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Isosurface Extraction and Spatial Filtering Using Persistent Octree
(POT)
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Abstract— We propose a novel Persistent OcTree (POT) indexing structure for accelerating isosurface extraction and spatial filtering
from volumetric data. This data structure efficiently handles a wide range of visualization problems such as the generation of view-
dependent isosurfaces, ray tracing, and isocontour slicing for high dimensional data. POT can be viewed as a hybrid data structure
between the interval tree and the Branch-On-Need Octree (BONO) in the sense that it achieves the asymptotic bound of the interval
tree for identifying the active cells corresponding to an isosurface and is more efficient than BONO for handling spatial queries. We
encode a compact octree for each isovalue. Each such octree contains only the corresponding active cells, in such a way that the
combined structure has linear space. The inherent hierarchical structure associated with the active cells enables very fast filtering
of the active cells based on spatial constraints. We demonstrate the effectiveness of our approach by performing view-dependent
isosurfacing on a wide variety of volumetric data sets and 4D isocontour slicing on the time-varying Richtmyer-Meshkov instability
dataset.
Index Terms—scientific visualization, isosurface extraction, indexing.
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1 INTRODUCTION

Isosurface extraction is an important tool for visualizing multi-
dimensional scalar fields. It exposes contours of a constant scale value,
thus providing an effective way to discover the embedded structures
such as the boundaries between different types of tissues, the shock-
wave in a fluid dynamics experiment, or the changing of 3D contours
in time-varying data sets obtained from physical simulations.

Since the introduction of the Marching cubes algorithm [15], much
of the research effort has been put on reducing the amount of data
touched for the extraction of the isosurface. A number of efficient
techniques have been developed such that the cost of the extraction
is more sensitive to the size of the isosurface than to the size of the
complete data set [7, 30, 13, 23, 1, 28, 4, 3, 16].

More aggressive approaches have been proposed in recent years to
only extract the relevant portion of the isosurface needed for visualiza-
tion. For example, in 3-D isosurface visualization, the view-dependent
approach [11, 19] and the ray-tracing approach [18] extract only the
visible part of the isosurface. For multi-dimensional data, visualiza-
tion is possible only for its 3D slices [29]. Thus only isosurfaces in
such slices need to be extracted. We call the extraction of relevant
portion of the isosurface spatial filtering.

In the context of scalar fields sampled on a structured grid, the data
set consists of a set of cubes (cells) with sampled scalar values associ-
ated with their vertices. We call a cell active if its value range covers
the specified isovalue. We call a cell relevant if it contains the iso-
surface patches that need to be rendered. The problem of identifying
active cells can be viewed as the range stabbing query of computa-
tional geometry. The type of problem involved in identifying relevant
cells depends on the type of the spatial filtering operation. For exam-
ple, in view-dependent isosurfacing, it is to single out only the visible
cells for triangulation and rendering. In ray tracing, it is to find the
cells that the rays shooting from the view point first encounter. And
in 4D isocontour slicing, it is to find the cells that are cut by a 4D
hyperplane.
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In isosurface extraction with spatial filtering, the extraction part is
basically a query in the scalar value space and the filtering part is a
query in the spatial grid space. The problem is to develop a structure
that efficiently supports simultaneous queries both in the value space
and in the spatial space.

A straightforward approach to handle the space filtering is to first
identify the active cells using existing algorithms (e.g. [13, 4]) and
then pick among these active cells the relevant ones. However, this ap-
proach may waste a significant amount of time on identifying and then
discarding irrelevant cells, as these algorithms produce no particular
spatial ordering among the active cells initially identified. Another ap-
proach is to use data structures based on spatial partitioning such as
the well known min-max octree [30]. This approach is not efficient ei-
ther since such data structures are not optimal in terms of performing
value based queries.

In this paper, we provide a data structure called the Persistent Oc-
tree (POT) that enables very efficient identification of cells that are
simultaneously relevant and active. It possesses the properties of both
the interval-tree based isosurface extraction schemes, which are known
to be efficient in extracting active cells, and the octree-based schemes
(notably the Branch-On-Need Octree (BONO) [30]), which are well
suited for spatial filtering. In fact, POT is provably optimal in terms of
asymptotic bounds for both space and query time for identifying active
cells. It achieves the worst case time complexity of O(logN + K) for
active cell identification, where N is the number of cells in the data set
and K is the number of active cells, and requires O(N) space. At the
same time, for each possible isovalue, the corresponding active cells
are already encoded a priori in a compact octree. Such an inherent
hierarchical structure enables very efficient spatial filtering for identi-
fying active cells that are also relevant.

