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Timing channels

The adversary can learn (a lot)
from timing measurements.

.

Known to exist

Hard to detect

Hard to prevent except in special cases
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A few timing attacks

e Network timing attacks

o RSA keys leaked by decryption time, measured across
network [Brumley&Boneh’05]

o Load time of web page reveals login status,
size and contents of shopping cart [Bortz&Boneh'07]

o Cache timing attacks

o AES keys leaked by timing memory accesses [Osvik et al'06]
from ~300 (!) encryptions

o Covert timing channels

« Transmit confidential data by controlling response time,
e.g., combined with SQL injection [Meer&Slaviero’07]

e Timing channels : a serious threat




The problem

« Timing may encode any secrets it depends on

o Strong adversary: able to affect system timing
(coresident code, by adding load,...)
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Timing channel mitigation

e« Some standard ideas:

* Add random delays = lower bandwidth, linear leakage
* Delay to worst-case time = poor performance

* Input blinding = applicable only to cryptography

* New idea: predictive mitigation
e Applies to general computation

e Leakage asymptotically sublinear over time
« Effective in practice

e Applicable at system and language level
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Black-box predictive mitigation
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Prediction by doubling

predictions: when mitigator
expects to deliver events
events

.~ time
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Mitigator starts with a fixed schedule S
S(n) — prediction for nth event




Example: Doubling

events  Misprediction
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When event comes before or at the
prediction — delay the event

little information leaked




Example: Doubling

events new schedule
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Adversary observes mispredictions = information leaked

New fixed schedule S, penalizes the event source




Example: Doubling

Epoch: period of time during which
mitigator meets all predictions

X X
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epoch | epoch 2 epoch 3

Within epoch, output times can be predicted by adversary
too!




Quantifying leakage

e Variations within one epoch = M+1 = O(T)

e Over N epochs? (M+1)N m

Depends

on prediction scheme

Leakage < N log(M+1) bits = O(N log T) bits
 Leakage with doubling scheme:

N = O(log T)
leakage < O(log? T)




Adaptive transitions

e |If predictions become too conservative, events are delayed
* queueing = no mispredictions
e Idea. if under misprediction “budget”, force an epoch
change:
e dump queued events

« generate a new schedule with better performance




Using public information

 Simple black-box model [CCS’10]

* Fixed schedule in each epoch - too conservative for interactive systems

* Generalized prediction [CCS'11]

* Fixed prediction algorithm implementing a deterministic function of

public information

e Schedule is calculated dynamically within epoch

 Algorithm changed at mispredictions
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Exploitable public information

Using public information improves
predictions for networked applications

o Public payloads in requests, such as URLs

www.example.com/index.html wvs.
www.example.com/background.gif

o Time of input request




Evaluation

Real-world web applications (with HTTP(S) proxy)
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Mitigating Web proxy




Latency (ms)

Experiments with Web applications

Mitigating department homepage via HTTP
(49 different requests)

 Different prediction schemes trade off security vs.
performance. With HOST+URLTYPE scheme:

* ~30% latency overhead
* < 850Dbits for 100,000 inputs
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Latency (ms)

Experiments with Web applications

Mitigating department webmail server via HTTPS

e At most 300 bits for 100,000 inputs
e At most 450 bits for 32M inputs

(1 input/sec for one year)
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Related work

« Timing mitigation for cryptographic operations
[Kocher 96, Kopf & Durmuth 09, Kopf & Smith 10]

e Assumes input blinding
e NRL Pump/Network Pump [Kanget.al. 93, 96]
« Addresses covert channels from input acks
e Linear bound
 Information theory community [Hu 91, Giles&Hajek 02]
* Timing mitigation based on random delays

e Linear bound




Why language-level mitigation?

e What about the coresident adversary who
can time accesses to memory?

o AES keys leaked by timing memory accesses from ~300 (!)
encryptions [Osvik et al 06]

o Areal problem for cloud computing...

e How can programmer know whether
brogram has timing channels?

e Idea: provide a static analysis (e.g., type
system) that verifies bounded leakage.

