STONE: Shaping Terrorist Organizational Network Efficiency

V.S. Subrahmanian
Lab for Computational Cultural Dynamics
Computer Science Dept. & UMIACS
University of Maryland

vs@cs.umd.edu
www.cs.umd.edu/~vs/

Joint work with Francesca Spezzano and Aaron Mannes

July 2014
Talk Outline

• STONE Approach
• The Vertex Successor Prediction Problem
• The Multi-Vertex Replacement Problem
• Predicting a Reshaped Network
• Experimental Results
• Conclusion and Future Work
Architecture of STONE

Predict Successor of a Removed Vertex
- Suppose we choose to remove a person from the network.
- Who will replace that node?

Predict how a network will re-structure itself when multiple vertices are removed
- Induce a probability distribution over a space of possible networks that result

Identify which nodes to remove so as to minimize the “expected lethality” of the resulting network
- Each possible new network has a lethality
- The value of removing a set of vertices is an expected value computation

July 2014
Organizational Networks

• An organizational network consists of
 – A bunch of vertices (or nodes)
 – A bunch of edges connecting those nodes
 – A rank labeling each node specifying how important the node is within the hierarchy
 – A list of properties for each node – with discrete and numeric values, e.g.
 • Role of the node in the organization
 • Clustering coefficient – how “tightly connected” is the node to its neighbors
 • Blowback level – level of blowback if the node is removed
 • Hostility Level including support for carrying out terror attacks
 • Competence in carrying out terrorist acts
 • Whether the individual is dead/otherwise removed from network/alive and active
Node Properties Considered
Replacing B with A yields the graph on the right. Logic:

- A retains all of its connections (C,D,F)
- A gets all of B’s connections as well (C,D,E)
- So A is connected to C,D,E,F
- A keeps its properties (but gets B’s rank)
Vertex Successor Prediction

• **Assumptions**
 – Replacement v is not too far away from u
 – Probability that u is replaced by v depends on v’s rank in the network
 – Individuals with a *strictly* higher rank than u will not seek u’s position – but individuals at the same (or lower) rank might
 – The network will reshape itself to be maximally lethal
 – The network does not split into factions
Weighted Removal PageRank

- Build on top of Google’s PageRank algorithm.
- Define Weighted Removal PageRank.
- r is vertex being removed.
- v is a vertex being considered for removal.

\[
WRP(v, r) = (1 - \delta) \frac{wt(v)}{\sum_{u \in V \setminus \{r\}} wt(u)} + \delta \sum_{u \in \text{nbr}(v) \setminus \{r\}} \frac{WRP(u)}{|\text{nbr}(u) \setminus \{r\}|}
\]

Look at neighbors of v that are not removed. v’s neighbors WRP is evenly distributed to v. Relative weight of v
Replacement Value

- Replacement value of vertex \(v \) when removing vertex \(r \) is

\[
rv(v) = \alpha_0 \cdot WRP(v) + \sum_{p_i \in VP} \alpha_i \cdot \varphi(v, p_i)
\]

- where the \(\alpha \)'s add up to 1 and specify the relative importance of each vertex to the mission.

Look at neighbors of \(v \) that are not removed. \(v \)'s neighbors WRP is evenly distributed to \(v \).
Candidate Set

v is a candidate to replace r if:

• $\text{rank}(v) \leq \text{rank}(r)$ and

• Distance between v and r (in the network) is less than some threshold k [set by expert]

• v has a set of properties specified by an expert [e.g. v is capable of playing the role played by r]
Replacement Probability

- Probability that u is the replacement for r is simply the relative replacement score of u compared to all candidates.

\[P_{\text{cand}(r,P,k)}(u) = \frac{\sigma(u)}{\sum_{u' \in \text{cand}(r,P,k)} \sigma(u')} \]
Removing Multiple Vertices (near) Simultaneously

• Definition of replacements and replacement probabilities can be extended to multiple vertices.

• Will skip details – but when R is a set of nodes being removed,
 – R is replaced by a set R1 of nodes
 – R1 must then by replaced by another set R2
 – And so on.
Substitution Tree

- Given an organizational network ON and a set R of vertices being removed, we define a data structure called a substitution diagram.
 - Root is set of nodes being removed
 - For a given node N, N’ is a child of N if it’s a possible replacement for the set of nodes specified in N.
 - Each edge is assigned a normalized probability.

C1 is a candidate set to replace R. D1 is a candidate set to replace C1. And so forth.
Possible World

• Result of the replacements along a path.

• Example:
 – Replace R by C2.
 – Replace C2 by D2.

• Probability of this possible world is the product of the two edge probabilities.
Pictorially.....
Network Lethality

• Each possible world is a network that has a lethality.

• Many possible measures of lethality – just discussing 3 today.

• A vertex is violence-prone if its hostility and its support for terror acts both exceed some threshold.