We demonstrate the effectiveness of POT by applying it to view-
independent and view-dependent isosurface extraction and 4D isocon-
tour slicing. Our algorithm for view-dependent isosurface extraction
follows the general approach of Livnat and Hansen [11, 12], but im-
proves upon theirs in that we visit in a view-dependent way a com-
pact octree consisting ONLY active cells. Our techniques can also
be combined with the idea of implicit occluders [19] to only tra-
verse the visible part of the compact octree without actually rendering
any isosurface. Our 4D isocontour slicing algorithm deals with time-
varying data and handles a more general problem than those discussed
in [21, 30, 27, 22, 9] in that it allows visualizing not only the iso-
surface at individual timesteps but also the change of the isosurfaces
across timesteps.

We conduct experimental comparison of our approach for view-
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dependent isosurface extraction with BONO, which is considered one
of the most efficient data structures for isosurface extraction [26]. Re-
sults show that our data structure consistently performs better than
BONO. In particular, we measure the number of tree nodes visited
by POT and BONO for the same view-dependent isosurface extrac-
tion queries and show that POT saves a significant amount (as much
as 70%) of node visits compared with BONO. We also test our 4D iso-
contour slicing algorithm on a subset of the Richtmyer-Meshkov insta-
bility data set [17] that consists of 35 GB of time-varying data and are
able to perform the isosurface extraction, slicing and rendering very
fast (for example less than 15 seconds along the spatial dimensions).

The remainder of this paper is organized as follows. We describe
the concept of the persistent data structure and its application in range
stabbing queries in Section 2. The POT structure and its traversal are
presented in Sections 3. In Section 4, we show how POT can accelerate
spatial filtering in the cases of view-dependent isosurface extraction
and 4D contour slicing. Implementation issues are discussed in Sec-
tion 5. Our experimental results are reported in Section 6. We discuss
limitations of our approach in Section 7 and conclude in Section 8.

2 PERSISTENT DATA STRUCTURES

The notion of the persistent data structure was first introduced by
Driscoll et al. [5] as a space-efficient mechanism for maintaining the
evolution history of dynamic data structures. It has been used to pro-
vide optimal solutions to a number of intersection problems in com-
putational geometry (see for example [20, 2, 10, 24]). A recent paper
by Edelsbrunner et al. [6] applied this technique to compute the Reeb
graph. In this section, we give its properties and explain its application
in handling range stabbing queries.

2.1 Properties
Suppose we have an ephemeral data structure, which may be modified
due to the insertion or deletion of data elements. Each such modifica-
tion is associated with a version number. The problem is to maintain
all the versions of the ephemeral data structure such that, given a ver-
sion number, the corresponding version can be easily accessed.

Persistent data structure is an elegant technique that provides a com-
pact representation of all the versions of a so-called linked structure,
which consists of a set of nodes with a fixed number of pointers. In
particular, Driscoll et al. [5] showed that, if an ephemeral tree struc-
ture requires only a constant number of node changes for each inser-
tion or deletion, then it can be made persistent such that each version
of the tree can be queried with the same asymptotic time bound as the
ephemeral version and a persistent tree structure obtained as a result
of N insertions/deletions requires only O(N) space.

The basic idea of making a tree structure persistent is to augment
its nodes with additional pointers so that a node can have pointers to
different versions of sub-trees. As a result, a new version of a node
does not need to be created until enough changes have been made to
its successors. The cost of an insertion or a deletion, which possibly
includes the creation of new versions of several nodes, thus can be
amortized over a long sequence of update operations.

2.2 Handling Range Stabbing Queries
In the context of isocontour generation, assume that we have already
computed the minimum and maximum values for each cell. We sort
the extreme values in increasing order and employ a value sweep from
the smallest extreme value to the largest. In the process, we maintain
a data structure D to store the cells whose value ranges are “stabbed”
by the current sweeping value. A cell is inserted into D when its min-
imum value is encountered and removed when its maximum value is
reached. Each such update operation creates a new version of D with
the version number being the current sweeping value. Figure 1 illus-
trates the sweeping process. It is easy to see that, given a particular
isovalue v, the most recent version of D no later than v stores the exact
set of active cells corresponding to v, which means that determining
active cells is as simple as traversing this particular version of D.

sweeping line the value range of a cell

Fig. 1. Handling range stabbing queries using value sweeping.

