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Environment

N nodes * Deployed in 2D/3D region
— local clock — Regularly spaced
« Stable — Randomly placed
— Wireless Communications — Static or mobile
— Computation » Deployment
— Storage — Infrastructure mode
— Sensors — Ad hoc mode

e |ndoors/Outdoors

What can such a group of nodes do ?




Applications

Location-Aware Applications
— Shopping Center

— Amusement Park

— Museum

— Hospital

— First Responders

Location-Aware Security
Location-Aware Routing

Synchronized Actions
— By group of people

— By devices

Information Fusion
Ad-hoc Phased Array

— Transmitter
— Receiver

Time-based Management of

Resources
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System Synchronization

o Coordinated action by N-nodes

« Are synchronized clocks essential ?
— Sufficient, not necessary and sufficient

— If clocks are not synchronized and no information about clocks of
each node is used, lower bound on synchrony is the signal transit
delay.

o Stable Clocks

— Clock characteristics do not change rapidly
 Drift rate remains constant

— Can lead to system synchronization without clock synchronization !!




Outline

Localization — Active Techniques

RSSI Based

— Characteristics of 802.11b signals
— Horus

Transit Time Based/ Synchronization
— PinPoint
— System Synchronization

Localization — Passive Techniques
— Nuzzer

Concluding Remarks




| ocation Determination
or Localization

e Indoors/Outdoors

e Active
— Node actively participates in determining the location —
participates in sending/receiving/processing messages
e Passive

— Node, held by a human, does not participate in location
determination

» Essentially locating a human being.




Active Localization

e Measure
. O
— Distance
O
— Some function of distance z(d) )
— Some function of Location
O
— . O
r-1
O
r-2
R(X,y,2)=| " |(X,Y,2)
[ rn _
'é’_q“! ‘-_:Q The Maryland Information and Network Dynamics Lab




Signhal Strength Function

e |If we know the function

R(X,Y,2)

e Measure R at a location and
Invert the function

— Easy??
— Practical Realities are complex




Outline

Localization — Active Techniques

RSSI Based

— Characteristics of 802.11b signals
— Horus

Transit Time Based/ Synchronization
— PinPoint
— System Synchronization

Localization — Passive Techniques
— Nuzzer

Concluding Remarks




Spatial Variations:
Small-Scale
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Spatial Variations:
Large-Scale
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Temporal Variations:
One Access Point
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Temporal Variations:
Multiple Access Points
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Number of access points changes over time
Choose the strongest access points
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Temporal Variations:
Correlation
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Environmental Factors

Distance

— Used in determining location — Horus Technology
Multipath

— Always there indoors
Objects

— May effect

» Door open vs closed

People

— Presence and movement always affects the signal

Can we use the infrastructure to determine the presence of people ?

The Maryland Information

and Networ

k Dynamics Lab



Vault Measurements

e Does the RSSI vary in controlled environments?

 Bank Vault
— CISCO AP
— Measure RSSI in controlled environment




Measurement

Example
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Noise In NICs
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Figure 1. Observed RSSI values for Compaq . Time
- . - : Figure 2. Observed RSSI values for Demarc
Wireless LAN Adapter during 15 minutes period. Wireless LAN Adapter during 15 minutes period.
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Figure 3. Observed RSSI values for Orinoco

Wireless LAN Adapter during 15 minutes period. Table 1. RSSI Measurements Comparisons based

on Ethereal network analyzer.
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* NICs available in the market vary in performance

NIC RSSI
Orinoco8 108.57
Compag24 116.75
Generic 94.24
ZoomAir-Ant  42.299
ZoomAir-NoAnt 31.74
LinkSYS 45.506
Orinocol2 105.03

SD

0.618
9.598
8.438
5.816
5.113
0.566
0.839

NIC Performance

NormSD
0.569
8.221
8.954
13.750
16.108
1.243
0.799

NIC
Orinoco3
Orinoco8
Orinoco7
Orinocol7
Orinocol2
Cisco0249
Ciscol75
CISCQ0872
CiscoMind11
Cisco138

RSSI
53.35
51.38
51.21
52.57
53.48
100.00
100.00
100.00
97.99
99.89

SD

0.673
0.488
1.683
0.703
0.598
0.000
0.000
0.000
0.233
0.453
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NormSD
1.262
0.950
3.286
1.338
1.118
0.000
0.000
0.000
0.237
0.453




