
New methods for
controlling timing

channels
Andrew Myers

Cornell University
(with Danfeng Zhang, Aslan Askarov)

Timing channels

Known to exist
Hard to detect
Hard to prevent except in special cases

e adversary can learn (a lot)
from timing measurements.

undetectable
threat of
unknown

importance

lack of feasible
defenses

+

A few timing attacks
• Network timing attacks

• RSA keys leaked by decryption time, measured across
network [Brumley&Boneh’05]

• Load time of web page reveals login status,
size and contents of shopping cart [Bortz&Boneh’07]

• Cache timing attacks
• AES keys leaked by timing memory accesses [Osvik et al’06]

from ~300 (!) encryptions

• Covert timing channels
• Transmit confidential data by controlling response time,

e.g., combined with SQL injection [Meer&Slaviero’07]

• Timing channels : a serious threat

e problem
• Timing may encode any secrets it depends on

• Strong adversary: able to affect system timing
(coresident code, by adding load,…)

system

input

output (+timing)

Timing channel mitigation
• Some standard ideas:
• Add random delays ⇒ lower bandwidth, linear leakage

• Delay to worst-case time ⇒ poor performance

• Input blinding ⇒ applicable only to cryptography

• New idea: predictive mitigation
• Applies to general computation
• Leakage asymptotically sublinear over time
• Effective in practice
• Applicable at system and language level

Variations → leakage

Leakage in bits = log2 N
A bound on:
 mutual information (Shannon entropy)
 min-entropy

N possible observations
by the adversary

Black-box predictive mitigation

system mitigator
bu

ffe
r

source
events

delayed
events

Issues events
according to

schedules

Prediction by doubling

time
S(2) S(4) S(6) S(8) S(10) S(12) S(14)

predictions: when mitigator
expects to deliver events

Mitigator starts with a fixed schedule S
S(n) – prediction for nth event

events

Example: Doubling

time

events

When event comes before or at the
prediction – delay the event

misprediction
X

little information leaked

S(2) S(4) S(6) S(8) S(10) S(12) S(14)

Example: Doubling

time
S(2) S2(3) S2(4) S2(5) S2(6) S2(7) S2(8)

events

Adversary observes mispredictions ⇒ information leaked
New fixed schedule S2 penalizes the event source

X X
new schedule

Example: Doubling

time
S(2) S2(3) S2(4) S3(5) S3(6)

Epoch: period of time during which
 mitigator meets all predictions

X X

epoch 1 epoch 2 epoch 3

Within epoch, output times can be predicted by adversary
too!

Quantifying leakage
• Variations within one epoch = M+1 = O(T)

• Over N epochs? (M+1)N

• Leakage with doubling scheme:

Leakage ≤ N log(M+1) bits = O(N log T) bits

Depends
on prediction scheme

N = O(log T)
leakage ≤ O(log2 T)

events

Adaptive transitions
• If predictions become too conservative, events are delayed

• queueing ⇒ no mispredictions

• Idea. if under misprediction “budget”, force an epoch
change:
• dump queued events

• generate a new schedule with better performance

mitigator
scheduling
algorithmsystemstem

secrets

non-secrets

Using public information
• Simple black-box model [CCS’10]
• Fixed schedule in each epoch – too conservative for interactive systems

• Generalized prediction [CCS’11]
• Fixed prediction algorithm implementing a deterministic function of

public information
• Schedule is calculated dynamically within epoch
• Algorithm changed at mispredictions

bu
ffe

r

source
events

delayed
events

inputs

Exploitable public information

Using public information improves
predictions for networked applications

• Public payloads in requests, such as URLs

www.example.com/index.html vs.
www.example.com/background.gif

• Time of input request

Evaluation
Real-world web applications (with HTTP(S) proxy)

Real-world applications

Local network
Proxy Client

M

Mitigating Web proxy

Demo

30%

Experiments with Web applications
Mitigating department homepage via HTTP
 (49 different requests)

• Different prediction schemes trade off security vs.
performance. With HOST+URLTYPE scheme:

• ~30% latency overhead
• < 850bits for 100,000 inputs

Performance Security

Experiments with Web applications

Mitigating department webmail server via HTTPS
• At most 300 bits for 100,000 inputs
• At most 450 bits for 32M inputs

 (1 input/sec for one year)

Less than
1 second

Performance Security

Related work
• Timing mitigation for cryptographic operations

[Kocher 96, Kopf & Durmuth 09, Kopf & Smith 10]

• Assumes input blinding

• NRL Pump/Network Pump [Kang et. al. 93, 96]

• Addresses covert channels from input acks

• Linear bound

• Information theory community [Hu 91, Giles&Hajek 02]

• Timing mitigation based on random delays

• Linear bound

Why language-level mitigation?
• What about the coresident adversary who

can time accesses to memory?

