Inconsistency Management Policies

Maria Vanina Martinez¹, Francesco Parisi², Andrea Pugliese², Gerardo Simari¹, and VS Subrahmanian¹

¹Department of Computer Science and UMIACS
University of Maryland College Park, USA

²University of Calabria, Rende, Italy

11th International Conference on Principles of Knowledge Representation and Reasoning
September 2008 – Sydney, Australia
Motivation

- If company A and B merge, so do their databases.

- *Problem:* there exist several salary records for employee John in a given month when it is expected to be only one record per employee per month.

- What would a database user do about this inconsistency?
 - How would people from the business office use this data?
 - How would a bank use this data if it is considering John for a loan?
 - How would the IRS use this data?
Motivation

- Most relational databases are inconsistent or are expected to be.
- *Common assumption:* there exists an *epistemically correct* way of solving or reasoning about the inconsistency; however:
 - DBMS managers do not necessarily have the knowledge to decide which data is “correct” and which is not.
 - Different users of the same DB might have different needs.
- *It is important to enable* users to bring their *application-specific knowledge* to bear when dealing with inconsistency.
Contribution

- Introduce Inconsistency Management Policy (IMP).
- The user has the last word on how to handle the inconsistency, depending on the application’s needs.
- IMPs allow users to remove inconsistency completely or to have part or all of the inconsistency persist.
 - Different kinds of policies allow different ways of managing the inconsistency.
 - No previous work attempts to handle all these possibilities.
- Analysis IMPs for single and multiple functional dependencies (FDs for short).
- Different semantics to handle multiple FDs.
- Extension of Relational Algebra: IMPs embedded as operators.
Preliminaries

• Assume a relational schema \(S(A_1, \ldots, A_n) \); \(t[A_i] \) denotes the value of the attribute \(A_i \) of tuple \(t \).

• Assume FDs of the form:

\[
A'_1, \ldots, A'_k \rightarrow A'_m, \quad \text{RHS}(fd) = A'_m.
\]

 – If two tuples agree on the attributes in the antecedent (LHS), the attributes in the RHS must also agree.

• We base our work on two notions:

 – **Culprits** or minimal inconsistent subsets.

 – **Clusters**: Sets of overlapping culprits.

 • Clusters group together tuples that are inconsistent with each other.

 • Equivalence classes w.r.t. culprit overlapping relation.
Preliminaries: Culprits and Clusters

- Consider the following relation $Employee$ (we call it R) and a set F of FDs $F = \{Name \rightarrow Salary\}$:

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
<th>Tax_bracket</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>70K</td>
<td>15</td>
<td>s_1</td>
</tr>
<tr>
<td>John</td>
<td>80K</td>
<td>20</td>
<td>s_2</td>
</tr>
<tr>
<td>John</td>
<td>70K</td>
<td>25</td>
<td>s_3</td>
</tr>
<tr>
<td>Mary</td>
<td>90K</td>
<td>30</td>
<td>s_1</td>
</tr>
</tbody>
</table>

- $Culprits(R, F) = \{\{t_1, t_2\}, \{t_2, t_3\}\}$
- $Clusters(R, F) = \{\{t_1, t_2, t_3\}\}$

- If we had a tuple $t_5 = (Mary, 80K, 30)$, then
 $$Clusters(R, F) = \{\{t_1, t_2, t_3\}, \{t_4, t_5\}\}$$
Inconsistency Management Policies

• An IMP w.r.t. a set of FDs is a function applied to a relation that results in a new relation with the intention of reducing inconsistency.

• IMP AXIOMS: An IMP for a relation \(R \) w.r.t. the set \(F \) over \(R \) is a function \(\gamma_F \) from \(R \) to \(R' = \gamma_F(R) \) such that:

 – Tuples that do not belong to any culprit cannot be eliminated or changed.

 – If \(t' \in R' - R \), there exist cluster \(c \) and tuple \(t \) in \(R \), s.t. for each attribute \(A \) (\(A \) doesn’t appear in any FD), \(t[A] = t'[A] \).

 – The application of the \(\gamma_F \) cannot increase the number of culprits for any FD in \(F \).

