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Abstract—Since cameras blur the incoming light before sam- class of transformations for which it is possible, and how to
pling, different images of the same surface contain informéon  construct this second image in each case.
about that surface. We flrst. consider how to synthesize one ew Finally, as an example of the practical use of this frame-
of a surface from another; If the transformation between the . . . .
two views is affine, we show that this is possible if and only if work, we consider the problem of multiple view image re-
the singular values of the affine matrix are positive definiteat Construction. Suppose that we have several views, and the
all points. Next, we consider how to combine the information transformations between them. Each input image here will
in several views of a surface into a single output image. By have been subjected to different filtering. Now, we want to
developing a new tool called “frequency segmentation” we SW g1t an output image containing the best content fibm a
how this can be done despite not knowing the blurring kernel. . . . X .

input images. Here, we consider this problem in the context

Index Terms—Reconstruction, Restoration, Sharpening and that the blurring kernet is unknown (Though we will make
deblurring, Smoothing some weak assumptions about its form.) We will see that
despite this, it is still possible to reconstruct an outpoage
that is visibly less blurred than any input image. Intuilyye
this is done by taking each frequency from the image in

This paper concerns a very basic question: What afhich it is least filtered. To do this we develop a tool we
the relationships between multiple views of a surface? Thiall “frequency segmentation”. This divides up the space of
question is only partially answered by the geometry of theequencies into a few regions. In each region, one inpugna
situation. Consider two points in different images thati@td has been least filtered. We first apply this to the case of
to the same 3-D surface point. Even supposing the imagsftine transformations, and then more general transfoomsti
are perfectly Lambertian, and disregarding issues like likhrough a strategy of local linearization.
lighting or noise, the image intensities will still in geaér
be different. This is because cameras do not mamedasure )
the incoming light. Before measurement, the signal is afiic A Previous Work
filtered orblurred. Given the finite resolution of cameras, this As regards our application of multiple view image recon-
is necessary to avoid aliasing effects. However, because thtruction, we are aware of only of the paper by Wang et. al
blurring is fixed to the camera’s coordinate system, difiere[10]. Their method uses the assumption the the image bturrin
views of a surface result in different measured signalss Thi is an ideal low-pass filter, so it is not applicable here, wher
true even if the geometrical transformation between thevsie the filtering is unknown.
is corrected for. There is also work less closely related to this particular

To understand this situation, this paper introduces a veapplication that touches on similar issues. In 1990, Stoag w
simple formalism. We contrast between what we call the ‘idemterested in the problem of shape from texture [8]. He pint
image”, corresponding to the unblurred incoming light, andut that in general, a circular filter on the image will prdjec
the “real image”, corresponding to the measured signal. Tteea non-circular region on the surface in view. As such, he
ideal image can never actually be measured, but it allows poposed an iterative scheme for computing both the surface
to separate the geometric and filtering effects in our amalysshape, and a set of elliptical filters, one for each imagetpoin
If the ideal image is some functionand the real image is These filters would each project to an identical area on the
some functionj, we simply write j = i * e, wheree is the object surface. Each iteration consisted of an update to the
blurring kernel. (Herei, 7, ande are all continuous functions. shape, and then the filters, each using the current best esti-
Assuming that the signal is low-pass filtered appropriately mates. In later work [9], however, Stone and Isard suggested
can be reconstructed from the discretely sampled pixelse) Tonly updating the size of circularly symmetric filters. They
advantage of this is that given the transformation betwe®en targued that, in practice, filters projecting to differenagbs
views, one view’s ideal image exactly specifies the oth&ts. on the object surface will yield similar measurements ag lon
we can ignore the 3-D structure of the scene, and considerthe areas of projection are the same.
only the transformation between the views. From a more theoretical perspective, Lindeberg [3] consid-

Given this setup, it is easy to derive a number of theorerased how to extend linear (symmetric) scale-space, agivin
about the relationships between different views. After w feat the idea of Affine Gaussian scale-space. The principal
basic results, we will ask the following question: Suppoge wbservation is that Affine Gaussian scale-space is closéérun
have the real imagg for one view, the blurring kernel, and affine warpings, unlike the space where the image is filtered
a transformation to a second view. When will it be possible nly with a symmetric Gaussian. These ideas were later used
construct the (real) image for the second view? We will sd®y Lindeberg and Garding [3] for 3-D shape estimation from
this this is only sometimes possible. We will charactertze t texture.