Vault Measurement Results

e AP power does not vary
— Measured using two sniffers
— No correlation between the two measurements
 Implies AP power variability is not there
« Noise introduced by NIC can be significant
— ZoomAIr
« Some NICS introduce very little or No Noise.
— CISCO
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Another Measurement
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Outline

Localization — Active Techniques

RSSI Based

— Characteristics of 802.11b signals
— Horus (PhD. Work of Moustafa Youssef)

Transit Time Based/ Synchronization
— PinPoint

— System Synchronization

Localization — Passive Techniques

— Nuzzer

Concluding Remarks




HORUS Technology
Basic Algorithm: Mathematical Formulation

X: Position vector
s: Signal strength vector
— One entry for each access point
s(x) Is a stochastic process
P[s(x), t]: probability of receiving s at x at time t
s(X) Is a stationary process
— P[s(x)] is the histogram of signal strength at x

ArgmaxX[P(x/s)]

Using Bayesian inversion
— Argmax,[P(s/x).P(x)/P(s)]
— Argmax,[P(s/x).P(x)]
P(X): User history




Horus Components

Basic algorithm
Correlation handler
Continuous space estimator
Small-scale compensator
Locations clustering




Basic Algorithm: Radio map

[Percom03] [CNDSO04]

o Offline phase

— Radio map: signal strength histograms

* Online phase
— Bayesian based inference
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4108

Signal Strength Models
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Basic Algorithm:
Example
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Probakility

Basic Algorithm:
Parametric Distributions
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Basic Algorithm:
Results

Probability
L
L&}

0.1 Non-Parametric ——
Paramqtric —

0 2 d [ g 10 12 14
Diztance Error (Footl

o Accuracy of 5 feet 90% of the time

« Slight advantage of parametric over non-parametric
method
— Smoothing of distribution shape




Correlation Handler

[InfoComO04]
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* Need to average multiple samples to increase accuracy

* Independence assumption is wrong
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Correlation Handler:
Autoregressive Model

e s(t+D)=as(t)+(1- a).v(t)

. correlation degree

* E[V(H]=E[s(t)]

« Var[v(t)]= (1+ a)/(1- ) Var[s(t)]

o 5S(t+1)= a.s(t)+(1- a).v(t)

e s~N(0,m)

e v~N(O,r)

e A=1/n(S;+S,+...4S,)

* E[AM]=E[s(H]=0

e Var[A®t)]= mn* { [(1- a1~ )]* + n+ 1- o ?«(1- 2" N(1- ¢ %) }




Correlation Handler:
Var(A)/Var(s)

-0 =1 2 3 4 -5 —+—6—7 8 9 10

* Independence assumption underestimates true variance




Correlation Handler:
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* Independence assumption: performance degrades as n increases

» Two factors affecting accuracy
— Increasing n
— Deviation from the actual distribution
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Continuous Space Estimator

Enhance the discrete radio map space estimator

Two techniques
— Center of mass of the top ranked locations

— Timeaveraging =~ " (v E)) _
p(1)*X (1)

i=1

min (N, || X]])

>, p(d)

1=1

B 1
Lt = : X;
Y i (W, 1) Z 3'

t—min(W,t)+1




Center of Mass:
Results

z .
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o N =1 1sthe discrete-space estimator
« Accuracy enhanced by more than 13%




Time Averaging Window:
Results

1.95 |
1.9
1.85 |
1.8
1.75 | A
1.7 |
1.65 | N

1.6 P

Average distance error C(Foot)

1.55 S
1.5 | <

1.43

Averaging window size (W)

o N =1 1sthe discrete-space estimator
« Accuracy enhanced by more than 24%




Small-scale Compensator
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Small-scale Compensator:
Small-scale Variations
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Small-scale Compensator:
Perturbation Technigue

e Detect small-scale variations
— Using previous user location

» Perturb signal strength vector
— (Sy, Sy, -y Sp) 2 (S42dy, S,2d,, ..., s, 2d)
— Typically, n=3-4
 d. is chosen relative to the received signal strength




Average Distance Ertor CFoot)

Small-scale Compensator:
Results
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Perturbation technique is not sensitive to the number of
APs perturbed

Better by more than 25%




Locations Clustering
[PercomO3]

e Reduce computational requirements
e Two techniques

— Explicit
— Implicit
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Locations Clustering:
Explicit Clustering

