**1**-
S. G. Akl.
*The Design and Analysis of Parallel Algorithms*. Prentice-Hall, Englewood Cliffs, NJ, 1989. **2**-
D. A. Bader, J. JáJá, and R. Chellappa.
Scalable Data Parallel Algorithms for Texture Synthesis and
Compression Using Gibbs Random Fields.
Technical Report CS-TR-3123 and UMIACS-TR-93-80, UMIACS and
Electrical Engineering, University of Maryland, College Park, MD, August
1993.
**3**-
J. E. Besag and P. A. P. Moran.
On the Estimation and Testing of Spacial Interaction in Gaussian
Lattice Processes.
*Biometrika*, 62:555--562, 1975. **4**-
G. E. Blelloch.
data layout for the CM-2.
Personal Communications, August 17, 1993.
**5**-
G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and
M. Zagha.
A Comparison of Sorting Algorithms for the Connection Machine CM-2.
In
*Proceedings of the ACM Symposium on Parallel Algorithms and Architectures*, pages 3--16, July 1991. **6**-
R. Chellappa.
Two-Dimensional Discrete Gaussian Markov Random Field Models for
Image Processing.
In L. N. Kanal and A. Rosenfeld, editors,
*Progress in Pattern Recognition*, volume 2, pages 79--112. Elsevier Science Publishers B. V., 1985. **7**-
R. Chellappa and S. Chatterjee.
Classification of Textures Using Gaussian Markov Random Fields.
*IEEE Transactions on Acoustics, Speech, and Signal Processing*, 33:959--963, August 1985. **8**-
R. Chellappa, S. Chatterjee, and R. Bagdazian.
Texture Synthesis and Compression Using Gaussian-Markov Random Field
Models.
*IEEE Transactions on Systems, Man, and Cybernetics*, 15:298--303, March 1985. **9**-
R. Chellappa, Y. H. Hu, and S. Y. Kung.
On Two-Dimensional Markov Spectral Estimation.
*IEEE Transactions on Acoustics, Speech, and Signal Processing*, ASSP-31:836--841, August 1983. **10**-
R. Chellappa and R. L. Kashyap.
Synthetic Generation and Estimation in Random Field Models of
Images.
In
*IEEE Comp. Soc. Comf. on Pattern Recog. and Image Processing*, pages 577--582, Dallas, TX, August 1981. **11**-
R. Chellappa and R. L. Kashyap.
Texture Synthesis Using 2-D Noncausal Autoregressive Models.
*IEEE Transactions on Acoustics, Speech, and Signal Processing*, ASSP-33:194--203, February 1985. **12**-
F. S. Cohen.
Markov Random Fields for Image Modelling & Analysis.
In U. Desai, editor,
*Modelling and Applications of Stochastic Processes*, chapter 10, pages 243--272. Kluwer Academic Press, Boston, MA, 1986. **13**-
F. S. Cohen and D. B. Cooper.
Simple Parallel hierarchical and relaxation algorithms for
segmenting noncausal Markovian fields.
*IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-9:195--219, March 1987. **14**-
G. R. Cross and A. K. Jain.
Markov Random Field Texture Models.
*IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-5:25--39, January 1983. **15**-
H. Derin.
The Use of Gibbs Distributions In Image Processing.
In Blake and H. V. Poor, editors,
*Communications and Networks*, chapter 11, pages 266--298. Springer-Verlag, New York, 1986. **16**-
H. Derin and H. Elliott.
Modeling and segmentation of noisy and textured images using Gibbs
random fields.
*IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-9:39--55, January 1987. **17**-
R. C. Dubes and A. K. Jain.
Random Field Models in Image Analysis.
*Journal of Applied Statistics*, 16:131--164, 1989. **18**-
S. Geman and D. Geman.
Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images.
*IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-6:721--741, November 1984. **19**-
R. I. Greenberg and C. E. Leiserson.
Randomized Routing on Fat-Trees.
*Advances in Computing Research*, 5:345--374, 1989. **20**-
J. JáJá.
*An Introduction to Parallel Algorithms*. Addison-Wesley Publishing Company, New York, 1992. **21**-
F. C. Jeng, J. W. Woods, and S. Rastogi.
Compound Gauss-Markov Random Fields for Parallel Image Processing.
In R. Chellappa and A. K. Jain, editors,
*Markov Random Fields: Theory and Application*, chapter 2, pages 11--38. Academic Press, Boston, MA, 1993. Bell Communications Research and ECSE Department, Renssalaer Polytechnic Institute. **22**-
S. L. Johnsson, M. Jacquemin, and R. L. Krawitz.
Communications Efficient Multi-Processor FFT.