I. INTRODUCTION



Several authors have used Affine Gaussian scale spacg) eis a monotonically decreasing low-pass filter. Formally,
for different applications. Ravela [7] uses an optimizatio if jug| > |uy], thenE(uz) < E(uy).
procedure to select local affine parameters at all pointss Thnotice that unlike the ideal images, the real images need not
is shown to improve performance on recognition problems.match at corresponding points.

Another area of work that has touched similar issues is
affine invariant region detection [5]. Specifically, the Hsy Xg = AX) /A ja(%2) = j1(x1) (6)
Affine & Hessian Affine detectors [6] consider the affine
Gaussian scale space of an image, and search for extrerha, bof he key result driving this paper is the following simple

with respect to position and the covariances of the Gaussidif!eorem. Contrast this with Egn. 3 for the ideal images.
Theorem 2 (Affine Blurring Theorem):

Il. SETUP ja (x) = |Alfi % e (x) @)

Though all our proofs are fairly simple, for clarity, we Proof: (Postponed) u
postpone them whenever they are tedious, or distract fromThis shows that when warped into the coordinate system
the main ideas of the paper. of the first image, the second image is equivalent to the first

ideal image, convolved with a warped version of the low-pass
filter. |A| acts as a normalization factor so that integrates
to the same value as

Another useful result is given by taking the Fourier Trans-
form of both sides of Eqgn. 7.

Theorem 3 (Fourier Affine Blurring Theorem):

A. Preliminaries

Given some functionf, and a matrixA, we will use the
notation f4 to representf, warped under the motioA. That
is, f4 is the function such that,

vx, fA(x) = f(Ax). (1) FLis )} = [ - B4 ](w) ®
We will use lowercase letters, (or 5) to represent functions Proof: (Postponed) u
in the spatial domain, and uppercase lettdisof J) for the
frequency domain. Boldface letterg)(represent vectors. C. Affine Gaussian scale-space
Finally, we will use of the following theorem, which is a |t the blurring kernel is a Gaussian, we can use Egn. 7 to
special case of the affine Fourier theorem [1]. get the relationship betwegi and;j3' more explicitly. Letgs,

Theorem 1 (Translation-Free Affine Fourier Theorem):  denote an origin-centered Gaussian with covariance mtrix
If F{f(x)} = F(u) then F{fAx)} = [A"FA "(w)  Theme=gor.
Proof: (Postponed) - 5100) = [i2 % gor]() o

. Then, we can understand how the Gaussian behaves under
B. Basic Results warping through the following theorem.
Assume that we have two images of the same surface, taked heorem 4:

under affine motion. With out loss of generality, assume that 1

A e

the transformation sends the origin to the origin. Then; if g (x) = |A|9A712A’T(X) (10)

andis are the ideal images, there exists sorhsuch that Proof: (Postponed) -

_ ) From this, the following relationship follows immediately

Xo = Axy — ia(X2) = i1(x1) (2)

Or equivalently, J3' (%) = [i1 * gga-14-7](%) (11)
A ) Notice that the constant ofA| was absorbed into the

iy (%) = i1(x) (3)  Gaussian. Note that essentially this same relationshipasik

Let j; and j» be the real, observed images. Lebe the in the literature on Affine Gaussian scale-space. [4]
low-pass filter applied by the optics of the camera.
D. Parametrization of A
Jji(x) = [i1 * €](x) (4) Though A has four parameters, it turns out that there

are only three parameters of interest to us here. Consider
the following decomposition ofd, which follows from the

J2(x) = [i2 # €](x) ®) Singular Value Decomposition [2].
The results in this paper are independent of the particular
form of e. However, we make two assumptions: A= R(0)R(—¢)DR(¢) (12)

1) e is circularly symmetric. Formallyg(x) is a function
of x| only. Notice that ifE(u) is the Fourier Transform D= [ A0 }

of e(x), this also implies thaF is circularly symmetric. (13)



Figure 1. Visualization of the four parameters of A. We cae s®t the effect ofR(—¢)DR(¢) is to stretch by factors ok;, and A2 along axes an angle
of ¢ away from the starting axes.

(a) Initial Points. (b) After R(—¢)DR(¢). (c) After rotation byé.

