Overlay-based Active Monitoring and Security

Bobby Bhattacharjee Tuna Guven
Christopher Kommareddy Richard La
Mark Shayman Vahid Tabatabaee

University of Maryland
A minor aside

- The *Schnell* attack on TCP

with Rob Sherwood

- Attack network core by causing well-provisioned servers to send lots of traffic (GBs) into the core by sending fake TCP ACKs
Is this feasible?

- The ACK estimating etc. has been implemented

 real attack: 128 Kbps user causes server to send 32 Mbps.

- Good news: there is an elegant fix (See TR)

- Bad news: There are probably other Schnells …

 … and of course all other well known attacks

- Lot of fixes require Internet-wide deployment of new functionality

Not clear if this is feasible or practical, in the short or the long term
Inter-domain Monitoring and Security using an Overlay

- Monitor and stop attacks at the source of the attack

 source ≡ first domain not entirely controlled by attacker

- Most efficient solution — attacks are stopped before they can do much damage

- Does not require Internet-wide deployment

- Shares the cost of attack monitoring and prevention
Approaches

- Firewall at the domain egress(es)
Approaches

- Monitor at each host
Approaches

- Overlay-based

Overlay nodes monitor at internal routers
Solution components — new ideas

- **Coordinate** and Correlate information between nodes

- **Local Oracle**
Solution components — new ideas

- Coordinate and Correlate information between nodes

- Local Oracle
Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key \mathcal{K}

 Cannot be controlled via host software

- Passive monitor of all network traffic

 Logs (compressed) all traffic [headers+snippet]
Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key \mathcal{K}
 Cannot be controlled via host software

- Passive monitor of all network traffic

 Log requires 1 MBytes storage per minute of data (avg.)

 worst case 1 order of magnitude worse.

- Log dumped to sender when packet with \mathcal{K} intercepted

 Consider adding rudimentary filtering instead of log dump?
Local Oracle (Hardware)

- Pass-through processor on NIC with a physically secure key \mathcal{K} Cannot be controlled via host software
- Passive monitor of all network traffic

 Log requires 1 MBytes storage per minute of data (avg.)

 worst case 1 order of magnitude worse.

Attackers (can) know of the oracle, but cannot modify its operation
What can such a system do …?

● Detect different attacks — DoS, malicious packets

 – More capable than single node systems

 – Aggregation of local information towards root \(\rightarrow\) correlation

 – Adaptively locate problems towards leaves \(\rightarrow\) refinement

● Complete single packet traceback (using local oracle)

 does not require global deployment
So, is distributed monitoring really necessary?

- Consider current hardware

 OK, say *only* 1 Tbps access link [\(\sim 1 \text{ ns/avg.packet}\)]

 Even Gbps links must be serviced in 320 ns

 SDRAM access times [10 ns*]; expensive

 L1 caches [<1 ns access]; prohibitively expensive

- Implications:

 Extremely limited per packet processing

 Infeasible to keep per flow state

 Incomplete information [sampling]
So, is distributed monitoring really *necessary*?

Answer: Yes.

Multi-node solutions provide exponential benefit.
Example: Detection of a single DoS flow

- Assume binary tree topology, one op. per packet [worst case for multi-node]

- Assume N flows, mapped to k bins

 Single node, in one round

 reduces # of suspected nodes to N/k

- Suppose, instead, we have t overlay nodes (anywhere on path)

 Worst case, in one round + 1 prop. delay

 # suspected flows reduced to $\frac{N}{2^t k^t}$

 Overhead: 1 bit/packet inline, or $O(t)$ extra comm.
Example: Detection of a single DoS flow

- Assume **100K flows, 1024 bins**

 Single node, in one **round**

 # of suspected flows — 100

- With overlay monitoring, suppose **1M flows** and only **100 bins** per node

 \[
 \begin{array}{ccc}
 \text{# monitors:} & 2 & 3 \\
 \text{# suspected flows:} & 244 & <1 \\
 \end{array}
 \]

- With **1000 bins per node**, **3 nodes** can detect 1 in 8 billion flows in 1 round of detection + communication
Summary: General Approach

- Overlay Communication infrastructure — provides general primitives such as multicast, naming useful beyond monitoring/security

- Specific statistical tests implemented in a distributed manner using comm. primitives over input data primarily borrow from existing literature

- Input data locally generated for specific tests/attacks defined by environment, node capabilities, range of attacks
Current work and Future Directions

- Tests for various types of DoS attacks, and also a traceback mechanism

- Ideally, we’d like to BUILD the local oracle hardware

- Extend current work to handle multiple egresses

- Fully develop general approach with multiple examples of tests and distributed statistical computations

- Develop more tests — possibly extending into virus detection