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Uses For Runtime Code Patching

e Security & Testing
- Code coverage testing
- Monitoring (dynamic taint analysis)

e Correctness debugging
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Why Binary Analysis and Manipulation?

e It's what runs on the computer

e All compiled languages (more or less)
look the same as a binary

e No Source Code Required
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What is Dyninst?

e API for
- binary analysis
- binary re-writing
- runtime patching

e Features
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Dyninst Design Philosophy

e Use Any Data Available
Debug symbols
Dynamic Linker info
Binary Analysis within Dyninst
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Type & Variable Support in Dyninst

e Access to local (stack) variables
e Complex types

- non-integer scalars
- structures
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Representing New Code Snippets

e Platform Independent Representation
- Same code can be inserted into apps on any system

e Simple Abstract Syntax Tree

- Can refer to application state (variables & params)
- Includes simple looping construct
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Snippet Example

If (flagVar ==

0) fdVar = open(filename,

BPatch_IifExpr

/ ™~

BPatch booIExpr(BPatch eq, BPatch_arithExpr(BPatch_assign, ...)

BPatch varlabIeExpr BPatch _constExpr(0)
flagVar

BPatch_funcCallExpr 2 PElB_ VeIl ol S 2
fdVar

BPatch_function “open”

BPatch_constExpr(filename)

BPatch _constExpr(O_WRONLY | O_CREAT)

BPatch _constExpr(0666) D
n
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Memory Instrumentation

e Dynamic memory access instrumentation
- collect low level memory accesses
- with the flexibility of dynamic instrumentation

e Possible applications
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Memory Instrumentation Features

e Finding memory access instructions
- loads, stores, prefetches

e Builds on Arbitrary Instrumentation

e Decoded instruction information
- type of instruction
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Runtime Binary Modification

Mutator App

Application
API Code

Dyninst o
Code Machine

Dependent :
Shippets
Ptrace or procfs Run-time Library
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Static Binary Rewriting in Dyninst

Process Control

SymtabAPI

Instrumentation

University of Maryland



A Static Binary Rewriter

e Binary Rewriter Capabilities

required
required
required

Dyn
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Static Vs. Dynamic Rewriting

Static Rewriting  Dynamic Instrumentation
v'Faster instrumentation v'Insert and Remove
insertion. instrumentation at run time.

v’ Amortize parsingand  v'Execute instrumentation at
instrumentation time a particular time

Dyn
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BPatch_addressSpace

e Use BPatch addressSpace for static
and dynamic code instrumentation.
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Example Use: Rewriting Symbols Tables

e Add a function symbol to a binary:
/* Open a file */
Symtab *symt;
Symtab: :openFile(symt, “a.out”);
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Sensitivity-resistant code relocation

e Preserve visible behavior
- Relationship of input to output

e Identify sensitive instructions
- Those whose behavior is changed
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Sensitivi -|-y Code Replacement Effects

Actions

Code-as-Data

(CAD) Sensitive
Instructions that read or
write original code

Overwriting code J

Program Counter (PC)
Sensitive

Moved instructions that
use the PC

Moving code
Modified Code
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Example compensation transformations
PC Sensitive

call printf push $(orig_ret_addr)
jmp printf

CAD/AVU Sensitive

cmp %eax, $textEnd

jge L1

mov $offset(%eax), %ebx
jmp L2

L1: mov (%eax), %ebx
IREERNC. .

mov (%eax), %ebx

call ebx_thunk
ebx_thunk:

mov (%esp), %ebx mov $(ret_addr), %ebx

ret

Dyn




Experiments: code relocation

e Verify preservation of behavior on sensitive
binaries

- Instrument synthetic malware samples

- Samples should execute with unchanged behavior
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Results: behavior preservation

PolyEnE_CAD
EXECryptor
Themida

PECompact_ CAD

ASProtect
Armadillo
Yoda’s Protector

* S-R relocation succeeded on four additional packers

* Failures are due to anti-debug techniques not yet
addressed
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Summary

e Dyninst Provides
- Multi Architecture Support (x86, Power)
- Multi OS Support (Windows, Linux, AIX, VxWorks)
- Multi Compilter (Intel, Microsoft, GCC, PGI, Cray)
- Toolkit approach
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