This decomposition is visualized in Fig. 1. It will be We will say that a view “is accessible” from another view
convenient later to make reference to the paramelerg, taken under motiord if there exists a filterd such thate =
A1, and )\, with out explicitly specifying that they correspond|A|e * d. Notice that if this is the case, then
to some matrixA.

The key result here is that the paramétdras no role in the

A . A
blurring behavior of the images. Intuitivel,is just a rotation, b3+ dl(x) = |A|K21 * eA) xd](x) (14)
which has no effect on the filtering since the low-pass filter = [A[ir = (e” = d)](x) (15)
has no preferred direction. Warping into j3' removes any = [i1 xe](x) (16)
effects due t@. This is formalized in the following theorem. _
Ji(x). (17)
Theorem 5:

The following theorem formalizes exactly when one view
is accessible from another. It is worth sketching the proof i

Proof: Notice that the expression fgs in Eqn. 7 depends SOMe detail. _ -
on A only through|A|, ande?. By our assumption thatis ~ 1heorem 6 (Two-View Accessibility Theorem):
circularly symmetric,e4(x) = e(Ax) = e(|Ax|) does not Ji is accessible frorr_)g if and only if \, >_.1 and X, > 1. .
depend ory. It is also easy to see that| is independent of Pr_oof: We will develop_several condm_ons, each of which
9. m IS equivalent to the assertiory" is accessible fromy,”. By
definition, this means there is a validsuch that

j3% is independent o#.

[1l. TwWO-VIEW ACCESSIBILITY vx, [|Ale? * d](x) = e(x). (18)

Suppose we are given only andjo. A question arises: is  Apply the Translation-Free Affine Fourier Theoremed.
it possible to filterj3' so as to synthesizg? As we will show

below, this is only sometimes possible. Fletx)} = |A—1|EA’T(u) (19)
We must first specify what operations are allowed. In this . )

paper, we want to avoid the problem of deconvolution, or NOw, if we also take the Fourier Transform éfande, the

deblurring. In theory, if the low-pass filtéf were nonzero for condition is, by the convolution theorem,

all frequencies, it would be possible to increase the magait

of all frequencies to completely cancel out the effects @f th Vu, E(A""u) - D(u) = E(u). (20)

filtering. With the ideal image in hand, any other view couéd b

synthesized. However, in practice, this can be done onl)aforE

limited range of frequencies, because for high frequertties

noise in the observed image will usually be much larger than

the signal remaining after filtering. [cite deconvoluti@view]

If deconvolution is practical, we can imagine that it hagatty It is not hard to show that this is equivalent to the singular

been applied, and the problem restated with an appropriatehlues ofA (A\; and ;) being greater than zero. ]

changed blurring kernel and inputimages. Hence, we wilitlim  So whenj; is in fact accessible fromj,, constructing the

ourselves to strategies that do not attempt to invert theibty  filter is trivial. Simply setD(u) = E(u)/E(A~Tu) for all

kernel. u, and obtaind by the inverse Fourier Transform. The exact
Suppose that we apply some filtérto one of the images. form of d will of course depend on the form ef

If D is the Fourier Transform of, we require thatD does For example, supposeis a Gaussian filter. Legs; denote

not increase the magnitude of any frequency. Formally, flor @ Gaussian function with covariance matbix We need that

u, we must haveD(u) < 1. JoI = gya—1a-7 * d. (Recall Egn. 11.) Sinces, * gu, =

Since we need thabD(u) < 1 for all u, we require that
(A=Tu) > E(u). This will be the case when

v, [A"Tu| < [ul. (21)



gs,+3,, We can see that = g,(;_4-14-7). For this to be a  The optimal solution is to set the filters so as to minimize
valid Gaussian, the covariance matfix- A=' A~ must be the amount of information removed.
positive definite. This is true if and only if the singular wab

of A are greater than zero, confirming the above theorem. B () if B(u)>FEA™" (u)

For another example, supposéas an ideal low pass filter. Di(u) = 1 Blu) i B ; pAT (26)
That is, supposé&(u) = 1 when|u| < r for some threshold it Bu) < ()
7, and. zero .otherwise. In this case, we” can dse e. Thg 1 it E(u) > EAiT(u)
effect is to filter out those frequencies jig' that are not in Ds(u) = { B(u) _ A-T (27)
Jji. However, if the singular values of are not both greater EA™T (u) it E(u) < £ (u)

than one, there will be some frequenciesjinthat are not in

The problem remains how to divide up the spaceuwof
j4', and againj; would be inaccessible. P P P

into those where or EA™ " is greater. This problem will be
addressed in a more general context in Section IV.
A. Accessibility and Matching

