This distribution contains a pre-trained version of our text identification,

rule line detection, and zone segmentation algorithms.

Contact: Yefeng Zheng (zhengyf@umiacs.umd.edu),

 Huiping Li (huiping@umiacs.umd.edu)

 David Doermann (doermann@umiacs.umd.edu)

Platform:

All APIs are complied under Visual C++ 6.0. If the folder structures are not changed,

one can open the work space files with Visual C++ 6.0, and compile them without any extra

configuration.

Description:

There are three separate APIs in this distribution.

Text identification API

This API identifies printed English text and handwriting from noise document images. It first segments the document into word blocks, then a pre-trained Fisher classifier is used to classify each block into printed text, handwriting or noise. As a post-processing, Markov Random Filed (MRF) based method is exploited to refine the classification result. After that, different contents can be separated into different images, or the results can be outputted to a ZONE file. The semantics of a ZONE file can be found in TextIdentificationAPI.doc under the doc directory. We provide a tool, GTMaker, to view the ZONE file. In GTMaker, printed text, handwriting, and noise blocks are displayed in blue, red and green colors. Some noise blocks may be displayed in yellow color. This means that these noise blocks are too large or too small that they are filtered out as noise directly without classification.

The following code is an example illustrating how to use TextID API.

CTILayerSeparate
LayerSeparate;

//Set the image for processing

if(LayerSeparate.TISetImage(fnImg) != NULL)

return -1;

//Perform word segmentation

if(LayerSeparate.TIWordSegmentation() != NULL)

return -1;

//Set the trained classifier. A pre-trained classfier

 //is available as Classifier.clf under the models directory.

if(LayerSeparate.TISetClassifier(fnClassifier) != 0)

return -1;

//Do classification

if(LayerSeparate.TIClassification() != 0)

return -1;

//Set the trained MRF model for post-processing. A pre-trained

//classifier is available as MRF.mrf under the models directory.

if(LayerSeparate.TISetMRFModel(fnMRF) != 0)

return -1;

//Post-processing

if(LayerSeparate.TIMRFPostProcessing() != 0)

return -1;

//
WORD_ZONE *pWord = NULL;

//
int nWord;

//
if(LayerSeparate.TIGetWord(pWord, nWord) != 0)

//

return -1;

//NOTE: You do not need to free pWord. It is managed by the API.

//Output the result to a ZONE file

if(LayerSeparate.TIOutputZone(fnZone) != 0)

return -1;

//Save the identified printed text into fnLayer file

if(LayerSeparate.TISaveLayer(fnLayer, 1) != 0)

return -1;

There are several factors which may contribute to deteriorate the performance of the text identification module. One of them is failure of the segmentation module. The segmentation module is developed for printed English text, but the parameters can be tuned to achieve good results on printed Chinese text as well. We did not try it on scripts other than English and Chinese. Our experience shows that languages such as Arabic are very different from English text. It is hard to achieve a good result by tuning the parameters of the segmentation module. A different algorithm should be developed for Arabic word segmentation. If the segmentation result is reasonable, however, the classification accuracy may still be ineffective. We provide mechanism to train the classifier on a specified data set. Warning!!! The groundtruthing procedure can be very time consuming. First one must label at least hundreds of blocks for each type of printed text, handwriting and noise, and store the groundtruth in a ZONE file. One ZONE file for one image. To train a classifier, both image files and zone files are needed. After that, a configuration file should be compiled to tell the system where to find the image and zone files. The semantics of the configure file can be founded in TextIdentificationAPI.doc under the doc directory. With the groundtruth available, one can train the classifier and MRF post-processing model. \samples\TextID contains the data set we used for training. classifier.train file under models directory is an example configuration file for this training set. The following code illustrates how to train a classifier.

CTITrainClassifier TrainClassifier;

//Set configuration of the training data set

if(TrainClassifier.TISetTrainConfig(fnTrainConfig) != 0)

return -1;

//Train a classifier

if(TrainClassifier.TITrainClassifier() != 0)

return -1;

//Output the trained classifier to a file.

if(TrainClassifier.TIOutputClassifier("C:\\Test.Fisher") != 0)

return -1;

The training of the MRF model is very similar to the training of a classifier. However, the semantics of the configuration file is different. Please refer to TextIdentificationAPI.doc under the doc directory for details. \samples\TextID contains the data set we used for training. MRF.train file under models directory is an example configuration file for this training set. The following code illustrates how to train an MRF model.

CTITrainMRFModel TrainMRFModel;

//Set the configure file of the training data set

if(TrainMRFModel.TISetTrainConfig(fnTrainConfig) != 0)

return -1;

//Train the MRF model

if(TrainMRFModel.TITrainMRFModel() != 0)

return -1;

//Output the trained MRF model

if(TrainMRFModel.TIOutputMRFModel("C:\\MRF.txt") != 0)

return -1;

Rule line detection and removal API

We use Hidden Markov Model (HMM) based method to detect rule lines.

The following code illustrates how to use this API.

CRLLineDetection
LineDetect;

//Set the image for processing

LineDetect.RLSetImage(fnImg);

//Set the pre-trained HMM model.

