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Abstract— The ability to search visually for objects of interest
in cluttered environments is crucial for robots performing tasks
in a multitude of environments. In this work, we propose a novel
visual search algorithm that integrates high-level information of
the target object – specifically its size and shape, with a recently
introduced visual operator that rapidly clusters potential edges
based on their coherence in belonging to a possible object. The
output is a set of fixation points that indicate the potential
location of the target object in the image. The proposed
approach outperforms purely bottom-up approaches – saliency
maps of Itti et al. [15], and kernel descriptors of Bo et al. [2],
over two large datasets of objects in clutter collected using an
RGB-Depth camera.

I. INTRODUCTION

Fig. 1. An example of a challenging cluttered scene.

Imagine you enter your kitchen as shown in Fig. 1 after
a party, and you were asked to look for a particular pair of
scissors. What would be your search strategy? Would you
try to remember where you last saw the scissors? Or would
you try to go for the obvious locations of where scissors
would be placed – in the drawers, or besides the knives?
Once you have prioritized where to start searching, you start
to remember how your particular pair of scissors looks –
its shape, size and maybe some unique identifying color or
labels so you will recognize it from other pairs of scissors
that have other uses.

This is an example of a typical search scenario that
humans encounter everyday. The strategy is straightforward,
consisting of two main parts – 1) going to the location of the
object and 2) searching for the object near that location using
its known appearance. Yet, it remains a formidable challenge
for robots. There are several reasons:
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1) Navigating in cluttered environments. The robot must
be capable of moving safely in cluttered environments with-
out posing a danger to itself or to its surroundings. This
requirement demands navigation strategies that include ob-
stacle avoidance and advanced path planning in clutter [14],
and developing good motion control strategies in confined
environments [4].

2) Perceptual challenges. Another crucial aspect of a
successful search strategy is to develop algorithms that
can locate the target object in clutter once the robot is
at a potential location. Regardless of the sensor used, the
challenges are similar. They involve: a) rapidly determining
the locations of the objects – via a series of fixation points
to reduce the search space and b) performing recognition
at these locations to identify the target object. This work
focuses on determining the fixation points in this part of the
strategy.

Fig. 2. Output of the algorithm: (Left) Input scene. (Right) Top two fixation
points (black crosses with corresponding ranks) for the two target objects:
(a) bowl and (b) spoon, computed using known properties of the target
objects.

An important aspect of the human search strategy is that
the memory of the target object is constantly invoked –
i.e. knowledge about potential location and appearance is
utilized. The apparent ease with which humans exploit this
high-level information belies the computational complexities.
In this paper, we introduce a novel approach that extends the
use of a recently introduced image operator called the image
torque [22]. This image operator, in its original form was
designed as a generic mid-level operator that groups edge
responses into potentially closed contours. Here we modify
the operator using knowledge of the target object’s properties
to respond to specific edges and produce potential fixation



points that indicate where the object could be. An example
of the output of the algorithm is shown in Fig. 2. In the
sections that follow, we first review related work, and then
describe the algorithm in detail. We then present evaluations
on two datasets containing objects in varying degrees of
clutter and discuss the effectiveness of our approach in real
life scenarios.

II. RELATED WORK

The problem of searching for objects in clutter has been
studied by several prior works. Reviews of state of the art
techniques in the field of robotics and computer vision can be
found in [10] and its references herein. Our work is closely
related to the problem of computing salient regions in images
by modeling the attentional mechanism of the human visual
system. Attention models can be separated into two main
categories based on whether their deployment over a visual
scene is guided by scene features or by intention: the first
is called bottom-up and is driven by low-level processes;
the second refers to top-down process [12]. For bottom-up
attention, several models have been proposed [24], [19] in-
cluding the saliency map of Itti et al. [15] which has become
a standard baseline of bottom-up visual attention: saliences
are computed independently from primitive features such as
intensity, gradient orientations and color and combined later.