Of course, our task is not simply to find the active cells. We need
to determine the cells that are both active and relevant. To this end,
we want D to be a data structure that can efficiently filter out irrelevant
cells. To achieve optimality in terms of reporting active cells, we want
the size of D to be linear in the number of active cells it stores. And
finally, to make it persistent without introducing additional space in an
asymptotic sense, addition or deletion operations on D are allowed to
incur only a constant number of node changes. In the next section, we
introduce the Persistent OcTree (POT), which satisfies all the above
requirements.

We shall note that, while the fact that a dynamic binary search tree
can be made persistent in a space efficient way has long been estab-
lished (see [5]), making a octree persistent is not trivial and generally
is not possible without introducing non-linear space (we will give such
a “bad” case in Section 3.1).

3 PERSISTENT OCTREES (POTS)
In this section, we will first describe an ephemeral data structure called
the compact octree to index the active cells for a particular isovalue,
which allows efficient search and update operations. We then show
how it can be made persistent to yield an efficient data structure to
handle the isosurface extraction with spatial filtering. Our description
assumes that the dimension of the data set is three. But exactly the
same technique can be applied to higher dimensional data sets as well.
In the rest of the paper, we will call the the space occupied by the
entire data set a volume.

3.1 Compact Octrees
A classic octree is based on hierarchical regular partitioning. The root
represents the entire volume. A node u has 8 children, each getting one
octant of the subvolume of u. For data resolutions other than powers of
two, we adopt the strategy of BONO [30] by viewing the hyperoctree
as a complete one but avoiding allocating nodes for empty subtrees.
A node at the lowest level of the tree represents a cell and is colored
black if the cell is active and white otherwise. A node at a higher level
is assigned one of the three colors: black, white, and gray. A black
(resp. white) node indicates that the entire subvolume it represents
consists of only black (resp. white) cells. A gray node corresponds to
a subvolume that contains both black cells and white cells. Figure 2
gives a 2D illustration of the octree.

(a) (b)

Fig. 2. A 2D illustration of the octree. (a) A set of active cells. (b) The
corresponding octree.

One problem with such an octree is that an update operation may
require up to O(logN) node changes, where N is the size of the current



BIV et al.: GLOBAL ILLUMINATION FOR FUN AND PROFIT

octree. This prevents the octree from being made persistent in a space-
efficient way. In fact, consider the case when no value ranges of any
two cells overlap. Each insertion or deletion operation would require
O(log N) nodes to be modified, resulting in a persistent data structure
of size O(N logN).

In a compact octree, we store only black and gray nodes, and re-
place pointers to white nodes with NULL pointers. In addition, we
“collapse” subtrees where each node has only one child. Formally,
consider a path Π from the root to a leaf node and let u1,u2, . . . ,uk be
a subpath of Π such that i) u1 is not the root and thus has parent u0; ii)
u0 either is a root node or has more than two gray or black children;
iii) ui is the only gray or black child of ui−1 for i = 2, . . .k; and iv) uk
is either a black node or has at least two gray or black children. We
then replace the pointer in u0 which points to u1 with a jumper, which
points to uk and stores the path from u0 to uk. The subvolume of a
node w is uniquely determined by the path from the root to w. Figure 3
shows the compact octree derived from the one shown in Figure 2(b).

Fig. 3. A 2D illustration of the compact octree. Each jumper is associ-
ated with a path, which is represented by a list of 2-bit strings. NULL
pointers are omitted. Each 2-bit string gives the YX encoding of the
branch index of the corresponding edge in the original octree.

Since each node in the compact octree, except for the root, has at
least two children and each leaf node represents at least one active
cell, the size of the tree structure is obviously linear in the number of
active cells it stores and so is the time it takes to traverse the tree to
report these active cells. Furthermore, we can show that the compact
octree requires only an amortized constant number of node changes
for each insertion or deletion when applied to our particular problem
(see Section 4.1 of [25] for details). This is due to the fact that, during
the value sweeping process, each cell will be inserted into and removed
from the compact octree exactly once.