« and incorporate predictive mitigation!




Security policies

e Security policy lattice

o Information has label describing intended confidentiality

o In general, the labels form a lattice
« For this talk, a simple lattice:
e L=public, H=secret

e H should not flow to L

e Adversary powers

o Sees contents of low (L) memory (storage channel)

o Sees timing of updates to low memory (timing channel)




A timing channel

if (h)
sleep(1);

else
sleep(2);




A subtle example

if (h1)
h2=l1;

else
h2=12;

13=l1;

Data cache affects timing!
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A language-level abstraction

‘ ‘- « Each operation has read label, write label

governing in

Seraction with machine

ehNrorme
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Machine environment: state affecting
timing but invisible at language level

machine env.
logically
partitioned by

security level

(e.g. high cache vs.
low cache)

L
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Read label

(X =€)y o1

abstracts how machine
environment affects
time taken by next
language-level step.

= upper bound on influence

(h1:=h2)[|_’ ]

L H
machine
environment




Write label

(X =€)y g,
(h1:=h2)[L,H)

abstracts how machine
environment is affected
by next language-level
step

= lower bound on effects




Security properties

e Language implementation must satisfy
three (formally defined) properties:

1.Read label property L

2. Write label property %

3.Single-step noninterference: no leaks from
high environment to low environment L

e Realizable on commodity HW (no-fill mode)

e Provides guidance to designers of future secure
architectures




Type system

« We analyze programs using an Examples:
information flow type system that | cHw:H

o leep(h) : H
tracks timin S
& (x:=y)wy:L

c: T = time to run c depends on if (h1)

information at (at most) label T (h2:=l1),H1;
else

e Read and write labels are key (h2:=12) 11

(3r=l1)qL,L

o« can be generated by analysis, inference,

programmetr...
low cache read cannot

be affected by h;




Formal results

e« Memory and machine environment
noninterference:
A well-typed program without use of
mitigation leaks nothing via timing channels

before execution after execution




Language-level mitigation

mitigate(() { s }

label of running time mitigated command

o Executes s but adds time using predictive
mitigation

o New expressive power:
sleep(h):H but mitigate(l) { sleep (h)} :L

e Result: well-typed program using mitigate
has bounded leakage (e.g., O(log? T))




Evaluation Setup

« Simulated architecture satisfying security
properties with statically partitioned cache and
TLB

Name # of sets | 1ssue | block size latency

L1 Data Cache 128 4-way 32 byte I cycle
L2 Data Cache 1024 4-way 64 byte 6 cycles

L1 Inst. Cache 512 [-way 32 byte I cycle
L2 Inst. Cache 1024 4-way 64 byte 6 cycles
Data TLB 16 4-way 4KB 30 cycles
Instruction TLB 32 4-way 4KB 30 cycles

e Implemented on SimpleScalar simulator, v.3.0e




Web login example

e Valid usernames can be learned via
timing [Bortz&Boneh 07]

e Secret
o MD5 digest of valid (username, password) pairs
e Inputs

o 100 different (username, password) pairs




login time (in # of clock cycles)

Login behavior

valid usernames
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Performance

e nopar: unmodified hardware
« moft: secure hardware, no mitigation

e mon: secure hardware with mitigation

nopar | moff mon

ave. time (valid) | 70618 | 78610 | 86132

ave. ttme (invalid) | 39593 | 43756 | 36147

overhead (valid) ] 1.11 1.22




RSA

e RSA reference implementation
o Secret: private keys

o Inputs: different encrypted messages
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Conclusions

e We should care about
timing channels.

e Sources of optimism:

o Predictive mitigation, a new dynamic 1] |
mechanism for controlling leakage | 11

e Read and write labels as a clean, general
abstraction of hardware timing behavior,
enabling software/hardware codesign and...

o Static analysis of timing behavior with strong
guarantees of bounded information leakage.