Since we are interested in detecting objects based on
their known properties, our work is firmly placed in the
realm of top-down approaches. Top-down attention is more
complex because it represents objects in memory [13] and
uses the memory to detect likely objects in an attended visual
scene [23] – which is the approach that is most related to
this work. There are also a few top-down visual attention
models [21], [25], including the VOCUS system [9]. In this
system, top-down visual attention is based on the maximum
salient region of the target object image, where a model is
developed of the target object image by computing weights
of the appropriate features. During runtime, the weight model
of the target object is used to construct a weighted sum of
conspicuity maps, representing the level of saliency for a
single visual feature. Others combine bottom-up and top-
down attention [20]. The top-down component uses accu-
mulated statistical knowledge of the visual features of the
desired search target and background clutter, to optimally
tune the bottom-up maps such that target detection speed is
maximized. The performance of these top-down approaches
is very much influenced by the scene where the object is and
they fail when the scene changes in significant ways. By way
of contrast, our approach differs in the sense that we integrate
high-level knowledge of the object model – specifically shape
and size information, directly via the torque operator with
low-level edge features in the image, without the need to
decide on the weights of each specific feature, or maps for
combination, or a priori knowledge of the background.

III. APPROACH

In this section, we describe the approach for integrating
high-level knowledge into the visual search problem as

described in sec. I. We first introduce the torque operator
and motivate its use for the object search problem. Next we
describe how torque is computed in general and its extension
when specific shape and size information about the target
object is known. We then describe further details of the
algorithm that supports the computation of the torque and
conclude with a high-level system overview of the entire
approach, together with the optimizations needed to make
it a feasible top-down attentional mechanism for robots. We
conclude with a discussion of how this approach compares
with state of the art object recognition methods that are
similar in spirit.

A. Image torque for fast object search

Fig. 3. From [22]. Image torque for discrete edges. ~r is the vector from
the center pixel p to an edge pixel q. ~F is the tangent vector and θ is the
angle between ~r and ~F .

The recently introduced image torque [22] is a mid-
level image operator tuned to closed contours in images.
The underlying motivation is to find object-like regions by
computing the “coherence” of the edges that support the
object. Edge coherence is measured via computing a cross-
product between the edge pixel tangent to a center point as
shown in Fig. 3. Formally, the value of torque, τpq of an
edge pixel q within a discrete image patch with center p is
defined as:

τpq = ‖~rpq‖ sin θpq (1)

where ~rpq is the displacement vector from p to q and θpq
is the angle between ~rpq and the tangent vector at q1. The
torque of an image patch, P , is defined as the sum of the
torque values of all edge pixels, E(P ), within the patch as
follows:

τP =
1

2|P |
∑

q∈E(P )

τpq (2)

The torque has been used as a mid-level operator as
follows: At every image point over multiple patch sizes the
torque is computed. Then at every image point the largest
torque value over the different patch sizes is selected to create
a two-dimensional data-structure, called the torque value
map. The extrema in this torque value map indicate locations
in the image that likely are centers of closed contours.

Several interesting properties for the torque operator were
explored in [22]. Some of the most relevant to our work are

1The sign of τpq depends on the direction of the tangent vector and for
this work, we compute the direction based on the change in pixel intensities
along the edge pixel.



Fig. 4. How the torque operator performs in clutter: (a) Original torque for a non-cluttered (a-1) versus a cluttered (a-2) situation with three objects
{A, B, C}. Arrows represent the edge support computed for each torque patch value: τP (·). In the non-cluttered situation (a-1), torque values are high
compared to the empty region τP ′ . In a cluttered situation, edges from neighboring objects are accidentally added into the support for patch P ′ (a-2),
resulting in similar torque values with true object patches. (b) The modified torque with high-level information, τm

P (·) – shown here for the shape for
patch ‘A’, enhances edges (dark arrows) that conform to part of A’s shape while reducing the contribution of non-conforming edges (gray arrows). This
results in torque patches that are tuned specifically for the target object’s shape and size. (c) Results of τP (c-1) versus τmP (c-2) in a real cluttered scene
where the flashlight is to be located. Notice that in (c-1), there are numerous torque maxima/minima (white/black crosses with ranks) while in (c-2)
the flashlight is the top fixation with less noisy torque values. Note that only the top 3 torque maxima/minima are shown for clarity.

the observation that the torque tends to respond strongest to
closed regions, has large values at the center of regions, and
ignores texture. Thus it is well suited as a tool for finding
edges that belong to an object. This is because edges that
are incoherent – e.g. texture edges have tangent vectors that
are random, and summing them up via eq. (2) will result in
a small τP (close to zero). In addition, because of the simple
summation operation in eq. (2), τP of varying sizes can be
computed rapidly using the method of integral images [5].