The accessibility theorem has some possible applicatmnsg Example

image matching that we briefly discuss here. This section can ) . i
be skipped with out loss of continuity. In this example, we use synthetically generated images

Suppose that we have bojh and j», and we hypothesize consisting o_f white noise, because the broad frequenc;eo_ont
that they vary by some motiod. How can we check if this makes flltermg easy to see. We use a symmetric Gaussian for
is true? Of course, we can not just compare pixel intensitidd® low pass filter. Hence, = g, . . _
becausej; and j& will usually be different, despite corre- N Fig. 2, the first image is observed with a motion
sponding to the same surface. 11 0

A better idea is to do filtering as in the previous section to A= { i }
create a “possible copy” of, from j3', under the assumption 0 22
that the image regions do correspond. However, this mayrelative to the first image. (Notice the large amount of
or may not be possible, depending oh There are three vertical stretching and the mild horizontal stretchingincg
situations. here, both\; and )\, are greater than one, the first image is in

1) A\ > 1, X2 > 1. Here we could do the filtering exactlyfact accessible from the second. Hence, if we filter the s¢con

as described above. image appropriately, we obtain the first, as in the example.

2) M1 < 1, A2 < 1. Now, j; is not accessible fronjs.

However, by symmetry, we can instead try to synthesize IV. FREQUENCY SEGMENTATION

i, from j1, under a hypothesized motion df!. (The . _—
J2 1 yp ( Before we can move on to multiple view image reconstruc-

singular values ofA=! will both be greater than one.) . B .
R tion, we must develop a tool we call “frequency segmentation
3) A1 > 1, A2 < 1,0r A1 <1, Ay > 1. In this situation, .
Suppose we have a set of images warped to a common

neither image is accessible from the other. Intuitively,

this means that both images contain some frequenc:fjeosordmate systenj; * (x)}, as well as the set of motions that

that are reduced (or eliminated) in the other image. Pr(.)d_UCEd those |mage$Ai}._ The qu_estlon_w_e are m_terestid
he first two situations can be dealt with by the metho in is: for a given frequency, in what image is it least filtered~
The firs y 98 this section, we will develop a method to segment frequenc

above, but the third needs more discussion. The prOblem,sEace into labeled regions. In each region, the label ghes t

how to filter the_ images to remove any extra information_ Ildex of the image with the least filtering for that region's
one image that is not present in the other. At the same t'n?f%quencies
we would like to remove as little information as possibleeTh /. a1 V\}rite the Fourier Transform of each of the images
goal is to create filters, andd, such that as the ideal image with a warped version of the low-pass.filter
) ) Recall Eqgn. 8.

Vx, [j1 * di](x) = [j3" * da] (x). (22)
Consider this in the frequency domain. For the left hand F{it(x)} = [I-EAJT](u)

side, we have . . . .
The problem is to determine for eaeh for which A; is

E(A; Tu) maximum, or equivalently, for which; is |JA; " u|
F{j1xdi} = Ji(u) - Di(u) = I (u) - E(u) - D1(u). (23) minimum. Notice that this will depend only on the angle of
u, and not on its magnitude— il; is minimum for someu,
it will also be minimum forau, for anya.
So, for each anglé, we would like to choose the motion

For the right hand side, recall the Fourier Transforny$f
from Eqn. 8. Then

A _ AT such thatF(A; " [cos ,sin §]7) is maximum. This is equiv-
Flig =z} = L(w)- BT (u) - Da(u). (24) alent to| A; " [cos 0, sin 0] | being minimum. We can picture
So we will need to construct the filters such that the situation by drawing a curve, where for each artgleve

. use the lengthA; “[cos 0, sin )7|. (Fig 3(a)). To 'carve up’
Yu,E(u) - Di(u) = E4 (u) - Dy(n). (25) the space of frequencies, we need two steps.



Figure 2. A demonstration of 2-view accessibility, with amaige of white noise, an image from the declaration of indégece. a);. b) j. ) jé“. Notice
that there is visual content clearly visible jn, but not injé“ d) the filterd. e) the result of convolving‘é“ with d. Notice that this is almost identical tf .