LineDetect.RLSetHMMModel(fnHMM_Model);

//Detect rule liens

LineDetect.RLLineDetect();

//Get the detection result

LINE *pLine;

int nLine;

LineDetect.RLGetLines(pLine, nLine);

//Rule line removal

LineDetect.RLLineRemove();

//Get the image after rule line removal

BYTE *pCleanImg;

int w;

int h;

LineDetect.RLGetCleanImage(pCleanImg, w, h);

//Output the image after rule line removal to a new image file

LineDetect.RLSaveCleanImage(fnCleanImg);

We trained the HMM model on a collection of very heterogeneous data set. And the line detection accuracy is very high. Therefore, normally, you do not need to train the HMM model on your own data set. For the completeness, we do provide a mechanism to train the HMM model in this API. For training, one must first prepare a ground-truthed data set. For each image, one LINE file should be prepared to indicate the positions of all rule lines on the image. The semantics of the LINE file can be founded in RuleLineDetectionAPI.doc under the doc directory. Then, one should compile a configuration file describing the data set. The details of the configuration file can be found in RuleLineDetectionAPI.doc under the doc directory. \samples\RuleLine contains the training set we used to train the HMM model. And RuleLineHMM.train under the models directory is an example configuration file for this training set. The following code illustrates how to train a HMM model for rule lines.

CRLTrainHMM
TrainHMM;

//Set the configure of the training data set

TrainHMM.RLSetTrainConfig(fnTrainConfig);

//Train the HMM model

TrainHMM.RLTrainRuleLineModel();

//Output the trained HMM model

TrainHMM.RLOutputRuleLineModel("TestHMM.hmm");

--

Zone segmentation

This API transplants PSET (Page Segmentation Evaluation Tools), developed by Song Mao, from UNIX to Windows. Three zone segmentation algorithms have been implanted, the Docstrum algorithm, XY-Cut algorithm, and Voronoi algorithm. Please refer Song Mao’s paper “ZoneSegmentation_TPAMI.pdf” under doc directory for details. First, one set the image for processing, then one can call any segmentation method. The segmentation result can be outputted to a ZONE file. The semantics of the ZONE file can be found in TextIdentificationAPI.doc under the doc directory. Simple description of parameters of the segmentation algorithms can be found in ZoneSegmentationAPI.doc under the doc directory. The following code illustrates how to use this API.

//Set the image for processing

ZoneSeg.ZSSetImage(fnImg);

//Zone segmentation using the XYCut method. Using the default parameter.

ZoneSeg.ZSXycut(NULL);

//Zone segmentation using the Docstrum method.

//Using the default parameter.

ZoneSeg.ZSDocstrum(NULL);

//Zone segmentation using the Voronoi method. Using the default parameter.

ZoneSeg.ZSVoronoi(NULL);

//Output the zone segmentation result to a ZONE file.

ZoneSeg.ZSOutputZone(fnZone);

The package contains several directories:

/bin

Executable and DLL files

 GT.exe

A GUI tool for text identification

 TestAPI.exe

A simple testing program to call APIs

 TextID.dll

API for text identification

 RuleLine.dll

API for rule line detection and removal

 ZoneSeg.dll

API for zone segmentation

/src

Source code

 /src/GTMaker

GUI interface for text identification

 /src/RuleLine

Rule line detection API source

 /src/TextID

Text identification API source

 /src/ZoneSeg

Zone segmentation API source code

 /src/TestAPI

A simple testing program to call APIs

 /src/ImageLib

A image reading and writing library

/doc

Documentation of the program

 RuleLineDetectionAPI.doc
Documentation for the API for rule line detection

 TextIdentificationAPI.doc Documentation for the API for text identification

 ZoneSegmentationAPI.doc Documentation for the API for zone segmentation

 RuleLine_Zheng.pdf A technique report on rule line detection

 TextIdentification_Zheng.pdf technical report on text identification

 ZoneSegmentation_TPAMI.pdf PAMI about zone segmentation evaluation

/include Header files for API. This directory should be included

in the "Include" directory for Visual C++ to correctly find

these head files.

 RuleLineAPI.h

Header file for rule line detection API

 TextIDAPI.h

Header file for text identification API

 ZoneSegAPI.h

Header file for zone segmentation API

/lib Import library files for APIs. There are several ways to

call functions inside a DLL. Using the import library is

the easiest.

 RuleLine.lib

Import library file for rule line detection API

 TextID.lib

Import library file for text identification API

 ZoneSeg.lib

Import library file for zone segmentation API

/samples

Some testing samples

/RuleLine

Groundtruthed training set for rule line detection

/TextID

Groundtruthed training set for text identification

/PrintedText

The identified printed text from the images under

/TextID

/config

Empty

/models
Trained models

 Classifier.train
Configure file to train classifier for text

identification

 MRF.train
Configure file to train the MRF model for

postprocessing of text identification

 Classifier.clf
Trained classifier

 MRF.mrf
Trained MRF model

 RuleLineHMM.train
Configure file to train the HMM model for rule

line detection

 line.hmm
Trained HMM model

Please refer to files under /doc for detailed information.