These properties make the torque an efficient operator for
detecting object-like locations when the objects are them-
selves not within significant clutter. The reason is illustrated
in Fig. 4(a), where we show a non-cluttered versus a cluttered
situation of three simple objects. However, it is a purely
bottom-up approach. In eq. (2) knowledge about which
edges really belong to the object is not considered, and thus
accidental inclusions from nearby edges of other objects will
produce large torque values for patches that are between
objects due to clutter, see Fig. 4(a-2). We show in the next
section how this effect can be reduced so that torque can be
used effectively in cluttered situations.

B. Extensions for known object properties

For the torque to handle cluttered situations effectively,
the key is to modify the original formulation of the torque
for an image patch eq. (2). The torque values of edge pixels,
τpq are modified via an object model function, mO(·) such
that edges that conform to the target object model, O are

given higher weight while non-conforming edges are given
less weight:

τmP =
1

2|P |
∑

q∈E(P )

mO(τpq) (3)

where τmP is the modified normalized torque of an image
patch. There are numerous ways one can design mO(·) – it
can be simple: based on local image properties of the target
object, or complex: the output of trained class specific edge
classifiers such as [17]. In this work, we focus on using two
specific global object properties that defineO: 1) shape – this
is represented as a set SO of known object masks (or poses)
and 2) size – the approximate metric size, [X,Y, Z]O of the
object is known a priori. Using these sources of information
we formulate mO as:

mO(τpq) =
τpq
dqs

(4)

where dqs is the minimum Euclidean distance of edge point
q to the edges s ∈ S′

O on a given object, for a selected object
pose. It should be noted that S′

O will be resized using data
[X,Y, Z]′O, i.e. we use 3D data from an RGB-Depth camera
so that only edges that conform closely to the desired target
object shape are included in eq. (3).

We illustrate how τmP helps reduce erroneous torque values
from occurring within clutter in Fig. 4(b) using mO(·) as
defined above. Referring to the figure, one can see that edges
that belong to another object are likely to have a smaller



influence in the τmP , while edges that approximate well the
shape of the object model O are promoted. This enables
target objects that are within a large amount of clutter to be
enhanced, as shown in Fig. 4(c) on a real cluttered scene.
The benefits of imposing O within τmP is clearly shown
here: the torque maps are less noisy (with less erroneous
maxima/minima) and the targeted object is likely to have
the highest torque values. A similar benefit extends to objects
that are partially occluded in clutter or slightly deformed. The
same principle applies. Occlusions and deformations only
slightly perturb τmP , and therefore the operator is robust to
such effects. These results highlight a biologically plausible
explanation of the modified torque operator: it is analogous
to receptive fields in the visual cortex that are sensitive to
particular sizes and shapes. Finally, it is important to note
that since eq. (3) is similar in structure to the original torque
formulation, integral images can be used to speed up the
computations considerably.

Our approach to finding an object of a certain class con-
sists of a series of processing steps. First, in a precomputation
step, we derive using RGB-Depth data, the expected size of
the object in the image, and we compute for every image
patch the most likely orientation (or pose) of the object
(sec. III-C). Then we use the torque operator to locate the
regions in the image possibly containing the object. We
modify the contribution of edges by giving larger weights
to those edges that are nearer to the contour of the target
object’s model, and use the torque operator to group edges
into closed contours. Section III-D describes the complete
method.

C. Preprocessing: Pose and size estimation

An important requirement for the torque operator to func-
tion efficiently in clutter is to know which object poses in
SO is the most appropriate for use in eq. (3). Since the
target object can appear in any possible pose and scale,
it would seem that one would have to try all |SO| poses
and scales at each image patch – selecting the one that
generates the largest absolute torque value in the end. This
approach would have increased the computational time of
each image patch considerably, and is therefore not feasible
as a practical mechanism for top-down attention. A more
efficient solution is to estimate at runtime the best pose
within each image patch. The strategy is shown in Fig. 5.
We do this by computing shape context features [1] from
sampled edge points (we take 10% of the edge points in this
work) within each patch, and compare it to precomputed
shape context features of each model pose S′

O to determine
the right pose to use at each edge point. As a final step,
a large window (we used a 50 × 50 window) was used to
compute the mode of the pose estimate to produce a pose
map that estimates the best pose at each pixel location. The
intuition for this step is that if the edges do indeed come
from a known object with a particular pose, most of the
edge pixels would have voted for the same pose. Using a
small window to compute the mode removes noisy single
pixel deviations from the majority votes.

