Improving the latency of the Probe Phase during 802.11 Handoff

William Arbaugh

University of Maryland

College Park
The Handoff Procedure

- **Probe Phase**
 - STA scans for APs

- **Reassociation Phase**
 - STA attempts to associate to preferred AP
The Handoff Procedure – Probe Phase

- Empirical Results:
 - High latencies
 - Large variation

![Graph showing total handoff latency (ms) for various conditions and vendors.](image)
Probe Phase is Dominate Factor
Probe Phase Bounds

- Bounds of Probe Phase defined by standard

\[N \times \text{MinChannelTime} \leq t \leq N \times \text{MaxChannelTime} \]

When \(N \) is the number of channels, and \(t \) is the total measured probe time.
Cisco 340 Probe Wait per Channel Clusters
Current Methods to Reduce Probe Time

- Beacons are sent at 1mbps on adjacent channels so a form of binary search can be used, i.e. only probe non-overlapping channels.

 PROBLEM: Still must probe a subset of available channels.

- Passive or active probing done during idle time.

 PROBLEM: Support for fast moving STA’s and/or those with heavy loads.
Problem Becomes Worse with 802.11a

- 8 non-overlapping channels.
- Multiple current probe phase times by 2.67!!!
 \[99.32 \leq t \leq 1067.46 \]
- **No way** to do real time synchronous applications and support hand-offs.
Another Solution

- Instrument APs to support knowledge of neighboring APs, e.g. Neighbor graphs
- STA maintains an optimal channel time
- Now Probe (Actively or Passively) during idle time or prior to roam only on the neighboring AP channels and only wait the optimal channel time.
Optimal Channel Time
Two APs \(i\) and \(j\) are neighbors if

- Exists a path of motion between \(i\) and \(j\) such that it is possible for a mobile STA to perform a *reassociation*
- Captures the ‘potential next AP’ relationship
- Distributed data-structure i.e. each AP maintains list of neighbors
Construction

- Manual configuration for each AP or,
- APs can learn:

 - If STA c sends Reassociate Request to AP i, with old-ap = AP j
 - Create new neighbors (i,j) (i.e. an entry in AP i, for j and vice versa)
 - Learning costs only one ‘high latency handoff’ per edge in the graph

- Enables mobility of APs, can be extended to wireless networks with an ad-hoc backbone infrastructure
Experimental Neighbor Graph
Example

- STA is associated with AP3
 - $|\text{Neighbors}(\text{AP3})| = 8$
 - $|\text{UniqueChannels}(\text{Neighbors}(\text{AP3}))| = 3$
- STA probes on three channels and waits a MinChannelTime of 3ms and a MaxChannelTime of 7ms
 - $9 \text{ ms} \leq t \leq 21 \text{ ms}$
Conclusions

- Current Probe times are not adequate for multimedia applications
- Probe times in 802.11a will be over two times worse.
- Using Neighbor graphs and an optimal channel wait can reduce the Probe phase significantly.
Future Work

- Extending Neighbor Graphs to Interworking, i.e. AAA to AAA communications.
- Trying to start an IRTF working group on WiFi handoffs.
- Light up the beltway