» Use access points that cover each location
e Use the g strongest access points

S=[-60, -45, -80, -86, -70]
S=[ -80, -86]

Al
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Locations Clustering:
Results- Explicit Clustering
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Locations Clustering:
Implicit Clustering

e Use the access points S=[-60, -45, -80, -86, -70]
Incrementally

 Implicit multi-level clustering

S=[-45, -7, -70, -80, -86)

4140

4143 |4141141390413714135] 4131 |4129)41274125) 4121 |4119]4117] 4115|4113| 4111




Locations Clustering:

Results- Implicit Clustering
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« Avg. num. of oper. /location estimate better than explicit clustering
e Accuracy increases with Threshold
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Testbeds

« A.V.William’s  FLA
4t floor, AVW — 3rd floor, 8400 Baltimore Ave
224 feet by 85.1 feet — 39 feet by 118 feet
UMD net (Cisco APSs) — LinkSys/Cisco APs
21 APs (6 on avg.) — 6 APs (4 on avg.)
172 locations — 110 locations
5 feet apart — 7 feet apart
Windows XP Prof. — Linux (kernel 2.5.7)

Orinoco/Compag cards




Probability
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Horus-Radar Comparison
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Comparison With Other Systems:
Ekahau
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« Average distance error enhanced by more than 58%
» Worst case error decreased by more than 76%
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Horus Status

The Horus system achieves its goals
High accuracy
—  Through a probabilistic location determination technique
Smoothing signal strength distributions by Gaussian approximation
Using a continuous-space estimator
Handling the high correlation between samples from the same access point
The perturbation technique to handle small-scale variations
Low computational requirements
—  Through the use of clustering techniques
Scalability in terms of the coverage area
—  Through the use of clustering techniques
Scalability in terms of the number of users
—  Through the distributed implementation
Training time of 15 seconds per location is enough to construct the radio-map
Radio map spacing of 14 feet
Horus vs. Radar
—  More accurate by more than 11 feet, on the average
—  More than an order of magnitude savings in number of operations required per location estimate
Horus vs. Ekahau

The Maryland Information ar
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Outline

Localization — Active Techniques

RSSI Based
— Characteristics of 802.11b signals
— Horus
Transit Time Based/ Synchronization
— PinPoint
— System Synchronization
Localization — Passive Techniques
— Nuzzer

Concluding Remarks




Time-Based Approach

Determine the distance by measuring the flight time of
signal
Accuracy of distance measurement depends on the clock

resolution
— 1ns=30cm

Roundtrip measurement vs. synchronized clocks
Can we use stable clocks and determine location/time ?

PinPoint technology
— Joint work with A.U. Shankar, R.L. Larsen and D. Szajda




Problem

e Consider a collection of nodes

e Each node has
— Unique ID (10 bits)
— A clock with one nanosecond resolution
— Processor and storage capability

» Each capable of
— Sending and receiving digital information using UHF
— Time Stamping using 64 bit time stamp with ns resolution

Can each node know the topology of all nodes it can talk to?

Can each node know enough to carry out a synchronous
action with other nodes?




\.\1\\1;’_
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Node Structure

Clock
Module

Antenna

CP

UHF
Communication
Module

Computation
Module




Clock Module

CONTROL
REGISTERS LINES
64 bit Register g
c Timing Signal
64 bit Register D >
: To e
@ 64 bit Register D =

. . T
64 bit Register S
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Communications Module

Receive Signal

Send Message

Sync
Detect

Message
Decode

Received Message

The MIND Lab
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Approach

e Three Phases
— Measurement Phase
— Information Exchange Phase
— Computation Phase




Measurement Phase

e Each node sends (a, t1) where
— aisits 10 bit ID, and
— 11 is 64 bit time stamp of when it started sending this message

« All nodes listen to all the messages and keep them after adding a time
stamp according to their clocks for the receive time for the first bit.

e After some time a second round of the transmission is started

* The measurement phase ends when all nodes have sent the (a, t)
message twice

— Note that (a,t) message is 74 bits long




Information Exchange phase

 In this phase nodes take turn in broadcasting their receive time stamps
for all the messages they have received.

{ (a, ta),(b, thl,tb2),(c,tc1,tc2)...}

 In this message all receive timestamps, tb1,tb2,tc1, etc. are offset from
ta which is 64 bit long while all others are 32 bit long.