(@ (d)

Figure 3. Frequency Segmentation.
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1) For each pair of motions!;, and 4;, find points for < 0j,0;41 >, unlesy; was produced by the intersection
which the curves meet. That is, findsuch that of A; with some other motiomM,,, and 4;, is “smaller”

than A; in the sense of Egn. 30. This means that we

4 Tu| = |Aj Tu|' (28) only need to test at most two motions in each region.
This is equivalent to findingr such that The entire frequency segmentation process is illustratéig.
oy o 3. Part (a) shows the magnitudd; *[cos 6, sin 6]7| plotted

u (A7 A7 —AA7 Ju=0. (29)  for each angl®. In part (b), the angles are found where the

f motions “intersect”. In part (c), the shape is shown, where f

Notice that this does not depend on the magnitude.o %filch angle, the magnitude is taken from the best motion.

If we assume that either the first or second component
u is nonzero, this can be solved by setting= [u,, 1]7

or u = [1,u,]7, and solving a quadratic equation. V. RECONSTRUCTION WITH ANUNKNOWN KERNEL
Complex values as a solution indicate that the two curvesAt this point, one might proceed to show how to extend
do not intersect. the results of Section IlI-A to the case of many views. This

2) Find the angles of the points found in the previous is certainly possible. One could define alternate condition
step and sort them. Now, form pairs from all adjacenb those in the two-view accessibility theorem— rather than
angles. This results in a sequence of pairs of angléssisting that each frequency in the desired view is lessrét
< 01,00 >,< 02,03 >,... < 01,0, >. It remains in the other, the condition would be that for each frequency i
to find the motion that has the smallest value in eadhe desired view there is at least one image in which it is less
region. The simplest procedure would simply be to tefittered. Given this, one could use frequency segmentaton t
all motions, and explicitly find build appropriate filters and synthesize new views.

cos(.5(8; +6,41)) Howeve'r, the above'will only be possible if the 'blurring

sin( 5(0j»+0]» ) |. (30) kernt_al, e, is knoyvn. Given the dlfflc_ulty (_)f measuring the
RCAIREAS blurring kernel in real cameras, this might be of mostly

This works, but has a worse-case time complexity dheoretical interest. In this paper, we will instead focus o

O(n?), wheren is the number of input images. Howeverwhat to do if the blurring kernel is unknown.

an optimization can reduce this t0(n?logn), the It might initially seem that it is not possible to do multiple

complexity of the sorting step: For each angle keep view reconstruction with out knowing the blurring kernel.

track of the motions whose intersection produced thétowever, notice that our frequency segmentation method doe
angle. Then, if some motioA; is minimum in the region not make use of the particular form ef only the assumption

< 0j_1,0; >, A; will also be minimum in the region that it is circularly symmetric and monotonically decreasi

arg min |A; 7
K2



The problem of how to define appropriate filters remainsgigure 5. The frequency slice filter in the spatial domain.
Clearly, it is impossible to synthesize a view with out knowi c c
the blurring kernel that view is the result of. Hence, we 0,172,.5 1/10,4710,.5
must redefine the output of our algorithm. Rather than tryin¢2°
to create an image that is the result of some motion, wi
will simply combine the frequencies in the input imagas,
their observed levelsinto one output image. To do this, it N
is not necessary to know the blurring kernel. After frequenc o SNSRI
segmentation is done, one needs to only design a filter thi 3
will take a certain range of frequencies from each images Thi
problem is addressed in the Section VI.

The intuition behind the method is given by the following 2 5
algorithm. However, we emphasize that this is only for the

-
~
~

0 20

sake of explanation— the results in this paper do not use this (@) (b)
algorithm.
1) Input a set of imagesy, js2, -..jn, and a corresponding
set of motions,4;, A, ... Aj. First, suppose we would like to create a filter that passes
2) Warp each image to the central coordinate system, dQactly those frequencies in the first and third quadramtsaf(
obtain j: (x). is, 61 = 0, §2 = 7/2.) Naively, we would just plug these
3) For each imagej; compute the Fourier Transform ofvalues into the above equation. However, if we do this, the
the warped imageF{j*}(u) = [I - B4 ](u). inverse Fourier Transform will not converge. A convenietf
4) Create the reconstructed image in the Fourier domaig.useful here- the images have already been low-pass dltere
For all u, set K(u) = ]—'{jf"}(u), where I = Hence, it does not matter what the filter does to very high
arg min; IA[Tul- frequencies. So, instead, we will define the following filter
5) Output the image in the spatial domaik(x) = (Fig. 4(b))
FYK}.
Steps 1-3 simply create the frequency domain represengatio 1 0<argu<n/2, and|u| <r
of the input images in a common coordinate system. To Cp r/2,-(0) = {0 eI;e B ' B (32)
understand step 4, notice that for each frequency, we would