*Journal of Computational Physics*, 102:381--397, 1992. **23**-
S. L. Johnsson and R. L. Krawitz.
Cooley - Tukey FFT on the Connection Machine.
*Parallel Computing*, 18:1201--1221, 1992. **24**-
R. L. Kashyap.
Univariate and Multivariate Random Field Models for Images.
*Computer Graphics and Image Processing*, 12:257--270, 1980. **25**-
R. L. Kashyap and R. Chellappa.
Estimation and Choice of Neighbors in Spacial Interaction Models of
Images.
*IEEE Transactions on Information Theory*, IT-29:60--72, January 1983. **26**-
H. Künsch.
Thermodynamics and Statistical Analysis of Gaussian Random Fields.
*Zeitschrift für Wahrscheinlichkeitstheorie verwandte Gebiete*, 58:407--421, November 1981. **27**-
O. J. Kwon and R. Chellappa.
Segmentation-based image compression.
*Optical Engineering*, 32:1581--1587, July 1993. (Invited Paper). **28**-
C. E. Leiserson.
Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing.
*IEEE Transactions on Computers*, C-34:892--901, October 1985. **29**-
C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi,
J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells,
M. C. Wong, S. W. Yang, and R. Zak.
The Network Architecture of the Connection Machine CM-5.
(Extended Abstract), July 28, 1992.
**30**-
M. Lin, R. Tsang, D. H. C. Du, A. E. Klietz, and S. Saroff.
Performance Evaluation of the CM-5 Interconnection Network.
Technical Report AHPCRC Preprint 92-111, University of Minnesota
AHPCRC, October 1992.
**31**-
F. A. Lootsma and K. M. Ragsdell.
State-of-the-art in Parallel Nonlinear Optimization.
*Parallel Computing*, 6:133--155, 1988. **32**-
B. S. Manjunath, T. Simchony, and R. Chellappa.
Stochastic and Deterministic Networks for Texture Segmentation.
*IEEE Transactions on Acoustics, Speech, and Signal Processing*, ASSP-38:1039--1049, June 1990. **33**-
J. Max.
Quantizing for Minimum Distortion.
*IRE Transactions on Information Theory*, IT-16:7--12, March 1960. **34**-
J. Palmer and G. L. Steele Jr.
Connection Machine Model CM-5 System Overview.
In
*The Fourth Symposium on the Frontiers of Massively Parallel Computation*, pages 474--483, Los Alamitos, CA, October 1992. IEEE Computer Society Press. **35**-
T. Poggio and D. Weinschall.
The MIT Vision Machine: Progress in the Integration of Vision
Models.
In R. Chellappa and A. K. Jain, editors,
*Markov Random Fields: Theory and Application*. Academic Press, Boston, MA, 1993. **36**-
B. T. Polyak.
*Introduction to Optimization*. Optimization Software, Inc., New York, 1987. **37**-
T. Simchony, R. Chellappa, and Z. Lichtenstein.
Relaxation Algorithms for MAP Estimation of Gray-Level Images with
Multiplicative Noise.
*IEEE Transactions on Information Theory*, IT-36:608--613, May 1990. **38**-
Thinking Machines Corporation, Cambridge, MA.
*Programming Guide*, Version 6.0.2 edition, June 1991. **39**-
Thinking Machines Corporation, Cambridge, MA.
*Paris Reference Manual*, Version 6.0 edition, June 1991. **40**-
Thinking Machines Corporation, Cambridge, MA.
*The Connection Machine CM-5 Technical Summary*, January 1992. **41**-
Thinking Machines Corporation, Cambridge, MA.
*CMMD Reference Manual*, 3.0 edition, May 1993. **42**-
Thinking Machines Corporation, Cambridge, MA.
*CMSSL for CM Fortran*, CM-5 Edition, Version 3.1 edition, June 1993. **43**-
Thinking Machines Corporation, Cambridge, MA.
*Programming Guide*, May 1993. **44**-
R. Whaley.
data layout for the CM-2.
Personal Communications, August 17, 1993.
**45**-
R. Whaley.
data layout for the CM-5.
Personal Communications, June 8, 1993.
**46**-
J. W. Woods.
Two-Dimensional Discrete Markovian Random Fields.
*IEEE Transactions on Information Theory*, IT-18:232--240, March 1972.

David A. Bader

dbader@umiacs.umd.edu