3.2 Making a Compact Octree Persistent
In a compact octree, each internal node has exactly 8 (possibly NULL)
jumpers. To make such a tree persistent, we allow a node to hold k
additional jumpers, where k is a small constant. Each of the 8 + k
jumpers is associated with a version number and a path.

An update operation with a new version number v is always per-
formed on the latest version of the POT. New nodes are created as
necessary. When we need to change a jumper in a node u, we first
try to find an empty slot in u. If there is one, then the new jumper
is added to u along with the version number of the update operation.
Otherwise, we create a copy u′ of u. The initial 8 jumpers of u′ are
set to be their latest values in u and are assigned the version number
v. Note that we also need to add a jumper to u′ to the latest parent of
u′. Thus, this jumper copying step will be propagated towards the root
until a node with a free slot is reached or the root itself is copied. An
update operation with the latest existing version number will replace
jumpers rather than copying them.

Figure 4 illustrates a POT using a 1D example. We have a grid of
8 1D “cubes” (segments) each of which is labeled by a 3-bit string.
In Figure 4(a), these segments are represented by vertical stripes sep-
arated by vertical lines with their labels shown at the bottom of the
respective stripes. The numbers on the left are the scalar values. The
vertical extent of the shaded rectangles represents the value ranges of
the corresponding segments. For a particular isovalue, the active seg-
ments are indexed by a compact binary tree. Figure 4(b) gives the
persistent binary tree, in which each node has three available slots for

jumpers. The label Ln or Rn tells whether a jumper corresponds to a
left branch or a right branch as well as the associated version number.
The numbers above the root nodes are their version numbers and the
binary string beside each of the remaining nodes indicates the subvol-
ume it represents.
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Fig. 4. A 1D illustration of the POT. Each node has three slots for
jumpers. (a) The evolution of active segments for different isovalues.
(b) The resulting POT. An edge with a bar underneath it represents a
NULL jumper.

3.3 Constructing a POT
To construct POT, we first collect all the cells, and temporarily keep
two copies for each of them. One copy uses the minimum value as
its key and the other uses the maximum value. We sort the cells using
their keys in increasing order and then scan through the sorted list. For
each cell c we encounter, if its key is its minimum value, we insert c
into the current version of the compact octree. Otherwise we delete c
from the current version. If this value is larger than the most recent
version number, a new version is created. Since an insertion or a dele-
tion on a compact octree requires only O(1) node changes, the POT is
linear in the total number of cells in the data set. To further reduce the
size of the POT, we do not actually store a node w if it is a leaf for all
the versions of the POT it belongs to. Such omission is recorded by
repointing any jumper to w to the node where that jumper is stored.

Sorting the 2N cells requires O(N logN) time. The construction
of the POT itself is also O(N logN) because each insertion or deletion
may touch a single path in the POT from the root to a leaf whose length
is at most O(logN).

3.4 Traversing A POT
To traverse the version of a POT corresponding to a particular isovalue
v, we first identify the root with the largest version number smaller
than or equal to v. To report all the active (but not necessarily relevant)
cells, we simply traverse an appropriate version of the POT by follow-
ing the latest jumpers no later than v. For example, in Figure 4(b),
the portion of the POT colored in red and connected by bold edges is
the active version corresponding to isovalue 4. Once we reach a leaf
node, we report all the cells within its corresponding subvolume. It
is easy to see that the complexity of reporting all the active cells is
O(logM + K), where M is the number of roots in the POT and K is
the number of active cells. The O(logM) term reflects the fact that
we may have to find the appropriate version of the root using a binary
search. M ≤ N and typically is small enough (in the order of tens in
all of our experiments) to be considered a constant. Consequently, the
complexity of reporting active cells using a POT depends solely and
linearly on the number of active cells.
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4 SPATIAL FILTERING OF ACTIVE CELLS USING POT
A more attractive feature of the POT is that each version of the POT
provides a spatial partitioning of the active cells, which enables very
efficient spatial filtering. we now discuss it in the context of view-
dependent isosurface extraction and 4D contour slicing.

4.1 View-dependent isosurface extraction
A view-dependent isosurface extraction avoids triangulating and ren-
dering invisible portions of the isosurface. The most commonly used
data structures for the occlusion test are based on the octree. The nodes
in the octree are visited in a front-to-back order based on the view
point. An occlusion mask is maintained against which the visibility of
the octree nodes are tested. Only visible nodes and their descendants
are examined further.