 – \(|R| \geq |R'| \), i.e., the cardinality cannot increase.
IMP for Single FD

- Our goal is to allow the end user to choose a policy that best describes his needs (including not changing the database at all).

- The user needs tools to:
 - Eliminate tuples from a cluster.
 - Change values of attributes from tuples in clusters.

- Three different kinds of Singular IMPs:
 - Tuple-based policies.
 - Value-based policies.
 - Interval-based policies.
Tuple-based Policies

- A tuple-based IMP allows replacing a cluster w.r.t. an FD by a subset of the same cluster.
- Generalization of maximal consistent subsets and repairs.
- A tuple-based IMP for relation *Employee* could be based on the fact that the user does not trust source s_3, and thus decides to eliminate all tuples coming from it.

Resulting Relation

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
<th>Tax_bracket</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>70K</td>
<td>15</td>
</tr>
<tr>
<td>John</td>
<td>80K</td>
<td>20</td>
</tr>
<tr>
<td>John</td>
<td>70K</td>
<td>25</td>
</tr>
<tr>
<td>Mary</td>
<td>90K</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
<th>Tax_bracket</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>70K</td>
<td>15</td>
</tr>
<tr>
<td>John</td>
<td>80K</td>
<td>20</td>
</tr>
<tr>
<td>Mary</td>
<td>90K</td>
<td>30</td>
</tr>
</tbody>
</table>
Value-based Policies

- For each cluster, a value-based IMP allows to reduce the number of distinct values for attributes in $RHS(fd)$.
- For the *Employee* relation, suppose the user *knows* that in general, source s_1 has more recent information than s_2 w.r.t. *Salary*. He decides to reset the s_2 information with that from s_1.

<table>
<thead>
<tr>
<th>Source</th>
<th>Name</th>
<th>Salary</th>
<th>Tax_bracket</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>John</td>
<td>70K</td>
<td>15</td>
</tr>
<tr>
<td>s_2</td>
<td>John</td>
<td>80K</td>
<td>20</td>
</tr>
<tr>
<td>s_3</td>
<td>John</td>
<td>70K</td>
<td>25</td>
</tr>
<tr>
<td>s_1</td>
<td>Mary</td>
<td>90K</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Name</th>
<th>Salary</th>
<th>Tax_bracket</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>John</td>
<td>70K</td>
<td>15</td>
</tr>
<tr>
<td>s_2</td>
<td>John</td>
<td>70K</td>
<td>20</td>
</tr>
<tr>
<td>s_3</td>
<td>John</td>
<td>70K</td>
<td>25</td>
</tr>
<tr>
<td>s_1</td>
<td>Mary</td>
<td>90K</td>
<td>30</td>
</tr>
</tbody>
</table>

Resulting Relation
Interval-based Policies

- An interval-based IMP allows any tuple in a cluster to be replaced by a new one that has different values for the attribute in $RHS(fd)$. New values are within the interval defined by the values in the attribute on the $RHS(fd)$.

- For the Employee relation:
 - Replace the values for Salary of tuples in the cluster for which the value of Tax_bracket is less than or equal to 20, to the mean among all Salary values in the cluster. This changes Salary in t_1 and t_2 to 73.33K.

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
<th>Tax_bracket</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>John</td>
<td>70K</td>
<td>s_1</td>
</tr>
<tr>
<td>t_2</td>
<td>John</td>
<td>80K</td>
<td>s_2</td>
</tr>
<tr>
<td>t_3</td>
<td>John</td>
<td>70K</td>
<td>s_3</td>
</tr>
<tr>
<td>t_4</td>
<td>Mary</td>
<td>90K</td>
<td>s_1</td>
</tr>
</tbody>
</table>
Multi-dependency IMPs

- Assume an IMP for each $fd \in F$, and a partial ordering \leq_F, different orders of application of individual policies might yield different results.

- Let $\mu_F(R)$ be a multi-dependency policy (MDIMP); we developed two semantics:
 - **Fixed order semantics**: assume the existence of a total order $o = \langle fd_1, ..., fd_k \rangle$. $\mu^o_F(R)$ is the result from applying the singular IMPs in the order determined by o, this is $\mu^o_F(R) = \gamma_{fd_k}(...\gamma_{fd_2}(\gamma_{fd_1}(R))...)$.
 - **Core semantics**: $\mu_F(R)$ includes only those tuples that appear in the intersection of all possible fixed order applications.
Complexity Results on MDIMPs

- **Theorem:** Given a tuple \(t \in R \), determining whether \(t \in \text{Core}(R, F, \leq_F) \) is \(\text{coNP-complete} \).

