New methods for
controlling timing
channels

Andrew Myers
Cornell University
(with Danfeng Zhang, Aslan Askarov)

Timing channels

The adversary can learn (a lot)
from timing measurements.

.

Known to exist

Hard to detect

Hard to prevent except in special cases

undetectable
threat of
unknown
Importance

lack of feasible
defenses

A few timing attacks

e Network timing attacks

o RSA keys leaked by decryption time, measured across
network [Brumley&Boneh’05]

o Load time of web page reveals login status,
size and contents of shopping cart [Bortz&Boneh'07]

o Cache timing attacks

o AES keys leaked by timing memory accesses [Osvik et al'06]
from ~300 (!) encryptions

o Covert timing channels

« Transmit confidential data by controlling response time,
e.g., combined with SQL injection [Meer&Slaviero’07]

e Timing channels : a serious threat

The problem

« Timing may encode any secrets it depends on

o Strong adversary: able to affect system timing
(coresident code, by adding load,...)

Input

[ﬁl output (+timing)

Timing channel mitigation

e« Some standard ideas:

* Add random delays = lower bandwidth, linear leakage
* Delay to worst-case time = poor performance

* Input blinding = applicable only to cryptography

* New idea: predictive mitigation
e Applies to general computation

e Leakage asymptotically sublinear over time
« Effective in practice

e Applicable at system and language level

Variations — leakage

[B
L . |
— N possible observations %

by the adversary

Leakage in bits = log, N

A bound on:
mutual information (Shannon entropy)
min-entropy

Black-box predictive mitigation

source delayed
events events
S
m . .
—>| £ | mitigator >
,é:'/\ 0

Issues events
according to

%\

schedules

Prediction by doubling

predictions: when mitigator
expects to deliver events
events

.~ time

| S(;) | 5(54) | 5(56) | 5(58) | S(;O) | 5(512)E S(:14)

Mitigator starts with a fixed schedule S
S(n) — prediction for nth event

Example: Doubling

events Misprediction

X
| |

S(2) S(4) S(6) S(8) S(10) S(12) S(14) ’

When event comes before or at the
prediction — delay the event

little information leaked

Example: Doubling

events new schedule

X X

; : : time
S2) S3) S4) SA5) S(6) SN7) Sy(8) '

Adversary observes mispredictions = information leaked

New fixed schedule S, penalizes the event source

Example: Doubling

Epoch: period of time during which
mitigator meets all predictions

X X

1 ! ! ! time
S(2) S3) Si4) S5(5) S;6)

epoch | epoch 2 epoch 3

Within epoch, output times can be predicted by adversary
too!

Quantifying leakage

e Variations within one epoch = M+1 = O(T)

e Over N epochs? (M+1)N m

Depends

on prediction scheme

Leakage < N log(M+1) bits = O(N log T) bits
 Leakage with doubling scheme:

N = O(log T)
leakage < O(log? T)

Adaptive transitions

e |If predictions become too conservative, events are delayed
* queueing = no mispredictions
e Idea. if under misprediction “budget”, force an epoch
change:
e dump queued events

« generate a new schedule with better performance

Using public information

 Simple black-box model [CCS’10]

* Fixed schedule in each epoch - too conservative for interactive systems

* Generalized prediction [CCS'11]

* Fixed prediction algorithm implementing a deterministic function of

public information

e Schedule is calculated dynamically within epoch

 Algorithm changed at mispredictions

inputs source
. events

delayed
events

SChedﬂﬁng‘

‘Algaithey

vv

|

Exploitable public information

Using public information improves
predictions for networked applications

o Public payloads in requests, such as URLs

www.example.com/index.html wvs.
www.example.com/background.gif

o Time of input request

Evaluation

Real-world web applications (with HTTP(S) proxy)

M

cal

Real-world applications

SRy Cornell University

%,;5,523 Department of Computer Science

Client

l Information

|
l Events ‘
\

Security (show explanation)
[Admissions © Thisis a public or shared computer
[People ‘ R @ Thisis a private computer
l Courses ‘ L

