from scripts and
captions aids in the visual labeling task. Our paper takes this
further by using generic text obtained from the Gigaword
corpus [12]. As was shown in the preceding sections, by
using NLP tools, we can still derive useful correlations for
multi-label recognition tasks.

VI. CONCLUSION

A framework has been introduced which integrates NLP
tools for guiding multi-label visual recognition tasks. We
applied it to three different real world tasks for our robot:
1) tools+actions recognition on the UMD Sushi-Making
video dataset, 2) objects+scenes recognition on the SUN 20
scenes and UIUC Pascal sentences image datasets and 3)
scenes+objects+attributes recognition on the UIUC Pascal
sentences dataset. The experimental results reported support
the effectiveness of our framework compared to baselines
using visual processing alone. We also explored how much
we should trust corpus statistics by adjusting a regularization
parameter that balances our confidence on the accuracy of
the corpus statistics versus the visual detections. In addition,
the experiments also highlighted the need to have a pre-
defined domain to constrain the corpus statistics and the use-
fulness of adding attributes in improving object recognition
performance. In future work, we intend to explore extract-
ing information about the spatial and temporal relations of
objects in the scene (the prepositions) and about attributes
of objects and verbs (adjectives, part descriptions of nouns
and adverbs) from language. Using these information we can
explore improving visual recognition at earlier stages in the
computation. For example, we can use this information in
segmentation, and for learning labels from both vision and
language information, and reformulate visual recognition as
a reasoning process.
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