
le — A Text-line Extraction Program

Based on the Area Voronoi Diagram

MEMO

Koichi Kise
Dept. of Computer & Systems Sciences,

Osaka Prefecture University
kise@cs.osakafu-u.ac.jp

October 15, 1999

1 Changes

1. 991015

• some minor modifications for this distribution.

2. 990126

• the files read image.c and read image.h in le–981218.tgz and dl–981218.tgz were modified
to fix the bug as follows: images whose width is not a multiple of 8 could not be correctly
read.

• The description of 4.2 in the memo was modified.

3. 981218

• first version

1

2 Files

The archive le.tgz contains the following files.

Makefile makefile
const.h constants and default values of parameters.
defs.h data types used in the program.
extern.h declaration of global variables.
function.h prototype declaration of some functions.
read image.h header file for read image.c
main.c main routine for the program le
read image.c utility functions for reading a binary image. Sun rasterfiles

and TIFF files are supported.
img to site.c extraction of generators (points) for Voronoi diagrams from

an input binary image.
2dch.c extraction of convex hulls of connected components (CC’s).
label func.c functions for handling a labeled image.
sampling points.c functions for recording sampling points on a CC.

component.c utility functions for the record of CC’s.
voronoi.c construction of Voronoi diagrams.
heap.c, edgelist.c utility functions for voronoi.c.
geometry.c, memory.c
sites.c, output.c

erase.c extraction of text-lines from the area Voronoi diagram.
neighbor graph.c utility functions for the neighbor graph.
ccomponent stat.c utility functions for the record of seeds.
seed.c functions for making seeds.

chtl.c functions for generation of a convex hull of an extracted
text-line as well as selection of edges in a convex hull.

bit func.c functions for handling binary images.
cline.c command line analyzer.
usage.c usage.
hash.c functions for hash tables.
fout.c functions for the output of intermediate results.
dinfo.c functions for displaying information.

For further details of Sun rasterfile, see the manual page on a computer (man rasterfile).

3 Installation

3.1 Requirements

For the compilation of the program, it is required that the library libtiff has been installed in your
computer.

3.2 Installation on a Linux machine

The program is developed under the Linux OS 2.0.36 (RedHat 5.2) with gcc Ver.2.7.2.3. If you have a
Linux computer, the installation is as follows:

1. Extract the files from the archive by tar xvzf le.tgz.

2. In the directory which contains the files, just do make.

2

is ie

js

je

i

j

Figure 1: A line segment.

3. If the compilation completes, you can find le in the current directory.

3.3 Installation on machines with other OS’s

We are sorry for not testing the program on machines with other OS’s.

4 Usage

4.1 Requirements

The program requires at least 64MB of real memory to process an A4-size document image scanned with
the resolution of 300dpi. We recommend that your computer has more than 128MB memory.

4.2 Input and output

The program le takes two mandatory arguments: input and output.

input The input is a binary document image whose format is either sun raster or TIFF.

output The output is a list of (is, ie, js, je) (see Fig. 1) which represents a line segment in a text-line.

le also accepts optional arguments to change the default values of parameters, etc. The list of
arguments and their brief descriptions are shown in Table 1. Note that, when you use the option
-points, you obtain as output a list of points (i, j) instead of a list of line segments. You can find the
details of these arguments in the next section.

3

Table 1: Optional arguments for le

argument type default meaning
Parameters

-sr int. SAMPLE RATE sampling rate of points on contours.
-nm int. NOISE MAX max. area of the convex hull of a noise CC.
-af float ANGLE FILTER threshold value of the variance of angles.
-df float DIST FILTER threshold value of the variance of distances.
-sw int. SMWIND the size of the smoothing window for frequency distri-

bution of d.
-loop int. LOOPTIMES The number of times of iteration.
-apt int. APTNBR The number of edges (N) selected in Select N Edge.

(see Fig. 6.).
-ta float T AREA threshold value of the area ratio.
-td float T DIA threshold value of the diameter ratio.
-ct float C THETA The value of Cθ (see. Fig. 7.).
-cd float C DIST The value of Cd (see. Fig. 7.).
-minnoe int MINNOE The minimum number of edges in a text-line.
-dparam none NO If this option is supplied, the values of parameters used

to run the program are listed.
Options for final results

-och none NO This changes the output to convex hulls of text-lines.
-ichl none NO This changes the output to all edges in convex hulls

of text-lines.
Options for intermediate results

-points none NO This changes the output to sample points on bound-
aries of CC’s.

-pvor none NO This changes the output to Voronoi edges of the point
Voronoi diagram.

-avor none NO This changes the output to Voronoi edges of the area
Voronoi diagram.

-ng none NO This changes the output to the neighbor graph.
-seed none NO This changes the output to seeds.

4

Step1

Step2

Step3

Step4

Construction of
the area Voronoi diagram

Generation of
the neighbor graph

Extraction of text-lines

Extraction of seeds

Iterative extension
of seeds

Contour following, labeling
and sampling

Figure 2: Steps of processing

5 Overview of the method

The method consists of 4 steps shown in Fig. 2. The description of the method can also be found in [1].

5.1 Contour following, labeling and sampling

The first step is to extract connected components and sample points on their contours both of which are
based on contour following 1. The default value of the sampling rate is represented as SAMPLE RATE in
the source code: every SAMPLING RATE-th pixel on a contour of a connected component is stored as a
generator for the point Voronoi diagram. In this step, connected components are discarded as noise if
the area of the convex hull of their sample points is less than or equal to NOISE MAX.