• Otherwise it is violence averse.
Network Lethality

- **L1**: Sum of the weights of the violence prone nodes – Sum of the weights of the violence averse nodes.
- **L2**:
 - Each vertex has a normalized weight which is its degree times its weight.
 - Add up the normalized weights of violence prone vertices and then subtract the normalized weights of the violence averse vertices.
- **L3**: Same as above by uses WRP instead of degree.
- **L4**: The most important measure that correlates L1, L2, L3 above with actual network attacks.
Correlated Measure L4

- We have different networks as people are removed from the network.
- Initially, we have network N1 and during this time, A1 attacks occur. Network N1 has properties L1(1), L2(1), and L3(1).
- When person P1 was removed, we have a new network N2 and during the time N2 existed, there were A2 attacks. Network N2 has properties L1(2), L2(2), L3(3).
- We build a regression model to predict number of attacks from historical data about the L1(i)’s, L2(i)’s and L3(i)’s.

Predictive regression model is highly accurate.
- 0.83 Pearson Correlation Coefficient for LeT network.
- 0.652 for AQ network
Who to Remove

\[L_{EV}(\mathcal{O}N, R) = \sum_{N \in \mathcal{N}(\mathcal{O}N, R)} p(N)L(N) \]

- Denotes the expected lethality of the network when R is the set of nodes to be removed.
- We want to find R so that expected lethality is minimal.

The algorithm for finding R is as follows:

1. Input: Organizational network \(\mathcal{O}N = (V, E, wt, \phi) \), maximum set size \(k \).
2. Output: Set \(R \) of nodes to remove.
3. function RESHAPE(\(\mathcal{O}N \), \(k \))
4. \(R = \emptyset \)
5. \(\ell = L(\mathcal{O}N) \)
6. continue = true
7. do
8. \(r = \arg \min_{v \in V \setminus r} L_{EV}(\mathcal{O}N, R \cup \{v\}) \)
9. \(\ell_r = L_{EV}(\mathcal{O}N, R \cup \{r\}) \)
10. If(\(\ell_r \leq \ell \))
11. \(R = R \cup \{r\} \)
12. \(\ell = \ell_r \)
13. Else continue = false
14. EndIf
15. while(continue \&\& |R| \leq k)
16. return R
17. end function

- First find person who minimizes lethality when removed. Remove him from the network.
- Recompute network and scores.
- Find the next person who minimizes lethality and remove him from the network. Recompute.
- Keep doing this until you have removed the required number of people.
Experiment: Predicting Vertex Replacement

<table>
<thead>
<tr>
<th>Setting</th>
<th>α_{WPR}</th>
<th>α_{POCC}</th>
<th>α_{rank}</th>
<th>α_{host}</th>
<th>α_{comp}</th>
<th>α_{BB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>0.066</td>
<td>0.067</td>
<td>0.067</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0.066</td>
<td>0.067</td>
<td>0.067</td>
</tr>
<tr>
<td>3</td>
<td>0.267</td>
<td>0.266</td>
<td>0.267</td>
<td>0.066</td>
<td>0.067</td>
<td>0.067</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.066</td>
<td>0.067</td>
<td>0.067</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.066</td>
<td>0.067</td>
<td>0.067</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>0.066</td>
<td>0.067</td>
<td>0.067</td>
</tr>
</tbody>
</table>

- Results need to trade off between
 - How likely we are to predict a correct replacement and
 - How big the answer is.
- Note that HUMAN INPUT IS REQUIRED. We predict a set of people and the predicted replacements for a vertex are presented to the expert.
- Importance of WRP is only about 20%. Node’s rank, WRP [influence], and POCC [connectedness] are all important.
Experiment: Predicting Vertex Replacement

- Result considered correct if it was within $\delta = 2\%, 3\%, 4\%, 5\%$ of the most probable answer

