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Uses For  Runtime Code Patching 

 Security & Testing 
– Code coverage testing 

– Monitoring (dynamic taint analysis) 

 Correctness debugging 
– Fast conditional breakpoints 

– Data breakpoints 

 Execution driven simulation 
– Architecture studies 
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Why Binary Analysis and Manipulation? 

 It’s what runs on the computer 

 All compiled languages (more or less) 
look the same as a binary 

 No Source Code Required 
– For commercial and malware, often not available 

 Implicitly Picks up compiler issues 
– Security problems due to compiler bugs 
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What is Dyninst? 

 API for  
– binary analysis 

– binary re-writing 

– runtime patching 

 Features 
– Generates info about the binary 

• Example: Recover control flow graphs 

– New code can be added to programs during execution 

• Permits instrumentation and modification  

– Provides processor independent abstractions 

– Platform independent patching 

• API abstracts away OS, hardware differences 
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Dyninst Design Philosophy 

 Use Any Data Available 
– Debug symbols 

– Dynamic Linker info 

– Binary Analysis within Dyninst 

– User Supplied Info 

 Work when any source of data is missing 
– Stripped binaries 

– Static linked program 

– Obfuscated binaries 



University of Maryland 

Type & Variable Support in Dyninst 

 Access to local (stack) variables 

 Complex types 
– non-integer scalars 

– structures 

– arrays 

– Fortran common blocks 

 Example: Correctness debugging 
– print contents of data structures 
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Representing New Code Snippets 

 Platform Independent Representation 
– Same code can be inserted into apps on any system 

 Simple Abstract Syntax Tree 
– Can refer to application state (variables & params) 

– Includes simple looping construct 

– Permits calls to application subroutines 

 Type Checking 
– Ensures that snippets are type compatible 

– Based on structural equivalence 

• allows flexibility when adding new code 
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Snippet Example 
if (flagVar == 0) fdVar = open(filename, ...) 

BPatch_ifExpr 

BPatch_constExpr(0) BPatch_variableExpr 

flagVar 

BPatch_boolExpr(BPatch_eq, …) 

BPatch_VariableExpr 

fdVar 

BPatch_arithExpr(BPatch_assign, …) 

BPatch_constExpr(0666) 

BPatch_constExpr(filename) 

BPatch_constExpr(O_WRONLY | O_CREAT) 
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BPatch_funcCallExpr 

BPatch_function “open” 
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Memory Instrumentation 

 Dynamic memory access instrumentation 
– collect low level memory accesses 

– with the flexibility of dynamic instrumentation 

 Possible applications 
– tools to catch memory errors 

– offline performance analysis (Sigma etc.) 

– online optimization 
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Memory Instrumentation Features 

 Finding memory access instructions 
– loads, stores, prefetches 

 Builds on Arbitrary Instrumentation 

 Decoded instruction information 
– type of instruction 

– constants and registers involved in computing 

• the effective address  

• the number of bytes moved 

– available in the mutator before execution 

 Memory access snippets 
– effective address in process space 

– byte count 

– available in mutatee at execution time 
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A Static Binary Rewriter 

 Binary Rewriter Capabilities 
– Instrument once, run many times 
– Run instrumented binaries on systems without dynamic 

instrumentation (e.g. some embedded systems). 
– Perform static analysis without running a binary 

 
 Operates on unmodified binaries.  

– No debug information required 
– No linker relocations required 
– No symbols required 

 

 Same abstractions and interfaces as online rewriter. 
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Static Vs. Dynamic Rewriting 

Static Rewriting Dynamic Instrumentation 
Faster instrumentation 
insertion. 

Insert and Remove 
instrumentation at run time. 

Amortize parsing and 
instrumentation time 
across multiple runs. 

Execute instrumentation at 
a particular time 
(oneTimeCode). 

Easier to port. 

 

Respond to run time events 
(shared library loads, exec, 
…). 
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BPatch_addressSpace 
 Use BPatch_addressSpace for static 

and dynamic code instrumentation. 

if (use_bin_edit) 

  addr_space = bpatch.openFile(...); 

else 

  addr_space = bpatch.attachProcess(...); 

 

... 

