
University of Maryland

Dyninst: A Binary Analysis and
Modification Framework

Jeffrey K. Hollingsworth

Ray Chen

University of Maryland
Department of Computer Science

University of Maryland

Binary modification
Binary Program

Modification

Requests

Modified

Binary Program

Binary

Modification

Toolkit

1d8d481674c08548530033
0019058b48854808c38348
08438b48d0ff0033000c00
00441f0f660000441f0fc3
5bf175c01d8d481674c085
48530032ff1058b4885480
8c3834808438b48d0ff003
2ffc490909090909090909
09090c35bf175c00000000
0801f0f00000000801f0fc
3f300000000801f0f00014
427e808ec8348

1d8d481674c08548530033
0019058b48854808c38348
08438b48d0ff0033000c00
00441f0f660000441f0fc3
5bf175c01d8d481674c085
48530032ff1058b4885480
8c3834808438b48d0ff003
2ffc490909090909090909
09090c35bf175c00000000
0801f0f00000000801f0fc
3f300000000801f0f00014
427e808ec8348

f82474894cf0246c894ce

64894ccd8948d8245c894

fab70f087448503966003

b1eb000001003337a205c

Dynamic

(“Hot”) Patching

Optimization

Fault Diagnosis

Simulation

Program Auditing

Behavior
Analysis

Attack Detection

Performance

Analysis

Cyberforensics

Testing

Debugging

University of Maryland

Uses For Runtime Code Patching

 Security & Testing
– Code coverage testing

– Monitoring (dynamic taint analysis)

 Correctness debugging
– Fast conditional breakpoints

– Data breakpoints

 Execution driven simulation
– Architecture studies

University of Maryland

Why Binary Analysis and Manipulation?

 It’s what runs on the computer

 All compiled languages (more or less)
look the same as a binary

 No Source Code Required
– For commercial and malware, often not available

 Implicitly Picks up compiler issues
– Security problems due to compiler bugs

University of Maryland

What is Dyninst?

 API for
– binary analysis

– binary re-writing

– runtime patching

 Features
– Generates info about the binary

• Example: Recover control flow graphs

– New code can be added to programs during execution

• Permits instrumentation and modification

– Provides processor independent abstractions

– Platform independent patching

• API abstracts away OS, hardware differences

University of Maryland

Dyninst Design Philosophy

 Use Any Data Available
– Debug symbols

– Dynamic Linker info

– Binary Analysis within Dyninst

– User Supplied Info

 Work when any source of data is missing
– Stripped binaries

– Static linked program

– Obfuscated binaries

University of Maryland

Type & Variable Support in Dyninst

 Access to local (stack) variables

 Complex types
– non-integer scalars

– structures

– arrays

– Fortran common blocks

 Example: Correctness debugging
– print contents of data structures

University of Maryland

Representing New Code Snippets

 Platform Independent Representation
– Same code can be inserted into apps on any system

 Simple Abstract Syntax Tree
– Can refer to application state (variables & params)

– Includes simple looping construct

– Permits calls to application subroutines

 Type Checking
– Ensures that snippets are type compatible

– Based on structural equivalence

• allows flexibility when adding new code

University of Maryland

Snippet Example
if (flagVar == 0) fdVar = open(filename, ...)

BPatch_ifExpr

BPatch_constExpr(0) BPatch_variableExpr

flagVar

BPatch_boolExpr(BPatch_eq, …)

BPatch_VariableExpr

fdVar

BPatch_arithExpr(BPatch_assign, …)

BPatch_constExpr(0666)

BPatch_constExpr(filename)

BPatch_constExpr(O_WRONLY | O_CREAT)

B
P

a
tc

h
_
V

e
c
to

r

BPatch_funcCallExpr

BPatch_function “open”

University of Maryland

Memory Instrumentation

 Dynamic memory access instrumentation
– collect low level memory accesses

– with the flexibility of dynamic instrumentation

 Possible applications
– tools to catch memory errors

– offline performance analysis (Sigma etc.)

– online optimization

University of Maryland

Memory Instrumentation Features

 Finding memory access instructions
– loads, stores, prefetches

 Builds on Arbitrary Instrumentation

 Decoded instruction information
– type of instruction

– constants and registers involved in computing

• the effective address

• the number of bytes moved

– available in the mutator before execution

 Memory access snippets
– effective address in process space

– byte count

– available in mutatee at execution time

University of Maryland

Machine

Dependent

Code

Runtime Binary Modification

Mutator Mutatee

Mutator App

API

Dyninst

Code

Ptrace or procfs

Application

Code

Snippets

Run-time Library

University of Maryland

Mutatee
Process

a.out

libc.so

libapp.so

rewritten
a.out

rewritten
libapp.so

Static Binary Rewriting in Dyninst

a.out

libc.so

libapp.so

DyninstAPI

Parsing

SymtabAPI

Process Control

Instrumentation

University of Maryland Binary Rewriting

A Static Binary Rewriter

 Binary Rewriter Capabilities
– Instrument once, run many times
– Run instrumented binaries on systems without dynamic

instrumentation (e.g. some embedded systems).
– Perform static analysis without running a binary

 Operates on unmodified binaries.