<table>
<thead>
<tr>
<th>Setting</th>
<th>Dataset</th>
<th>$\delta = 2%$</th>
<th>$\delta = 3%$</th>
<th>$\delta = 4%$</th>
<th>$\delta = 5%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toy</td>
<td>0.905(2)</td>
<td>0.925(3)</td>
<td>0.95(3)</td>
<td>0.99(5)</td>
</tr>
<tr>
<td></td>
<td>AQ</td>
<td>1.181</td>
<td>1.190</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>LeT</td>
<td>0.667(4)</td>
<td>0.667(6)</td>
<td>0.8(4)</td>
<td>0.8(4)</td>
</tr>
<tr>
<td></td>
<td>Hamas</td>
<td>0.8(3.4)</td>
<td>0.8(5.6)</td>
<td>0.8(8)</td>
<td>0.8(10.2)</td>
</tr>
<tr>
<td></td>
<td>Hezbollah</td>
<td>0.8(4.4)</td>
<td>0.8(8.2)</td>
<td>0.8(10.2)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Toy</td>
<td>0.56(2)</td>
<td>0.56(2)</td>
<td>0.605(2)</td>
<td>0.635(2)</td>
</tr>
<tr>
<td></td>
<td>AQ</td>
<td>0.90(1.27)</td>
<td>1.154</td>
<td>1.154</td>
<td>1.154</td>
</tr>
<tr>
<td></td>
<td>LeT</td>
<td>0.5(5)</td>
<td>0.667(7)</td>
<td>0.8(3.4)</td>
<td>0.8(3.8)</td>
</tr>
<tr>
<td></td>
<td>Hamas</td>
<td>0.8(2)</td>
<td>0.8(2.8)</td>
<td>0.8(6.8)</td>
<td>0.8(9)</td>
</tr>
<tr>
<td></td>
<td>Hezbollah</td>
<td>0.6(1.2)</td>
<td>0.6(2)</td>
<td>0.6(8)</td>
<td>0.6(9)</td>
</tr>
<tr>
<td>3</td>
<td>Toy</td>
<td>0.53(2)</td>
<td>0.80(3)</td>
<td>0.865(4)</td>
<td>0.935(5)</td>
</tr>
<tr>
<td></td>
<td>AQ</td>
<td>0.90(1.45)</td>
<td>0.90(1.72)</td>
<td>0.90(1.72)</td>
<td>0.90(1.72)</td>
</tr>
<tr>
<td></td>
<td>LeT</td>
<td>0.833(5)</td>
<td>0.833(7)</td>
<td>0.833(7)</td>
<td>0.833(8)</td>
</tr>
<tr>
<td></td>
<td>Hamas</td>
<td>0.4(1.6)</td>
<td>0.8(2.4)</td>
<td>0.8(3.2)</td>
<td>0.8(4)</td>
</tr>
<tr>
<td></td>
<td>Hezbollah</td>
<td>0.8(3.8)</td>
<td>0.8(4.8)</td>
<td>0.8(10.2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Toy</td>
<td>0.835(3)</td>
<td>0.93(4)</td>
<td>0.97(4)</td>
<td>0.985(5)</td>
</tr>
<tr>
<td></td>
<td>AQ</td>
<td>0.90(1.63)</td>
<td>0.90(1.72)</td>
<td>1.190</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>LeT</td>
<td>0.833(5)</td>
<td>0.833(7)</td>
<td>0.833(7)</td>
<td>0.833(8)</td>
</tr>
<tr>
<td></td>
<td>Hamas</td>
<td>0.8(2.4)</td>
<td>0.8(3.8)</td>
<td>0.8(7)</td>
<td>0.8(4.8)</td>
</tr>
<tr>
<td></td>
<td>Hezbollah</td>
<td>0.8(4.2)</td>
<td>0.8(5.4)</td>
<td>0.8(10.2)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Toy</td>
<td>0.693(5)</td>
<td>0.803(4)</td>
<td>0.92(5)</td>
<td>0.94(5)</td>
</tr>
<tr>
<td></td>
<td>AQ</td>
<td>0.90(1.45)</td>
<td>0.90(1.54)</td>
<td>0.90(1.72)</td>
<td>1.181</td>
</tr>
<tr>
<td></td>
<td>LeT</td>
<td>0.833(6)</td>
<td>0.833(7)</td>
<td>0.833(7)</td>
<td>0.833(8)</td>
</tr>
<tr>
<td></td>
<td>Hamas</td>
<td>0.6(1.8)</td>
<td>0.8(2.8)</td>
<td>0.8(8)</td>
<td>0.8(4.6)</td>
</tr>
<tr>
<td></td>
<td>Hezbollah</td>
<td>0.8(3.2)</td>
<td>0.8(5.6)</td>
<td>0.8(10.8)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Toy</td>
<td>0.16(2)</td>
<td>0.26(3)</td>
<td>0.32(3)</td>
<td>0.37(3)</td>
</tr>
<tr>
<td></td>
<td>AQ</td>
<td>0.72(1.27)</td>
<td>0.72(1.36)</td>
<td>0.72(1.36)</td>
<td>0.72(1.36)</td>
</tr>
<tr>
<td></td>
<td>LeT</td>
<td>0.667(4)</td>
<td>0.833(6)</td>
<td>0.833(7)</td>
<td>0.833(8)</td>
</tr>
<tr>
<td></td>
<td>Hamas</td>
<td>0.4(2)</td>
<td>0.4(2.2)</td>
<td>0.4(2.4)</td>
<td>0.4(2.4)</td>
</tr>
<tr>
<td></td>
<td>Hezbollah</td>
<td>0.6(2.6)</td>
<td>0.8(3.6)</td>
<td>0.8(5.6)</td>
<td>0.8(10.6)</td>
</tr>
</tbody>
</table>

In 80% of the cases, one of the top 3 people predicted by us turned out to be the true replacement, based on historical data.
Experiments: Who to Remove

- Difficult to measure.
- Asked experts to evaluate.
- Experts scored answer on a 1-5 scale.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Al-Qaeda</th>
<th>Lashkar-e-Taiba</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
V.S. Subrahmanian
Dept. of Computer Science & UMIACS
University of Maryland
College Park, MD 20742.
Tel: 301-405-6724
Email: vs@cs.umd.edu
Web: www.cs.umd.edu/~vs/
Contact Information

V.S. Subrahmanian
Dept. of Computer Science & UMIACS
University of Maryland
College Park, MD 20742.
Tel: 301-405-6724
Email: vs@cs.umd.edu
Web: www.cs.umd.edu/~vs/