Fig. 5. Estimating consistent poses from shape context edge features. (1)
Input image. (2) Detected edge points (in yellow). (3) A set of model poses
(masks) for the target object, (4) Shape context features are extracted at
each edge points and matched to shape context features in the model poses.
(5) Each edge pixel then votes for the closest matching pose – different
colors represent votes for a particular pose. (6) A window is run over the
entire image to compute the votes. (7) The final consistent pose map.

Since the target object can occur at any location in the
image, the apparent size of the object in the image will vary
based on the distance of the object to the sensor. The right
patch size to compute τmpq is therefore dependent on the scene
structure at runtime, which can be easily computed from
depth information (either from stereo or directly from RGBD
cameras). We use this information to compute an appropriate
scale map (see Fig. 6) that indicates at x, y the correct image
scale that the object must have at that particular location.
By precomputing the pose and scale maps, we can rapidly
compute the final torque values of the image at one pass,
which greatly reduces the running time. See the next section
for an analysis.

D. A knowledge driven top-down object detection mecha-
nism

We are now ready to present the full algorithm summarized
in Fig. 6. Object model O is computed from segmented
images from RGBD data to obtain their respective pose
masks and metric size information. The input is an image
frame together with its computed depth map obtained from
an RGBD camera. For determining the edge features, one can
use either standard Canny edges or Pb edges [18] (we use
Pb edges in all experiments here). We then apply a threshold
on the length of these initially detected edges so that only
long continuous edge segments are preserved. In this work
we set the minimum length to 100 pixels; we found that
this length helps in promoting object boundaries. The next
step is to determine the pose and scale map for each pixel
as described in sec. III-C. Finally, we apply eq. 3 to obtain
a torque value map for each pixel. We apply to this torque
map non-maxima suppression to get local maxima/minima,
and use these extrema as the fixation points in the image,
where we expect the target object.

A note on the computational complexity of the entire



Fig. 6. Overview of the proposed top-down object detection algorithm. (A)
Extracting object model properties from RGBD data: poses and size. (B)
Runtime detection of target object: (1) Input RGBD data. (2) Compute pose
and scale maps using object model information. (3) Compute τmP and find
extrema (the top 2 absolute extrema values are shown as black crosses).

algorithm. For an image of size N × M , with J = |SO|
number of poses, G the number of edges with G� (N ∗M),
and assuming that the maximum number of sizes of image
patches is limited to K (a reasonable assumption since
most RGBD cameras can provide depth information up to
≈ 6m), the computation time for estimating the pose is
O(G∗J)+O(N∗M) (search + finding consistent pose votes).
Computing the scale map takes at most O(N ∗ M) time,
since we have 2.5D information directly from the sensor.
Finally, for computing τmP , since it takes constant time to
compute a patch at one scale and pose, it takes at most
O(N ∗M) time for computing a torque value for each object.
The total run time of the approach per object is therefore at
most O(G ∗ J) +O(N ∗M) +O(N ∗M) +O(N ∗M) ≈
O(N ∗ M). Hence the computational time scales linearly
with the image size and the number of object classes to be
searched – O(N ∗M ∗C) where C is the number of object
classes in the worst case. Typical values of {N,M, J,K} are
{640, 480, 20, 10} with C ranging from 6 to 8. Typical run
times on an unoptimized Matlab implementation are around
30s per image per object (excluding the time to compute Pb
edges). These run times can of course be reduced in a parallel
implementation as most computation loops are independent.