like to take it from each image in which it has been filtered Before extending this to the case of otltgr 65, we will

least. Now, since we assume thB{u) is a monotonically find the inverse Fourier transform.

decreasing function ofu| only, we would like to select the

motion for which|A; Tu] is least. Co,n /2,0 (%) = FHConj2,r(0)} (33)
However, this simple algorithm can only work when the

global motion is affine. Here, we will present a different o

algorithm which operates completely in the spatial domain. = / Co,r/2,r(u) exp(2miu’ x)du (34)

It will later turn out that this allows us to do reconstructio "

for transformations that are only locally affine- for exampl

full projective transformations. Nevertheless, the aittpon = / [exp(2miu?x) 4 exp(—2miu’ x)]du (35)

operates on the same principles as the simple one above. O<usr
It is also important to consider what will happen if our

assumptions on violated. Suppose is not exactly circularly

symmetric, or suppose that it is spatially variant. (In real

cameras these are both likely to be true to some degree.) 1

As long as these conditions are not dramatically violated;" m[COS(27T7"$)+COS(27T7"ZJ)—Cos(27rr(;z:—|—y))—1] (37)

the frequency segmentation boundaries will still be found

] . . [Examples ofc in the spatial domain are shown in Fig. 5.
nearby the optimal ones, and hence the reconstruction will o : X .
S otice specifically that this function decreases by theriswe
still improve the results.

of zy. Hence, it has relatively small extent in the spatial
domain. This will be important in extending the approach to
VI. THE FREQUENCY SLICE FILTER non-affine transformations. Now, we need to define the filter
The overall goal here is to create a filter which will pasfor arbitrary angles. Giver,, and6,, define the following
a certain range of frequencies. More specifically, giveand matrix:
0>, we would like a filterc such that, in the frequency domain

(Fig. 4(a)), Vo { cosfy cosfy } (38)

sinf; sinfs

= / 2 cos(2mu’ x)du (36)
0<u<r

1 6 <argu<¥ 1 ice fi i
Co, 0, (1) = 1S argu = 0 (31) Now, we can define the frequency slice filter for arbitrary
0 else angles.



Figure 4. The frequency slice filter in the Fourier domain.
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Algorithm 1 Affine Reconstruction local process- the filters have a small area of support. fistur
1) Input a set of imagegy, jo, ... jn, and a corresponding out that we can extend the method to essentially arbitrary
set of motions Ay, A,, ... A, differentiable transformations. This is because any offe
2) Warp each image to the central coordinate system, tigble transformation can be locally approximated as affine
obtain j* (x). We will give examples here for projective transformations,

3) Use the method described in Section IV to segmeptt it is simplest to first show how to approximate a general
frequency space. Obtain a set of pairs of angles, alotrgnsformation. Suppose that some functidix) gives the
with the best motion in that regior; 6;1, 0,2, A; >. transformation, so

4) outputk = 37, [5A % oy, 000 -

if Xo = t(Xl) , theniQ(XQ) = il(Xl). (42)

It follows that

Co1,00,r (%) = [Veg 2, (%) (39) Vx, da(x) = i1 (t 71 (x)). (43)
To see why this works, apply the translation-free affine now write j» in the usual way.
Fourier theorem to the right hand side. '
Jo(x) = [iz * €](x) (44)

T _ T\—T
FUVIC pyon (0} = [VI-[VTICY ) (w)  (40)

Jo(x) = // i1t (x = x))e(x')dx’ (45)

Notice here that(x’) will be zero unless’ is small. So,

To see why V—' works, notice that it will send e will use a local approximation for the transformation.
[cosfy,sin61]T to [1,0]7, and [cosf,sinf]T to [0,1]7.