Bl Use Outlook Web Access Light

The Light dient provides fewer features and is sometimes
faster. Use the Light dient if you are on a slow connection or
using a computer with unusually strict browser security
settings. If you are using a browser other than Internet
Explorer 6 or later, you can only use the Light dient.

l Undergrad Program ‘

[Graduate Program \

[Research \

Computer Science Research at Cornell

’;f Systems and Networking: Computational Biolog
\C Operating systems, distributed computing, Sequence analysis, stru
A\ -1 networking, wireless systems, security and classification, gene netv

protection ...more dynamics ...more

Mitigating Web proxy

Latency (ms)

Experiments with Web applications

Mitigating department homepage via HTTP
(49 different requests)

 Different prediction schemes trade off security vs.
performance. With HOST+URLTYPE scheme:

* ~30% latency overhead
* < 850Dbits for 100,000 inputs

. 6000 | : | .
2(xx) . TYPE/HOST
] HOST+URLTYPE *®s==:®
: Il Y
= 0 £ 4000 - .7 .
1500 - 30% = -
;. - .
| 000_: % 3000 -
] 2 2000 i
500 - T F
] B 1000 b s .
O_ r l r (0 ; | | | |
Yoy, e 10g- T, YrE,)/ va 0 20 40 60 80
ISP 'Rr rYPI Number of inputs (X1000)

Performance Security

Latency (ms)

Experiments with Web applications

Mitigating department webmail server via HTTPS

e At most 300 bits for 100,000 inputs
e At most 450 bits for 32M inputs

(1 input/sec for one year)

1000 - - ON ------------------------
1 == OFF Less than
1 second
500 —
0

Auth Login List Email

Performance

Leakage bound in bits

350

300 -

250
200
150

100
50 |

Webmlail Ieakage|

=

| | | | | |

0 20 40 60 80

Number of inputs (X1000)

Security

100

Related work

« Timing mitigation for cryptographic operations
[Kocher 96, Kopf & Durmuth 09, Kopf & Smith 10]

e Assumes input blinding
e NRL Pump/Network Pump [Kanget.al. 93, 96]
« Addresses covert channels from input acks
e Linear bound
 Information theory community [Hu 91, Giles&Hajek 02]
* Timing mitigation based on random delays

e Linear bound

Why language-level mitigation?

e What about the coresident adversary who
can time accesses to memory?

o AES keys leaked by timing memory accesses from ~300 (!)
encryptions [Osvik et al 06]

o Areal problem for cloud computing...

e How can programmer know whether
brogram has timing channels?

e Idea: provide a static analysis (e.g., type
system) that verifies bounded leakage.

« and incorporate predictive mitigation!

Security policies

e Security policy lattice

o Information has label describing intended confidentiality

o In general, the labels form a lattice
« For this talk, a simple lattice:
e L=public, H=secret

e H should not flow to L

e Adversary powers

o Sees contents of low (L) memory (storage channel)

o Sees timing of updates to low memory (timing channel)

A timing channel

if (h)
sleep(1);

else
sleep(2);

A subtle example

if (h1)
h2=l1;

else
h2=12;

13=l1;

Data cache affects timing!

ath the surface

compfler
optimizations -
data/ ; . branch
target

e

Instruction |
i
cache buffer

g data/ P
N instruction

\

C,

A language-level abstraction

‘ ‘- « Each operation has read label, write label

governing in

Seraction with machine

ehNrorme

[‘EWEW]

Machine environment: state affecting
timing but invisible at language level

machine env.
logically
partitioned by

security level

(e.g. high cache vs.
low cache)

L

machine

H

envirohnment

Does not include
language-visible
state (memory)

Read label

(X =€)y o1

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence

(h1:=h2)[|_’]

L H
machine
environment

Write label

(X =€)y g,
(h1:=h2)[L,H)

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects

Security properties

e Language implementation must satisfy
three (formally defined) properties:

