Action recognition using ballistic dynamics

TitleAction recognition using ballistic dynamics
Publication TypeConference Papers
Year of Publication2008
AuthorsVitaladevuni SN, Kellokumpu V, Davis LS
Conference NameComputer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
Date Published2008/06//
Keywordsanalysis;image, Bayesian, dynamics;gesture, feature;person-centric, framework;action, History, image, labels;psycho-kinesiological, morphological, MOTION, Movement, movements;motion, planning;interactive, processing;, recognition, recognition;ballistic, recognition;image, segmentation;video, signal, studies;image, task;human

We present a Bayesian framework for action recognition through ballistic dynamics. Psycho-kinesiological studies indicate that ballistic movements form the natural units for human movement planning. The framework leads to an efficient and robust algorithm for temporally segmenting videos into atomic movements. Individual movements are annotated with person-centric morphological labels called ballistic verbs. This is tested on a dataset of interactive movements, achieving high recognition rates. The approach is also applied on a gesture recognition task, improving a previously reported recognition rate from 84% to 92%. Consideration of ballistic dynamics enhances the performance of the popular Motion History Image feature. We also illustrate the approachpsilas general utility on real-world videos. Experiments indicate that the method is robust to view, style and appearance variations.