Dyninst: A Binary Analysis and
Modification Framework

Jeffrey K. Hollingsworth

@/ Univensity of Warland

Department of Computer Science

University of Maryland

| £ ; Behavior -
binary modification (R

1d8d481674c08548530033
0019058b48854808c38348
08438b48d0f10033000c00
00441f01660000441f0fcC3
5bf175c01d8d481674c085
48530032f11058b4885480
8c3834808438b48doff003
2ftc490909090909090909
09090c35bf175c00000000
08011f0f00000000801f0fC
31300000000801f0f00014
427e808ec8348

Modification
Requests

Performance Qptimization
. /
Analysis

5 Fault Diagnosis 1d8d481674c08548530033
I~ Y| g 0019058b48854808c38348
‘I/!/,* .. e b1eb0000O1003337a205C

/ ‘“mf‘?. o 00441f0t660000441F0FC3
] ‘./ 9 \" 5bf175c01d8d481674c085
s i\

‘.
&

U Cyberforensics |Nfsaazagoacreaascaace
it 8C3834808438b48d0T 1003

f 2ffc490909090909090909

64894ccd8948d8245c894
VoW lTUTYYYYYUYUBY L TUTC

Testing 3f300000000801f0 100014

fab70f087448503966003

<
(Debugging a (Simulation)

- [Dynamic
Program Auditing _ (“Hot”) Patching

Dyn

niversity of Marylan InSt

f 4/'”77?’5},5’;

Uses For Runtime Code Patching

e Security & Testing
- Code coverage testing
- Monitoring (dynamic taint analysis)

e Correctness debugging

University of Maryland

Why Binary Analysis and Manipulation?

e It's what runs on the computer

e All compiled languages (more or less)
look the same as a binary

e No Source Code Required

University of Maryland

What is Dyninst?

e API for
- binary analysis
- binary re-writing
- runtime patching

e Features

University of Maiyland

Dyninst Design Philosophy

e Use Any Data Available
Debug symbols
Dynamic Linker info
Binary Analysis within Dyninst

University of Maryland

Type & Variable Support in Dyninst

e Access to local (stack) variables
e Complex types

- non-integer scalars
- structures

University of Maryland

Representing New Code Snippets

e Platform Independent Representation
- Same code can be inserted into apps on any system

e Simple Abstract Syntax Tree

- Can refer to application state (variables & params)
- Includes simple looping construct

University of Maryland

Snippet Example

If (flagVar ==

0) fdVar = open(filename,

BPatch_IifExpr

/ ™~

BPatch booIExpr(BPatch eq, BPatch_arithExpr(BPatch_assign, ...)

BPatch varlabIeExpr BPatch _constExpr(0)
flagVar

BPatch_funcCallExpr 2 PElB_ VeIl ol S 2
fdVar

BPatch_function “open”

BPatch_constExpr(filename)

BPatch _constExpr(O_WRONLY | O_CREAT)

BPatch _constExpr(0666) D
n

University of Maryland InSt

BPatch_Vector

Memory Instrumentation

e Dynamic memory access instrumentation
- collect low level memory accesses
- with the flexibility of dynamic instrumentation

e Possible applications

University of Maryland

Memory Instrumentation Features

e Finding memory access instructions
- loads, stores, prefetches

e Builds on Arbitrary Instrumentation

e Decoded instruction information
- type of instruction

University of Maryland

Runtime Binary Modification

Mutator App

Application
API Code

Dyninst o
Code Machine

Dependent :
Shippets
Ptrace or procfs Run-time Library

University of Maryland

Static Binary Rewriting in Dyninst

Process Control

SymtabAPI

Instrumentation

University of Maryland

A Static Binary Rewriter

e Binary Rewriter Capabilities

required
required
required

Dyn

University of Maryland Binary Rewriting INSt

Static Vs. Dynamic Rewriting

Static Rewriting Dynamic Instrumentation
v'Faster instrumentation v'Insert and Remove
insertion. instrumentation at run time.

v’ Amortize parsingand v'Execute instrumentation at
instrumentation time a particular time

Dyn

University of Maryland Binary Rewriting INSt

BPatch_addressSpace

e Use BPatch addressSpace for static
and dynamic code instrumentation.

University of Maryland

Example Use: Rewriting Symbols Tables

e Add a function symbol to a binary:
/* Open a file */
Symtab *symt;
Symtab: :openFile(symt, “a.out”);

University of Maryland

Sensitivity-resistant code relocation

e Preserve visible behavior
- Relationship of input to output

e Identify sensitive instructions
- Those whose behavior is changed

Dyn

Sensitivi -|-y Code Replacement Effects

Actions

Code-as-Data

(CAD) Sensitive
Instructions that read or
write original code

Overwriting code J

Program Counter (PC)
Sensitive

Moved instructions that
use the PC

Moving code
Modified Code

Dyn

Example compensation transformations
PC Sensitive

call printf push $(orig_ret_addr)
jmp printf

CAD/AVU Sensitive

cmp %eax, $textEnd

jge L1

mov $offset(%eax), %ebx
jmp L2

L1: mov (%eax), %ebx
IREERNC. .

mov (%eax), %ebx

call ebx_thunk
ebx_thunk:

mov (%esp), %ebx mov $(ret_addr), %ebx

ret

Dyn

Experiments: code relocation

e Verify preservation of behavior on sensitive
binaries

- Instrument synthetic malware samples

- Samples should execute with unchanged behavior

Dyn

Results: behavior preservation

PolyEnE_CAD
EXECryptor
Themida

PECompact_ CAD

ASProtect
Armadillo
Yoda’s Protector

* S-R relocation succeeded on four additional packers

* Failures are due to anti-debug techniques not yet
addressed

The Dyninst Team

e Maryland

e Wisconsin

- Jeff Hollingsworth

- Ray Chen
- Tugrul Ince
- Chester Lam

University of Maryland

Bart Miller

Bill Williams
Andrew Bernat
Michael Brim

Summary

e Dyninst Provides
- Multi Architecture Support (x86, Power)
- Multi OS Support (Windows, Linux, AIX, VxWorks)
- Multi Compilter (Intel, Microsoft, GCC, PGI, Cray)
- Toolkit approach

University of Maryland