Using a standard octree (or octree for short), as long as there is an
active cell ν in the corresponding subvolume, a node will be active.
This means a long list of nested nodes containing ν may have to be
examined, since nodes at higher level (thus corresponding to larger
subvolumes) are more likely to be determined as visible even if the
patch of the isosurface in it only occupies a tiny portion of the subvol-
ume. Worse yet, that patch may not even be visible. On the other hand,
in POT we can follow the jumpers to get to a small active subvolume
ν very quickly and determine if the isosurface patch inside it is visi-
ble. Figure 5 illustrates such a case. In Figure 5, the active cells are
colored in gray. There are three sections of the isosurface: A, B, and
C. Part of A and B are visible and the entire section of C are occluded
by A. In order to determine the visibility of the cell that contains C, an
octree will have to examine eight nodes in the upper-left quarter of the
data space (four children of the node w corresponding to the left-top
quarter and four grand children of w, including the one containing C).
Using POT, only the node containing C needs to be checked against
the occlusion mask.

A

B

C

Fig. 5. A 2D illustration of the pruning of the POT for view-dependent
isosurface extraction.

4.2 4D isocontour slicing
In 4D isocontour visualization, we want to slice the 4D isocontour
using a 4D hyperplane to generate a 3D isosurface. POT provides a
simple and efficient way to identify the active cells that are also cut by
the hyperplane. At each node u of the version of POT that corresponds
to the isovalue, we check each jumper to see if the subvolume of the
node w it points to is cut by the hyperplane. If this is not the case,
then the subtree rooted at w will not be visited. Notice again that using
jumpers allows us to quickly get to a node representing a small active
subvolume without having to access a long list of nested subvolumes
at higher levels.

5 IMPLEMENTATION ISSUES
We implemented the internal-memory view-dependent isosurface ex-
traction algorithm using POT as the underline indexing structure. The
overall scheme is similar to the one described in [11]. We use a hier-
archical set of occlusion masks to keep track of the screen pixels that
are covered by previously extracted isosurface patches. Each pixel

of an occlusion mask at a certain level corresponds to an 8 × 8 ar-
ray of pixels at the next level. Precomputed binary coverage masks
are used to quickly determine the pixels covered by the newly gener-
ated isopatches and to update the occlusion masks at the lowest level.
Triage coverage masks [8] are used to speedup the update of the oc-
clusion masks as well as the occlusion tests at higher levels. Like [12],
the update of the occlusion mask is performed from bottom up, thus
restricting the propagation of the change to a limited number of levels.
The bounding rectangle of the projection of a node is used to conser-
vatively test its visibility.

As suggested in [14], our POT is built not on individual cells, but
on a small cube of cells (4× 4× 4 in our implementation) called su-
percells. Using supercells not only reduces the size of the indexing
structure but also avoids excessive visibility tests, which usually are
not justifiable at very low levels of the structure. Once we have iden-
tified an active and visible supercell, we search it using the standard
Marching Cubes algorithm to identify the active cells and perform tri-
angulation on them without performing the visibility test.

Figure 6 shows a view dependent rendering of the MRbrain data
set, a side view of the visible portion of the isosurface and the final
occlusion mask.

For 4D isocontour slicing, the size of the data set is often too big
to fit in memory and therefore has to reside on disk. We choose the
size of a supercell to be approximately the same as a disk block size
(16×16×16 in our experiment) so that it can be loaded into memory
using one I/O access. When searching the POT, we maintain the path
from the root to every leaf node we reach. This path provides suffi-
cient information for locating the corresponding supercell on disk and
loading it into memory for further processing.

6 EXPERIMENTAL RESULTS

We conducted two sets of experiments to evaluate the performance of
POT. In the first set, we compared the POT to the classic BONO struc-
ture in the case of view-independent and view-dependent isosurface
extraction for 3D volumetric data. In the second set of experiments,
we studied the performance of POT for 4D isocontour slicing of time-
varying data.

System setup Our experiments were performed on a PC with dual
3.0 GHz Xeon processors, 8 GB main memory, 140 GB local disk with
around 50 MB/sec I/O peak transfer rate, and one NVidia6800 Ultra
GPU card with a bi-directional 1 Gbps data transfer rate to memory
via PCI-Express (x16) Bus. It runs Linux 2.4.21-27.ELsmp. Only one
processor was used.