FUVIeY rjpn(x)} = CY 1 a0 (1) (41)

Hence only those frequencies in the correct range of angles t(x —x') & t(x) — Jo(x)X (46)
will be passed. Fig. 4 (c) shows an example in the frequency )
domain with8; = 7/10, 6, = 47 /10. Where J;(x) denotes the Jacobian of evaluated at the

point x. Now, take the inverse.

VIl. A FFINE RECONSTRUCTION . , 1 1 ,

_ tT(x—x) =t (x) - J (x)x (47)
Given the tools that have been developed, we can now
explicitly give the algorithm for affine reconstruction. &h  Substitute this in the above expression fer

final method is quite simple. The images are warped to a

common coordinate system, and then convolved with a filter Ja(x) = / (b7 (x) — Jp N (x)x )e(x)dx’  (48)
calculated for each image. This filter depends on the resfilts x!

frequency segmentation. Finally, the results of the camiahs Now, change variables. Sgt= J; *(x)x’.

are simply added together to produce the output image.

A. Example J2(x) = /yil(t_l(x) = y)e(Je(x)x)|Je(x)|ldy  (49)

VIIl. GENERAL RECONSTRUCTION

. _ . Je(x)17+—1
The theory developed thus far has all been for the case of 72(%) = [T (x)[[in = e J(t™(x)) (50)
affine motion. We can observe, however, that it is esseptall  So finally, we have a simple local approximation.



Figure 6. Affine Reconstruction

() Averag of jA1, jA2 A Reconstruction frony; and (k) Reconstruction frony, jo
j and js.

U=

(m) Frequency segmentation (n) Frequency segmentation for (o) Frequency segmentation for
for j1 andja. j1, j2, andjs. all images.

and j f‘*

arbitrary linear transformation. Here, however, we use-non
Jo((x)) = [Je(x)|[i1 * €7+ () (51) homogeneous coordinates. In this casexlet [x1,4:1]7 and
72,92]7 be corresponding points in two images. Then,

The method for general reconstruction is given as AIgorithichr zo[me parameters, , h b x t(x1) is equivalent
1,12y ..y 19, X2 = 1

2. Conceptually, the only difference with affine recondtiart
is that the final imagé is the sum ofspatially varyindfilters
convolved with the input images. hizy + hayi + hs

T2 = ;
2 hrx1 + hgyr + hg

(52)
A. Projective Reconstruction

In the experiments of this paper, we will focus on re- Yo = hazy & hoy + s
construction from images that were taken under perspective hzw1 + hsyr + ho

projection. It is most common to write such a transformation The Jacobian is simply a matrix containing four partial
in homogeneous coordinates, in which case it is just aerivatives.

(53)



Algorithm 2 General Reconstruction Figure 7. Projective Reconstruction
1) Input a set of imagegjy, j2, ... jn, and a corresponding S ———
set of transformationg,;, t», ... t, b
2) Warp each image to the central coordinate system, to
obtain j}' (x).

3) For each poink, -
a) For each transformatiot), compute the Jacobian @ jr () 4
atx, Ji, (x).
b) Use the method described in Section IV to seg-
ment frequency space. Obtain a set of pairs of
angles, along with the best motion in that region,
< 91'1, 9i2, Jti (X) >. .
Jes (x 3
0) Setk(x) = 32,15 % o,, 0, )(x) | st
4) Outputk. o Syl B T
\ (1%
ozs  Ors (© i1 (d) j5'2
Je(x) = | G5 o (54)
Ox1  Oy1
These are easily evaluated.
Oy _ y1(hihg — hrhe) + hihg — hrhs (55)
o0x1 (h7z1 + hsy1 + hg)? Colories
Oy _ wr(hahe — hsha) + haho — hshs — go e sl
_— = : \ UHTOLUS
oy (hrz1 + hsy1 + ho)? !
Oya 0N (h4h8 — h7h5) + hahg — h7hg (57) (e) Average ij{41 andjé42 (f) Reconstuction.
dry (hrz1 + hsy1 + ho)?
Oys _ x1(hsh7 — hsha) 4 hshg — hshe (58)
0y (h7$1 + hgy1 + h9)2 25 .5 .5 .25
S 1 1 5
; ; 5 1 1 5 (59)
B. Making Reconstruction Faster : :
25 5 .5 .25

For affine reconstruction, the algorithm is extremely fast-
the computation is dominated by the convolutions in step 4.The convolutions are computed for every third pixel both
So, if there aren input images, the algorithm will just takedimensions. Notice that the corner pixels will eventualy b
the time to runn convolutions. In the algorithm for generalthe sum of four convolutions, while the sides will be the sum
reconstruction, however, the filters are spatially varyiagd of two.
need to be recalculated at each pixel. This makes it much
slower.