 

addr_space->getImage()->findFunction(...); 

addr_space->insertSnippet(...); 

addr_space->replaceFunction(...); 
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Example Use: Rewriting Symbols Tables 
 

 Add a function symbol to a binary: 
 /* Open a file */ 

 Symtab *symt; 

 Symtab::openFile(symt, “a.out”); 

 

 /* Add Symbol */ 

 symt->createFunction(“func1” /*name*/,  

                       0x1000 /*offset*/, 

                       100 /*size*/); 

 

 /* Write new binary */ 

 symt->emit(“rewritten.out”); 
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Sensitivity-resistant code relocation 

 Preserve visible behavior 
– Relationship of input to output 

 Identify sensitive instructions 
– Those whose behavior is changed 

 Compensate for externally sensitive 
instructions 
– Those whose sensitivity affects visible behavior 

 Approach 
– Binary analysis (slicing, symbolic execution) 

– Code generation 

– Runtime checks 
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Code Replacement 

Actions 
Sensitivity Effects 

Code-as-Data 

(CAD) Sensitive 

Instructions that read or 

write original code 

Overwriting code 

Program Counter (PC) 

Sensitive 

Moved instructions that  

use the PC 

Moving code 

Allocated-vs-Unallocated  

(AVU) Sensitive 

Instructions that test 

allocated memory 

Adding code 

Modified Code 

Modified Binary (P’) 

Control Flow  

(CF) Sensitive 

Instructions whose 

successors were moved 
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Example compensation transformations 

call ebx_thunk 
ebx_thunk: 
  mov (%esp), %ebx 
  ret 

call printf push $(orig_ret_addr) 

jmp printf 

mov (%eax), %ebx 

cmp %eax, $textEnd 
jge L1 
mov $offset(%eax), %ebx 
jmp L2 
L1: mov (%eax), %ebx 
L2: ... 

PC Sensitive  

mov $(ret_addr), %ebx 

CAD/AVU Sensitive  

Efficient group transformation (PC/CF Sensitive) 
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Experiments: code relocation 

 Verify preservation of behavior on sensitive 
binaries 

– Instrument synthetic malware samples 

– Samples should execute with unchanged behavior 

 

 Evaluate overall performance 
– Null instrumentation of SPEC CPU 2006 benchmarks, 

Apache, and MySQL 

– Sensitivity-resistant code relocation should reduce 
overhead 

– Group transformations should benefit on Apache/MySQL 
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Results: behavior preservation 
 

 

 

 

 

 

• S-R relocation succeeded on four additional packers 

• Failures are due to anti-debug techniques not yet 

addressed 

 

Packer Tool Market share CAD sensitive Anti-debug Success 

PolyEnE_CAD 6.21% yes ✓ 

EXECryptor 4.06% yes yes 

Themida 2.95% yes yes 

PECompact_CAD 2.59% yes ✓ 

ASProtect 0.43% yes ✓ 

Armadillo 0.37% yes yes 

Yoda’s Protector 0.33% yes yes ✓ 
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The Dyninst Team 

 Maryland 
– Jeff Hollingsworth 

– Ray Chen  

– Tugrul Ince  
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– Mike Lam 

– Geoff Stoker 

– Philip Yang 

– Yifan Zhou 

 

 Wisconsin 
– Bart Miller 

– Bill Williams 

– Andrew Bernat 

– Michael Brim 

– Wenbin Fang 

– Emily Jacobson 

– Xiaozhu Meng 

– Kevin Roundy 

– Evan Samanas 

– Ben Welton 

 

– …. 
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Summary 

 Dyninst Provides 
– Multi Architecture Support (x86, Power) 

– Multi OS Support (Windows, Linux, AIX, VxWorks) 

– Multi Compilter (Intel, Microsoft, GCC, PGI, Cray) 

– Toolkit approach  

• Uses as little or as much as you want 

 Dyninst is Mature 
– Commercial Products from IBM & SGI 

– Used in many third party open source tools 

 More Information 
– www.dyninst.org 

 

 