Computation Phase

e Each node has a set of nodes {na} in its receive zone

 In this phase using the information it has which includes,

— send times and receive times for its messages as well as messages among
the nodes in {na}.

* A node calculates
— Distance to all nodes in {na}
— Clock characteristics of clocks of all nodes in {na}
— Location of all nodes in {na} in 3-d space

4 Q
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Clock model

The calculations are based on the clock which is assume to remain stable for
short periods of time in that the clock time t is related to the real time t as
follows:

7. (t) = p.(a, +1)

1 o and B remain constant for the measurement phase.
1 B, the drift rate of the clock is no worse than 100 parts per million
1 tis measured with a nanosecond resolution




Time at Two Node

o Attime tthe clock reading at node a and node b are:

T, (t) = [, (aa +t)
T, (t) = [, (ab +t)

e Each node has its own offset and drift rate




Measurement Cycle

In the first measurement cycle, node A broadcasts,
at global time t;, a message (A z,)

z-a(tl) = ﬂa( aa+t1)

Node B receives it at global time t,+d and records the
receive timestamp as equaling 7z (t,+d) = 4 (¢, +t,+d).




Measurement Cycle

This Is repeated in the second measurement cycle

TaBZﬂa(aa+t3) TbBZﬂb(ab+t3+d)

T, =P, +t,+d) Toa = B (& +1)




Measurement Equations

z-alzlga(O[a_l_tl) Z-bl:'Btl(at)_'_tl_l_d)
TaZZIBa(aa_l_tZ_l_d) szzﬂb(ab"'tz)

z-a3:ﬂa(0[a+t3) Tb3:ﬂb(ab+t3+d)
Z'a4:IBa(O‘a"‘t4‘|'d) Tb4:/6b(ab+t4)




Drift Ratio
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Remote Clock Reading

d ﬂb : ﬂa

Z'b() Tor — Dy




Point Set Determination

Each node can determine the distance to all other nodes
within its listening range

Based on this information each node can determine the
relative location of all these nodes




Point Set Determination

d°+d,’ —d,’°

cos(a) = 2 d
1%3

e Can determine BP and R,P




Combining Point Sets

Each node may have different set of nodes in its listening
range.

All calculations are based on common information

Sets can thus be combined to create a common picture of
the whole space




Error Analysis

First order error analysis is based on this geometry




Error Analysis

b

o Can write expressions for the errors

o Xvariation is given as
d ’ d
252\/1—(—15in 9} +251\/1—£
d, d
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Operations

Timing Diagram

Information Exchange Cycle

Measurement Cycle 1 >’< Measurement Cycle 2

Max Nodes:H1024
Mslot : 10 us
Islot: 10 ms

1023

1023
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Open Issues

Hardware Implementation
— Can we have hardware that can give timestamps with the required accuracy?
— Can that hardware be reduced to a chip?
— Can that chip be integrated with other systems, e.g. 802.11b

Accuracy analysis and Improvements
Algorithmic improvements
Point Set Integration
— Multi hop environment
Operation with a few fixed locations, e.g. Access Points

The Maryland Information and twork Dynamics Lal



Outline

Localization — Active Techniques

RSSI Based

— Characteristics of 802.11b signals
— Horus

Transit Time Based/ Synchronization
— PinPoint
— System Synchronization

Localization — Passive Techniques
— Nuzzer

Concluding Remarks




Passive Localization

« Exploit the variability in the signal seen due to the
presence of people

e Can we determine the location of a person or persons?

e Nuzzer Technology
— Work in Progress — Leila Shahamatdar, Moustafa Youssef




Nuzzer Technology

Measure RSSI at fixed locations

(XY, 2) )
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Alerts the Nuzzer
Server of RSSI

Chay'

Nuzzer System

g

-
Ta

Alerts the Nuzzer :
Server of RSSI Changes :

o

Nuzzer Monitoring Point QI

Access Point a
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Nuzzer Steps

Presence/Absence of a person
Location of a person
Location and tracking of multiple people
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Experimental Evidence

RSSI varies as people move around.
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Concluding Remarks

Can we realize the applications we talked about in the
beginning of the discussion today?

Location and time in distributed systems of tomorrow are
going to play a major role.

Techniques for location

System Synchronization with stable clocks