E. Comparison to similar methods

Since we propose a “top-down” object detection approach,
we need to mention other methods in computer vision that
address the object detection problem in similar ways. These
methods are usually referred to as “object classifiers,” and
their goal is to perform object recognition – to find both
location and identity of a target object in an image. Many of
these approaches use a sliding window and attempt to match
the features from the window to the target object’s features.
The best known of these efforts were developed in the course

of the PASCAL-VOC (Visual Object Challenge) [7] competi-
tion, which has 20 object classes in a variety of challenging
image scenarios. Among the top performing algorithms is
the deformable parts based model of Felzenswab et al. [8].
There are, however, limitations to such approaches: 1) the
performance of these learning based methods is directly
related to the number of training samples. For example, the
deformable model algorithm performs well for certain classes
– for example the class person while it fails considerably
for the class boat. The main reason is that the set has many
more annotated examples of humans than boats. 2) Although
the deformable parts model tries to ensure a global spatial
coherence of object parts, its internal representation for each
part – typically, a histogram of orientated gradients (HoG) [6]
or SIFT [16] – ignore the spatial structure of the image at
the lowest feature levels (gradients, edges etc.).

Recently, Bo et al. [2] presented kernel descriptor fea-
tures, which they showed to outperform competing feature
extraction methods. They showed that orientation histogram
features are equivalent to a certain type of match kernel over
image patches. This view provides a framework to transform
local pixel attributes into patch level features, and it avoids
quantization errors associated with histogram binning. Using
this approach Bo et al. present kernel descriptors based on
gradient, color, and shape information. Once kernel descrip-
tors are computed, pyramid efficient match kernels (EMK)
aggregate these local descriptors into object-level features.

By contrast our proposed top-down object detection al-
gorithm does not require a large amount of training data –
in fact, only the general pose and metric size information
is required. Such information can be obtained either from
known measurements or even from generic drawings, which
makes the approach general and not as data-dependent as
other approaches. Our method also does not require a specific
knowledge of the background, making it more adaptable
to novel scenes compared to training-based methods which
often require numerous background examples. This require-
ment limits their applicability in real robotic situations.
Second, by using the torque operator and the formulation in
eq. (3), unlike approaches that ignore completely the spatial
configuration of image features, our approach encodes spatial
information in a robust manner via the torque operator, re-
sulting in a detector that is robust to clutter, partial occlusions
and slight deformations of the target object.

IV. EXPERIMENTS

A. Datasets

In order to evaluate the proposed algorithm in detecting
objects in real clutter, we evaluated the system over two
datasets captured using an RGBD camera. The first dataset,
called UMD-clutter consists of three sequences taken
with an RGBD camera mounted on a mobile robot that
is moving in front of a cluttered table, and viewing the
clutter from various angles and distances. There are seven
objects in this dataset: {Plastic spoon, Blue mug,

Book, Bowl, Tissue box, Wooden spoon, Yellow

mug}. The three sequences: clutter-01, clutter-02,



Fig. 7. Example frames from the evaluation datasets, shown from left
to right with increasing clutter. (a) Sequences from UMD-clutter. (b)
Sequences from rgbd-scenes.

clutter-03 (around 500 frames @15fps) are organized
in terms of increasing clutter – clutter-01 has objects
that are clearly visible, while clutter-03 is the most
challenging with numerous occlusions. Examples are shown
in Fig. 7(a). The second dataset comes from the publicly
available rgbd-scenes dataset2. This dataset consists of
eight sequences of around 200 frames taken with an RGBD
camera from a variety of environments with varying degrees
of clutter as well (Fig. 7(b)). It consists of six different
objects classes: {Bowl, Cap, Cereal box, Coffee

mug, Flashlight, Soda can} Different sequences have
different numbers of objects and to make it even more
challenging, every object class consists of different object
instances – e.g. object Cap can be a red cap or white cap.
For the purpose of the evaluation and comparison, we only
collected object models from one particular instance. In
both datasets, the object models are derived from a sequence
of RGBD data of the target object class (Fig. 6(A)) placed
on a turnstile so that a large number of poses could be
collected.

B. Procedure and evaluation protocol

For each sequence in both datasets, we selected a subset
of the frames (every 10th frame) since the scene does not
change dramatically between frames and our goal was to
evaluate the performance of the algorithm from various view-
points and distances. Since we are interested in evaluating the
quality of the fixations, a suitable performance metric would
be the Cumulative Match Characteristic Curve (CMC) [3],
which plots the probability that a correct fixation occurs
against the returned list of candidate fixations [1 : R]. The
CMC is a well used metric in biometric identification systems
and is often used for evaluating identification algorithms that
return a ranked list. The closer the curve peaks near the top
left corner – a high probability of correct identification with
small |R| – the better is the quality of the returned fixations.