• AES keys leaked by timing memory accesses from ~300 (!)
encryptions [Osvik et al 06]

• A real problem for cloud computing...

• How can programmer know whether
program has timing channels?

• Idea: provide a static analysis (e.g., type
system) that verifies bounded leakage.

• and incorporate predictive mitigation!

Security policies
• Security policy lattice

• Information has label describing intended confidentiality

• In general, the labels form a lattice

• For this talk, a simple lattice:

• L=public, H=secret

• H should not flow to L

• Adversary powers

• Sees contents of low (L) memory (storage channel)

• Sees timing of updates to low memory (timing channel)

H

L

A timing channel
if (h)
 sleep(1);
else
 sleep(2);

A subtle example
if (h1)
 h2=l1;
else
 h2=l2;
l3=l1;

 Data cache affects timing!

Beneath the surface
if (h1)
 h2=l1;
else
 h2=l2;
l3=l1; compiler

optimizations

data/
instruction

cache

branch
target
buffer

data/
instruction

TLB

guarantees?

interface?

A language-level abstraction

L H
machine

environment

• Each operation has read label, write label
governing interaction with machine
environment(x := e)

[ℓr,ℓw]

machine env.
logically

partitioned by
security level

(e.g. high cache vs.
low cache)

Does not include
language-visible
state (memory)

Machine environment: state affecting
timing but invisible at language level

Read label

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence

(x := e)[ℓr,ℓw]

L H

machine
environment

(h1:=h2)[L, ℓw]

Write label

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects
L H

machine
environment

(x := e)[ℓr,ℓw]

(h1:=h2)[L,H]

Security properties
• Language implementation must satisfy

three (formally defined) properties:
1. Read label property

2. Write label property

3.Single-step noninterference: no leaks from
high environment to low environment

• Realizable on commodity HW (no-fill mode)

• Provides guidance to designers of future secure
architectures

L H

L’ H

Type system
• We analyze programs using an

information flow type system that
tracks timing

c : T ⇒ time to run c depends on
information at (at most) label T

• Read and write labels are key

• can be generated by analysis, inference,
programmer...

Examples:
c[H,ℓw] : H
sleep(h) : H
(x := y)[L,L] : L

if (h1)
 (h2:=l1)[L,H];
else
 (h2:=l2)[L,H];
(l3:=l1)[L,L]

low cache read cannot
be affected by h1

Formal results
• Memory and machine environment

noninterference:
A well-typed program without use of
mitigation leaks nothing via timing channels

H

L

H’

L’

before execution after execution

Language-level mitigation

• Executes s but adds time using predictive
mitigation

• New expressive power:
sleep(h) : H but mitigate(l) { sleep (h) } : L

• Result: well-typed program using mitigate
has bounded leakage (e.g., O(log2 T))

mitigate(l) { s }

label of running time mitigated command

Evaluation Setup
• Simulated architecture satisfying security

properties with statically partitioned cache and
TLB

• Implemented on SimpleScalar simulator, v.3.0e

Web login example

• Valid usernames can be learned via
timing [Bortz&Boneh 07]

• Secret

• MD5 digest of valid (username, password) pairs

• Inputs

• 100 different (username, password) pairs

Login behavior

Performance
• nopar: unmodified hardware

• moff: secure hardware, no mitigation

• mon: secure hardware with mitigation

RSA

• RSA reference implementation

• Secret: private keys

• Inputs: different encrypted messages

RSA behavior

Conclusions
• We should care about

timing channels.

• Sources of optimism:

• Predictive mitigation, a new dynamic
mechanism for controlling leakage

• Read and write labels as a clean, general
abstraction of hardware timing behavior,
enabling software/hardware codesign and...

• Static analysis of timing behavior with strong
guarantees of bounded information leakage.

[ℓr, ℓw]
L H