A simple trick can speed this up. Instead of calculating t
filters for each pixel, calculate them for some small patch of Figure 7 shows a reconstruction from two real views of a
pixels. If the affine approximation is slowly changing, thisurface with printed text. After reconstruction, for pretse
will result in no minimal change to the output, while hugelyion, we segment out the background. We compare our results
reducing the overhead for recomputing filters. For exaniple,to a simple averaging process. Notice that reconstruction s
we use the same filter for each 20 by 20 patch of pixels, veeeds despite the changes in lighting between the two images
reduce the overhead by a factor of 400. Since the output image is just the sum of the input images

As above, this strategy could introduce artifacts on songenvolved with different filters, lighting changes, noisgc.
images, at the boundary where the filters change. To reduwurally average out.
this, we allow the patches to overlap and use a small amounFigures 8 and 9 show the reconstruction process for images
of blending. In these experiments, a one-pixel overlap weaken of two different textures. To better understand hawgus
sufficient. Suppose we are using 4 by 4 patches. Then, whanre images leads to better reconstruction, we also incheale
adding the result of the convolution to the output images it results of reconstruction using only the first two of the ¢hre
first multiplied by a mask of images

h%‘ Experiments
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Figure 8. Projective Reconstruction

(CVIVR (b) j2 (©) js

@ ji (€) ja2 ) j3®

(g) Average ofjf‘l, j;‘?, and j§43 (h) Reconstuction fromy; and js. (i) Reconstuction fromyy, j2, andjs.

IX. CONCLUSIONS But this is just the Fourier transform ¢f, evaluated at the

This paper introduced the formalism of the “ideal imagePoint AT
consisting of the unblurred incoming light, and the ‘“real
image” consisting of the measured image, after blurring. We F{A(x)} ) = [A7F(A™ ) (62)
showed that because this framework separates the filtenithg a -
geometrical aspects_, it makes it easy to derive sgvgraltses_u Lemma 1 (Affine Convolution Lemma):
As an example of this framework, we showed that it is possible N 1 4ot
to perform multiple view image reconstruction, even with an [f7 * gl(x) = m[f *g" ](Ax)
unknown blurring kernel.

Proof:
X. APPENDIX. PROOFS By definition,
Theorem 7 (Translation-Free Affine Fourier Th_eTorem): [fA « g](x) = /f(Ax — Ax)g(x)dx. (63)
If F{f(x)} = F(u) thenF{f*(x)} = |[A"HFA  (u).
Now, definey = Ax’. Then, we can re-write the integral.
Proof:
1
I fA*gx=—/fo—ygA‘1ydy (64)
FU G0N = [ f(axe ™ e (60 7wl = gy [ S (> = ¥)slaTy)

Now, definex’ = Ax, and change variables. [f4 g)(x) = ﬁ[f xg* ](Ax) (65)

—T T/ |
A _ -1 —27(A” " u)" x
F{)Hua) = (A |/f(xl)e WA (1) Theorem 8 (Affine Blurring Theorem):



Figure 9. Projective Reconstruction
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(g) Average ofji'!, j3'2, andj3'3

33 (%) = [Al[ir * €] (%)

Proof: ) (1]
By definition, io(x) = i{'  (x). Hence,
. [2]
ga' () = [iz x e](Ax) = [if'~ xe(Ax). (66)
Now, apply the affine convolution lemma to the right hand
side.

(4

i1 % €] (Ax) = |A[[iy * e*)(A™ 1 Ax) (67)

m 0O

Theorem 9 (Fourier Affine BIurringTTheorem):
F{s'x)} =L - B ](w) [6]
Proof: [71
Start with the result of the affine blurring theorem. -
73 (%) = [Al[ir * e] (%) ©

Now, apply the affine Fourier theorem td'.

Fle' ()} = 1A7EY (u) (69) [

Now, if we apply the convolution theorem to both sides of
the affine blurring theorem, the result follows. [ ]

(h) Reconstuction fromy; and j2.

(i) Reconstuction fromyj1, j2, andjs.
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