Data description Four sets of data were used in our test. The
complete Richtmyer-Meshkov instability (R-M) data set consists of
274 timesteps, each consisting of a 3D grid of 2048× 2048× 1920
8-bit scalar values. We downsampled each timestep by a factor of
2 in each dimension. For 4D isocontour slicing we used every 8th
timestep starting from timestep 0. The resulting data set consisted of
35 timesteps and the overall size of the data set was about 35 GB. For
view-dependent isosurface extraction we only used timestep 248. A
summary the other three data sets along with a single timestep in the
Richtmyer-Meshknov data set is given in Table 1. The construction
times of the POTs for these data sets are reported in Table 2. Figure 8
gives some views of these data sets.

data set data type resolution
R-M byte 960×1024×1024

Stanford bunny short 360×512×512
MRbrain short 109×256×256

Head Aneuyrism byte 512×512×512

Table 1. Description of the data sets used in our experiments.

As a base for comparison, we also implemented the BONO algo-
rithm. At each internal node of the BONO, we stored a single pointer
to its first child and a bit mask stating which children actually exist.
As in our POT implementation, the BONO was also built on 4×4×4
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Fig. 6. View dependent rendering of the MRbrain data set. Left: the normal view of the MRbrain data set; Center: a side view of the visible part of
the isosurface; Right: the final occlusion mask at the lowest level.

data set R-M Stanford MRbrain Head
Bunny Aneuyrism

const. time (sec.) 356 35 3 38

Table 2. Construction time of the POTs.

supercells. Table 3 compares the sizes of the POTs and BONOs. POT
requires more space than BONO by a factor of 1.6 to 4, which is not
surprising, considering the fact that our BONO implementation is al-
most pointerless and POT stores a number of pointers at each node.

6.1 View-independent and view-independent isosurface
extraction

We compare the performance of BONO and POT in terms of search ef-
ficiency for view-independent and view-dependent isosurface extrac-
tion. The comparison of index searching time for view-independent
isosurfacing is reported in Table 4. The screen size was 512× 512.
We note that the actual execution time also includes the time to search
the supercells, perform triangulation, and render the isosurface, which
is identical for both BONO and POT.

Except for the Stanford bunny data set, POT was able to achieve a
significant speedup relative to BONO. Its search time is 34% less than
that of BONO for the R-M data set, 18% for the MRbrain set, and 16%
for the Head Aneuyrism set.

The performance comparison of these two data structures for view-
dependent isosurface extraction is given in Table 5. Unlike view-
independent isosurface extraction where all active cells are extracted
before the other steps take place, the surface extraction, triangulation,
and rendering steps are intertwined in view-dependent isosurface ex-
traction. It is very difficult to accurately measure the index search
time. Therefore, we instead report the number of nodes visited and the
overall execution time. However, we must point out that, as explained
before, the latter is not an appropriate measurement of the effective-
ness of the index structure. The number of tree nodes visited is a more
accurate comparison benchmark for two reasons. First, it is imple-
mentation independent. Second, since for the same isovalue and view
point, the number of active and relevant active cells for both POT and
BONO are exactly the same, this benchmark more accurately reflects
how efficiently each data structure is searched.

It can be seen that POT performs much better than BONO for all
the data sets in terms of the number of nodes visited. The number for
POT is only 30% to 73% that of BONO. This is consistent with our ar-
gument that POT locates active and relevant cells more efficiently. We
also observe that the overall execution time of POT is also consistently
better than that of BONO, albeit in a lesser degree.

6.2 4D isocontour slicing

In this experiment, we demonstrate the efficiency of our scheme in
computing the slices of the 4D isosurfaces along different axes, espe-
cially the X, Y, and Z axes, in which case the slices reflects the change
of the isosurface across time steps.

Constructing the 4D POT for the 35 time steps of the R-M data set
took about 68 minutes, a majority of which was spent on collecting the
extreme values. The construction of the POT itself took only 2 min-
utes. The resulting indexing structure occupies 106 MB of memory.

We measure the performance of our algorithm using different com-
binations of isovalues and cutting planes. Figures 7(a), (b) and (c)
show the execution time of our program as a function of the isovalue
for three different cutting hyperplanes as well as its decomposition into
five computation steps. We also give the number of triangles generated
in each case in Figure 7(d).

