Measurement-Based Multicast on Overlay Architecture

Students: Tuna Guven Faculty: Bobby Bhattacharjee, Richard J. La, and Mark A. Shayman LTS Review June 18th, 2004

Outline

Multi-path Multicast Routing

- Introduction
- Existing Work
- Creating multiple multicast paths
 - Application Layer Overlays
 - Digital Fountain Coding
- Network Models
 - Different assumptions of multicasting functionality
- Measurement-based multi-path multicast routing algorithm
- Simulation Results

Introduction

Intra-domain multicast routing

- Highly connected ISP backbone topologies.
 - N. Spring, R. Mahajan and D. Wetherall "Measuring ISP topologies with Rocketfuel", Sigcomm 2002
 - Existence of multiple paths
- Traffic engineering point of view:
 - Load balancing over multiple paths for efficient network utilization
 - Extending ideas from multi-path unicast routing
- Our goal:
 - Multi-path multicast routing algorithms using (i) an overlay architecture and (ii) noisy measurement

Introduction - cont'd

- Solutions for different network models
 - Traditional IP Networks
 - IP Networks with IP multicast capabilities (e.g. DVMRP).
 - Additional functionalities smart routers
- Main features:
 - Measurement based solution relies only on noisy cost estimates
 - Simultaneous Perturbation Stochastic Approximation (SPSA)
 - Weaker assumptions on cost function
 - Convex and continuous, <u>not</u> necessarily differentiable
 - Distributed implementation
 - Theoretical convergence to a global optimum

Existing Work

- Multi-tree Routing:
 - K. Park and Y. Shin
 - "Uncapacitated point-to-multipoint network flow problem.", European Journal of Research, 2003
 - Limited to single multicast source case
 - Assumes the existence of analytic cost gradients
 - Cost function is <u>strictly</u> convex, continuous and <u>differentiable</u>
- Network Coding:
 - Relies on the unrealistic assumption:
 - Network is lossless if link rates do not exceed the link capacity.
 - solutions work at rates that are prone to packet losses.
 - A single packet loss costly
 - Receiver requires the lost packet to decode a large block of data
 - High level of coordination and synchronism required
 - Frequent updates necessary every time a flow arrives/departs

Creating Multiple multicast paths

- Application Layer Overlays
 - Limited number of simple devices located inside the network
 - e.g. Network processors
 - Alternative paths created between a source and a destination
 - Min-hop path from source to overlay and from overlay to destination
 - Not necessarily creates multi-trees
 - Problem with multiple paths in multicast:
 - How to map packets to different paths for each destination to minimize the total number of packets sent at the source?
 - Complex bookkeeping problem
 - Soln: Digital Fountain Coding

Digital Fountain Coding

- A special form of block coding with following properties:
 - Rateless coding
 - Number of encoded packets that can be generated from the source message is potentially limitless; can be determined on the fly
 - Each output symbol generated by the addition of randomly selected input symbols
 - Decoder can recover original K input symbols from <u>any</u> M output symbols with a high probability
 - e.g. Raptor Codes: for K = 64536 and M = 65552, error probability is 1.71×10^{-14}
 - Encoding and decoding complexity linear in K
 - Successful commercial implementation at several gigabits/sec by Digital Fountain Company
- Useful for multi-path multicast routing
 - Solves the bookkeeping problem
 - Routing algorithms merely needs to calculate the optimal path rates

Network Models

- Network Model 1:
 - Traditional IP networks without any multicasting capability
- Network Model 2:
 - IP Multicast e.g. DVMRP capable
- Network Model 3:
 - Smart routers

Measurement-based multi-path multicast routing algorithms

- Stochastic Approximation
 - Useful tool for finding extrema of functions
 - Simultaneous Perturbation Stochastic Approximation:

$$x(k + 1) = [x(k) - a_k \hat{g}(x(k))]^+$$

$$\hat{g}_i(x(k)) = \frac{y(x(k) + c_k \Delta_k) - y(x(k) - c_k \Delta_k)}{2c_k \Delta_{ki}}$$

- x(k) : input vector to be optimized
- All elements of x(k) randomly perturbed together to obtain two measurements y(.)
- Δ_k the random perturbation vector with a specific random distribution satisfying necessary conditions.
- $c_k > 0, a_k > 0.$

Benefits of SPSA-Based Optimal Routing

- Merits of the optimal routing algorithm
 - Distributed
 - Depends on local state information
 - Only noisy measurement required
 - Cost function assumed to be convex, continuous but not necessarily differentiable
- Can run the same algorithm under each network model
 - Analyze benefits of additional multicasting functionality

Simulation Results – (1)

- Experiments
 - UUNet backbone topology

- Link bandwidth: 20 Mbps
- Nodes 1 and 5 are multicast sources
- Each source creates 11.5 Mbps Poisson traffic
- Nodes 9 and 17 are overlay nodes
 - each destination has 3 alternative paths

Simulation Results – (1) cont'd

12

Simulation Results – (1) cont'd

Simulation Results – (2)

- Experiments
 - Sprint backbone topology

- Link bandwidth: 20 Mbps
- Nodes 1, 9 and 22 are multicast sources
- Each source creates 10 Mbps Poisson traffic
- Nodes 10 and 23 are overlay nodes. Hence each destination has 3 alternative paths
- Each source has 18 receivers

Simulation Results - (2) cont'd