As comparison, we evaluated the bottom-up saliency al-
gorithm of Itti et al. [15] and the more recent graph-based
visual saliency measure (GBVS) of Harel et al. [11]. The

2Available from http://www.cs.washington.edu/rgbd-dataset/index.html

extrema in these these saliency maps were used as fixation
points. As a state of the art visual object classifier method,
we chose the publicly available kernel-based descriptor of Bo
et al. [2] which we discussed in sec. III-E. For training and
testing, we computed kernel descriptors from 16× 16 image
patches over a dense regular grid with a stride of 8 pixels.
These descriptors were then transformed using EMK, where
we considered 1×1 and 2×2 pyramid subregions, and 1000
basis vectors. A multi-class linear SVM was then trained on
ground-truth patches belonging to each object class and a
sliding window was used at test time to classify each image
patch, producing a response map from which fixation points
were extracted from the extrema. In addition, we report the
results of the original torque implementation [22] where a
search over fixed patch sizes: 3× 3 to 100× 100 was used.
All comparisons were done using the default parameters
noted in the original papers over all sequences from both
datasets. We then compare the locations of the returned
fixation points with hand-annotated ground truth labels of the
object locations in the test images to compute the associated
CMC metric.

C. Results

Fig. 8. [Top row] (a) & (b): CMC curves for all objects of the proposed
algorithm ‘Top-Down’ averaged over all sequences. [Bottom row] (c) & (d):
Comparing averaged CMC curves over all objects from both datasets from
all algorithms. Left column: UMD-clutter, Right column: rgbd-scenes.

We summarize the performance of the proposed
Top-Down object detection mechanism by averaging the
CMC over all sequences considered for both datasets and
report them in Fig. 8(a) and (b). Comparison of the
overall averaged performance of the algorithms – {Itti,
GBVS, KernelDesc, Torque-Original} are presented
in Fig. 8(c) and (d).

From the results, we can see that the proposed top-down
approach has better performance compared to all the other
algorithms, in terms of returning correct fixations. This is
seen from Fig. 8(c) and (d), where the proposed approach



returns consistently the best performance over all top R
returned fixations, even at small R. Compared to the other
approaches, the top-down approach also does not saturate
in its performance when R increases. This is due to the
fact that other approaches do have underlying assumption
on the target object and tend to bias their detections towards
their underlying assumptions – e.g. color contrast, edge
contrast, edge coherence etc. Next, we can see from Fig. 8(a)
and (d) that the proposed approach is able to consistently
detect all objects reliably at increasing R compared to other
methods which have strong biases towards a particular object
class or certain scene properties. This is in spite of the
fact that some objects – e.g. Plastic spoon, Soda can,

Flashlight, Blue mug are much smaller compared to
other objects and often are partially occluded in some of
the sequences. This highlights the strength of tuning the
torque operator using τmP towards detecting difficult object
classes. We also should stress, that only simple edge features
and primitive object knowledge was used, compared to the
state of the art kernel descriptors KernelDesc that utilizes
more discriminative features – i.e, color, texture etc. For both
UMD-clutter and rgbd-scenes, the proposed top-down
algorithm reports the best performance compared to other
approaches with > 70% hit rate at R = 10 for both datasets.

V. SUMMARY AND FUTURE WORK

In this work, we have proposed a viable and robust top
down visual object detection algorithm. Key to the algorithm
is the use of a novel image operator called the torque. Using
the torque as a computational mechanism, we adapted it as
a tool for utilizing semantic information in low-level vision
tasks. Specifically, we modified the torque computation with
high-level information so that it becomes suitable for de-
tecting specific object classes in cluttered environments. We
also analyzed the performance of the proposed approach on
two large datasets containing clutter with several different
objects, and compared our approach to bottom-up saliency
approaches and state of the art trained classifiers. We showed
that despite the apparent simplicity of the features used – we
only used edges, the novel operator clearly outperforms more
complex methods which require significant training data or
have strong underlying assumptions.

In future work, we intend to investigate how to design edge
related functions mO(·) that carry important universal shape
information. We also plan to integrate our approach with a
segmentation framework to develop a full object recognition
module. Comparisons with other top-down approaches over
larger datasets will be conducted. The UMD-clutter dataset
used with updated results and code will be made available
online3.
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