– No debug information required
– No linker relocations required
– No symbols required

 Same abstractions and interfaces as online rewriter.

University of Maryland Binary Rewriting

Static Vs. Dynamic Rewriting

Static Rewriting Dynamic Instrumentation
Faster instrumentation
insertion.

Insert and Remove
instrumentation at run time.

Amortize parsing and
instrumentation time
across multiple runs.

Execute instrumentation at
a particular time
(oneTimeCode).

Easier to port.

Respond to run time events
(shared library loads, exec,
…).

University of Maryland

BPatch_addressSpace
 Use BPatch_addressSpace for static

and dynamic code instrumentation.

if (use_bin_edit)

 addr_space = bpatch.openFile(...);

else

 addr_space = bpatch.attachProcess(...);

...

addr_space->getImage()->findFunction(...);

addr_space->insertSnippet(...);

addr_space->replaceFunction(...);

University of Maryland

Example Use: Rewriting Symbols Tables

 Add a function symbol to a binary:
 /* Open a file */

 Symtab *symt;

 Symtab::openFile(symt, “a.out”);

 /* Add Symbol */

 symt->createFunction(“func1” /*name*/,

 0x1000 /*offset*/,

 100 /*size*/);

 /* Write new binary */

 symt->emit(“rewritten.out”);

University of Maryland

Sensitivity-resistant code relocation

 Preserve visible behavior
– Relationship of input to output

 Identify sensitive instructions
– Those whose behavior is changed

 Compensate for externally sensitive
instructions
– Those whose sensitivity affects visible behavior

 Approach
– Binary analysis (slicing, symbolic execution)

– Code generation

– Runtime checks

University of Maryland

Code Replacement

Actions
Sensitivity Effects

Code-as-Data

(CAD) Sensitive

Instructions that read or

write original code

Overwriting code

Program Counter (PC)

Sensitive

Moved instructions that

use the PC

Moving code

Allocated-vs-Unallocated

(AVU) Sensitive

Instructions that test

allocated memory

Adding code

Modified Code

Modified Binary (P’)

Control Flow

(CF) Sensitive

Instructions whose

successors were moved

University of Maryland

Example compensation transformations

call ebx_thunk
ebx_thunk:
 mov (%esp), %ebx
 ret

call printf push $(orig_ret_addr)

jmp printf

mov (%eax), %ebx

cmp %eax, $textEnd
jge L1
mov $offset(%eax), %ebx
jmp L2
L1: mov (%eax), %ebx
L2: ...

PC Sensitive

mov $(ret_addr), %ebx

CAD/AVU Sensitive

Efficient group transformation (PC/CF Sensitive)

University of Maryland

Experiments: code relocation

 Verify preservation of behavior on sensitive
binaries

– Instrument synthetic malware samples

– Samples should execute with unchanged behavior

 Evaluate overall performance
– Null instrumentation of SPEC CPU 2006 benchmarks,

Apache, and MySQL

– Sensitivity-resistant code relocation should reduce
overhead

– Group transformations should benefit on Apache/MySQL

University of Maryland

Results: behavior preservation

• S-R relocation succeeded on four additional packers

• Failures are due to anti-debug techniques not yet

addressed

Packer Tool Market share CAD sensitive Anti-debug Success

PolyEnE_CAD 6.21% yes ✓

EXECryptor 4.06% yes yes

Themida 2.95% yes yes

PECompact_CAD 2.59% yes ✓

ASProtect 0.43% yes ✓

Armadillo 0.37% yes yes

Yoda’s Protector 0.33% yes yes ✓

University of Maryland

The Dyninst Team

 Maryland
– Jeff Hollingsworth

– Ray Chen

– Tugrul Ince

– Chester Lam

– Mike Lam

– Geoff Stoker

– Philip Yang

– Yifan Zhou

 Wisconsin
– Bart Miller

– Bill Williams

– Andrew Bernat

– Michael Brim

– Wenbin Fang

– Emily Jacobson

– Xiaozhu Meng

– Kevin Roundy

– Evan Samanas

– Ben Welton

– ….

University of Maryland

Summary

 Dyninst Provides
– Multi Architecture Support (x86, Power)

– Multi OS Support (Windows, Linux, AIX, VxWorks)

– Multi Compilter (Intel, Microsoft, GCC, PGI, Cray)

– Toolkit approach

• Uses as little or as much as you want

 Dyninst is Mature
– Commercial Products from IBM & SGI

– Used in many third party open source tools

 More Information
– www.dyninst.org