1.Read label property L

2. Write label property %

3.Single-step noninterference: no leaks from
high environment to low environment L

e Realizable on commodity HW (no-fill mode)

e Provides guidance to designers of future secure
architectures

Type system

« We analyze programs using an Examples:
information flow type system that | cHw:H

o leep(h) : H
tracks timin S
& (x:=y)wy:L

c: T = time to run c depends on if (h1)

information at (at most) label T (h2:=l1),H1;
else

e Read and write labels are key (h2:=12) 11

(3r=l1)qL,L

o« can be generated by analysis, inference,

programmetr...
low cache read cannot

be affected by h;

Formal results

e« Memory and machine environment
noninterference:
A well-typed program without use of
mitigation leaks nothing via timing channels

before execution after execution

Language-level mitigation

mitigate(() { s }

label of running time mitigated command

o Executes s but adds time using predictive
mitigation

o New expressive power:
sleep(h):H but mitigate(l) { sleep (h)} :L

e Result: well-typed program using mitigate
has bounded leakage (e.g., O(log? T))

Evaluation Setup

« Simulated architecture satisfying security
properties with statically partitioned cache and
TLB

Name # of sets | 1ssue | block size latency

L1 Data Cache 128 4-way 32 byte I cycle
L2 Data Cache 1024 4-way 64 byte 6 cycles

L1 Inst. Cache 512 [-way 32 byte I cycle
L2 Inst. Cache 1024 4-way 64 byte 6 cycles
Data TLB 16 4-way 4KB 30 cycles
Instruction TLB 32 4-way 4KB 30 cycles

e Implemented on SimpleScalar simulator, v.3.0e

Web login example

e Valid usernames can be learned via
timing [Bortz&Boneh 07]

e Secret
o MD5 digest of valid (username, password) pairs
e Inputs

o 100 different (username, password) pairs

login time (in # of clock cycles)

Login behavior

valid usernames

100 —— 50 === 10 =eeer
29000 no mitigation
71500 r\jfv\uaﬁfxﬁﬁ
71000 H ’
70500 | V
70000 - :
69500 | : :
40400 | i . s than, s : g
40200 = iftaeme e g 4z SRR L A AR BT, 0k
40000 - §uT % R R IR PR
39800 |- 7 ah aRsuYouis GRS FHE LA
39600 |- 7 3 H T
87045 | | | | | | | W|t|h mlthatlon
87030 | & ’ A ﬁ i
e LAMMAAMALALAARLA
87000 L—*¢ | | N

0O 10 20 30 40 50 60 70 80 90 100

usernames

Performance

e nopar: unmodified hardware
« moft: secure hardware, no mitigation

e mon: secure hardware with mitigation

nopar | moff mon

ave. time (valid) | 70618 | 78610 | 86132

ave. ttme (invalid) | 39593 | 43756 | 36147

overhead (valid)] 1.11 1.22

RSA

e RSA reference implementation
o Secret: private keys

o Inputs: different encrypted messages

X10")

decryption time
) in cycles (

7

decryption time
in cycles (+3.2X10

RSA behavior

keyl — key2 ----
no mitigation

2.87 | | | | | | | | gl

1‘\; EX :‘11' "' t&“f]‘ ’ 3 "."n" - ,..’h ‘\'*‘- ‘NI‘\“‘» ’ll:l “'(‘\ l"‘;ﬁ" ;Y \v"" "‘r}“‘ "n‘: “{;.‘{"’ﬁt;’,ﬁ‘y‘vii
286 ' ' v _
- Www

O 10 20 30 40 50 60 70 80 90 100

1925 | | | Wlﬂ;l mitigation
1924 |- -
1923 |- -
1922
1921 | -
1920 l]] |

0 20 40 60 80 100
different encrypted messages

Conclusions

e We should care about
timing channels.

e Sources of optimism:

o Predictive mitigation, a new dynamic 1] |
mechanism for controlling leakage | 11

e Read and write labels as a clean, general
abstraction of hardware timing behavior,
enabling software/hardware codesign and...

o Static analysis of timing behavior with strong
guarantees of bounded information leakage.