- **Theorem:** Given a tuple \(t \in R \), determining whether there is a total ordering \(o \), consistent with \(\leq_F \) such that \(t \in \mu^o_F(R) \) is \(\text{NP-complete} \).

- If we assume schemas of bounded size then the previous problems are in \(\text{PTIME} \).

- Assuming an arbitrary but fixed set \(F \), and that all individual policies are computable in polynomial time w.r.t. the number of tuples in \(R \), the application of an MDIMP \(\mu^o_F(R) \) is polynomial w.r.t. the number of tuples in \(R \).
Extension of Relational Algebra

- Classical relational operators augmented by the application of an IMP.
- Given two relations \(R_1 \) and \(R_2 \), the corresponding sets of FDs \(F_1 \) and \(F_2 \), a classical relational operator \(op \), and two MDIMPs \(\mu_{F_1} \) and \(\mu_{F_2} \):
 - A **Policy-first Inconsistency Management Operator** applies \(op \) to the relations obtained from the application of the policies.
 - A **Policy-last Inconsistency Management Operator** applies an MDIMP that handles the union of \(F_1 \) and \(F_2 \) to the relation that results from applying \(op \).
- In general, **policy-last is not equivalent to policy-first**. We proved some conditions for equivalence.
Extension of RA: Projection

- \textit{Policy-last projection operator} requires the projection to be made over a set X that is a superset of the attributes involved in the FDs.

- \textbf{Theorem:} \textit{Policy-last projection is equivalent to policy-first projection} if and only if:
 - the policy only depends on values of attributed involved in the functional dependencies with which the policy is associated, and
 - policy does not depend on duplicate values of an attribute \textit{(e.g., max or min but not average)}.

Extension of RA: Selection - Union

- **Theorem:** For *tuple-based policies* where the application of the policy is equivalent to a selection operation, *policy-last selection is equivalent to policy-first selection.*
 - Selection of a tuple based only on values of the tuple.

- **Theorem:** *Policy-last union is equivalent to policy-first union* under the following circumstances:

 - Given a set X and $fd: X \rightarrow B$, for any IMP γ_{fd} it is the case that $\gamma_{fd}(R_1 \cup R_2) = \gamma_{fd}(R_1) \cup \gamma_{fd}(R_2)$ if and only if $\pi_X(R_1) \cap \pi_X(R_2) = \emptyset$.
Cartesian Product

- **Theorem.** Given R_1 and R_2, FDs fd_1 and fd_2, for any pair of ratio-invariant policies γ_{fd_1} and γ_{fd_2}:

 - $\gamma_{fd_1}(R_1 \times R_2) = \gamma_{fd_1}(R_1) \times R_2$

 - $\gamma_{fd_2}(R_1 \times R_2) = R_1 \times \gamma_{fd_2}(R_2)$

 - $\gamma_{fd_1}(\gamma_{fd_2}(R_1 \times R_2)) = \gamma_{fd_1}(R_1) \times \gamma_{fd_2}(R_2)$

 - $\gamma_{fd_1}(\gamma_{fd_2}(R_1 \times R_2)) = \gamma_{fd_2}(\gamma_{fd_1}(R_1 \times R_2))$

- **Ratio-invariant** policy: its application to a multi-set is equivalent to its application to another multi-set that contains the same proportion of tuples.

 - Result do not depend on the number of elements having the same value (e.g., lowest value).
Summary and Conclusion

• We introduced the concept of IMP: *The user can decide to either remove inconsistency completely or to allow part or all of the inconsistency to persist.*
 – Three different kinds of IMPs allow to delete tuples and change values of attributes.

• IMPs to manage multiple FDs:
 – Two semantics: Fixed order and Core.
 – PTIME computation for bounded schemas.

• We extended the Relational Algebra embedding IMPs as operators:
 – Analysis of interaction with basic operators.
 – Policy-first vs. Policy-last operators: conditions for equivalence for basic operators.