It can be seen that the number of triangles varies from 26 million for
isovalue 210 to 146 million for isovalue 70. We were able to extract
and render the most complicated cuts (along the T-axis) in less than
100 seconds, and much faster for other cuts. Searching the POT is
very fast in all the cases. Even for the most time-consuming slicing
along the T-axis, it only took 0.26 seconds on average.

7 DISCUSSION

We now briefly discuss the limitations of our technique. First, the data
sets we used are from discrete fields, and hence the number of possible
versions is limited. This presents a unique opportunity to avoid storing
the cells with constant values, since they are inserted and removed
during the update of a single version of the POT. This may not be the
case if the data sets are from continuous fields, which could lead to
larger indexing structure size. However, we do not expect the increase
in storage to be significant since changes of the isosurface between
versions would be smaller, which allows better node sharing between
versions.

A second possible limitation is that the construction time of a POT
is typically longer than that of a BONO. However, we intend this tech-
nique to ultimately be used for interactive exploration of the data sets
and hence the preprocessing time is less important.

Finally, for view-dependent rendering, our scheme, similar to the
well known BONO/Grid Tree based scheme [11], requires the front-to-
back generation of the triangles in order to update the coverage mask.
This may lead to inefficient I/O operation for large data sets residing
on disk. One possible solution is to use the technique of Implicit Oc-
cluders [19] to first generate the coverage mask and then perform a
traversal of the visible part of the octree. This approach requires fur-
ther exploration.
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data set R-M Stanford Bunny MRBrain Head Aneuyrism
Storage BONO 143,805,000 20,231,340 1,524,156 19,173,960

Cost (byte) POT 229,855,564 61,510,700 4,955,424 76,495,280

Table 3. Storage requirements for BONO and POT (index only).

data set R-M Standford Bunny MRbrain Head Aneuyrism
isovalue 190 1750 1750 55

BONO index search time (ms) 710 64 17 22
POT index search time (ms) 401 61 14 15

Speedup of index searching time 1.77 1.05 1.21 1.47
relative to BONO

Table 4. Performance comparison of view-independent isosurface extraction.

data set R-M Standford Bunny MRbrain Head Aneuyrism
BONO # of Nodes Visited 212,992 19,897 7,318 17,260

Execution Time (ms) 10,877 1,130 614 938
POT # of Nodes Visited 142,157 6,076 5,368 6,467

Execution Time (ms) 9,511 1,040 602 806
Speedup relative # of Nodes Visited 1.50 3.27 1.36 2.67

to BONO Execution Time 1.14 1.09 1.02 1.16

Table 5. Performance comparison of view-dependent isosurface extraction. The same set of isovalues as in the Table 4 are used.
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Fig. 7. Performance measurements for 4D isocontour slicing.

8 CONCLUSION

We have presented a novel POT data structure to accelerate the iso-
surface extraction with spatial filtering. It is asymptotically optimal
in terms of space and search time. The set of active cells for an iso-
value naturally form a compact octree that allows the active cells to
be filtered based on certain spatial criteria very quickly. In particular,
we demonstrate the effectiveness of this technique by applying it to
view-dependent isosurface extraction and 4D isocontour slicing. Our
experiments show that for view-dependent isosurface extraction, our
data structure performs consistently better than the widely used BONO
structure. For 4D isocontour slicing, our tests on the Richtmyer-
Meshkov data set show that POT enables very fast search and that the
overall algorithm can perform simultaneous isocontouring and slicing
in a very efficient manner.

Because of the inherent hierarchical structure associated with the
active cells for any isovalue, POT can be used to improve the per-
formance of other visualization schemes such as ray tracing [18] and
multi-resolution isosurface rendering, since they also rely on the hier-
archical pruning of the data volume.
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(a) A normal view of the Richtyer-Meshkov instability data set (b) A close view of the Head Aneuyrism data set.
(timestep = 240; isovalue = 190). (isovalue=55)

(a) A normal view of the Stanford terra-cotta bunny. (b) A top view of the MRbrain data.
(isovalue = 1750) (isovalue = 1750)

Fig. 8. Views of the data set used.

(a) Isovalue: 100; Cutting hyperplane: X = 500. (b) Isovalue: 100; Cutting hyperplane: Z = 650.

Fig. 9. Slices of 4D isocontours.