5.2 Construction of the area Voronoi diagram

The next step is to construct the area Voronoi diagram from the sample points and the connected
components extracted in the previous step. The procedure is as follows:

1. Construct the point Voronoi diagram from the sample points.

2. Construct the area Voronoi diagram from the point Voronoi diagram by selecting Voronoi edges
lying between connected components.

An example of the area Voronoi diagram is shown in Fig. 3.

5.3 Generation of the neighbor graph

The area Voronoi diagram represents adjacent (neighbor) relations between connected components. A
connected component c1 is a neighbor of a connected component c2 if they share a Voronoi edge on their
boundaries. The neighbor relations are represented by the neighbor graph generated in this step. An
example is shown in Fig. 3.

1Note that this is the most time-consuming step in the method; you can speed up the processing if you replace the
program with a more sophisticated one.

5

area Voronoi diagram neighbor graph

seed candidates seeds

extracted text-lines

Figure 3: Examples of the processing results.

(a) Features of a vertex (b) Features of an edge

ppFF
θ

e
c 2

c1

v2

v1

ij

d (eij)

(eij)

position sample point

convex hull

diameter

Figure 4: The features of a line segment.

The neighbor graph G = 〈VG , EG〉 is a graph in which a vertex v ∈ VG corresponds to a connected
component, and an edge e ∈ EG represents a neighbor relation between two connected components. Note
that text-lines in the image are represented as a subgraph of the neighbor graph on the assumption that
every text-line consists of connected components which are neighbors with each other. We consider that
this assumption is satisfied in the majority of documents. Thus the method attempts to find such a
subgraph from the neighbor graph.

In order to extract a subgraph appropriate as text-lines from the neighbor graph, the neighbor graph
is viewed as the following diagram (see Fig. 4.):

1. vertex v · · · a point representing a connected component. It has the following features:

position The coordinates of the centroid of the minimum bounding box for a connected component.
The sides of the bounding box are parallel to those of the image.

area The area of the convex hull obtained from the sample points of a connected component (a(v)).
The convex hull is introduced to reduce the influence on the area by the difference of fonts as
well as the skew of an image.

diameter The diameter (D(v)) of a convex hull, i.e., the Euclidean distance between the farthest
pair of sample points of a connected component.

6

2. edge e · · · a line segment between adjacent centroids. It has the following features:

distance the minimum distance d(e) between adjacent connected components 2. Let e be an edge
between two adjacent connected components v1 and v2, and pi and qj be sample points on the
contours of v1 and v2, respectively. Then, d(e) is defined as:

d(e) = min
i,j

d(pi, qj) (1)

where d(pi, qj) indicates the Euclidean distance between points pi and qj.

angle the angle (θ(e)) of a line segment to the horizontal line.

5.4 Extraction of text-lines

The final step is the extraction of text-lines as a subgraph of the neighbor graph on the assumptions that:

A1 Every text-line is represented as a connected subgraph of the neighbor graph. To be precise, every
text-line corresponds to an elementary path of the neighbor graph, i.e., (v1, e12, v2, ..., em−1,m, vm)
where vi ∈ VG , eij ∈ EG , and vi 6= vj if i 6= j.

A2 Every text-line consists of connected components of approximately equal size and shape,

A3 Every text-line is linear.

This step is divided into two substeps: extraction of seeds and extension of seeds. The procedures
used in this step are shown in Appendix A. In Appendix A, merging of two graph G1 = 〈V1, E1〉 and
G2 = 〈V2, E2〉 to produce the graph G = 〈V1 ∪ V2, E1 ∪E2〉 is represented as G = G1 ∪G2.

5.4.1 Extraction of seeds

First, we extract from the neighbor graph seeds which seem to be parts of text-lines. The procedure
“Seed Extraction” consists of two sub-procedures: “Edge Grouping” and “Seed Identification”. The
former is to extract candidates of seeds from the neighbor graph, and the latter is to select seeds from
the candidates. Examples are shown in Fig. 3. In the following, candidates and seeds are represented as
graphs C and S, respectively.

In the procedure “Edge Grouping”, the threshold Tds is utilized to reject edges with too large distance.
Since the appropriate value of Tds depends on the page layout of an input document, it is automatically
set based on the frequency distribution of d. Fig. 5 shows a typical frequency distribution. The value
of Tds is set to the peak shown in Fig. 5, i.e., the estimated distance between text-lines. The procedure
“Seed Identification” selects candidates which satisfies the conditions described in the procedure.

5.4.2 Iterative extension of seeds

In this substep, the method extends seeds to obtain text-lines. The extension is not one-shot but iterative.
Since seeds are short and thus with less statistical evidence at early stages of the iteration, they are
extended carefully with a strict criterion. At later stages of the iteration, the criterion of the extension
is relaxed to obtain complete text-lines. Examples of extracted text-lines are shown in Fig. 3.

The substep consists of seven procedures whose roles are summarized in Table 2.
In the top-level procedure “Iterative Extension”, seeds are extended with a criterion defined in the

procedure “Acceptable” using the current number of times of iteration l. After the extension, the seeds
which consist of a small number of edges are discarded.

In the procedure “Extend Seed”, both ends of a seed s are extended as much as possible. The
procedure “Select Edge” selects an edge to be merged with the seed, and the procedure “Merge Edge”

2It is not the Euclidean distance between centroids.

7

[pixels]

fr
eq

ue
nc

y
 f(

d)

P1

P2

0

100

200

300

400

500

600

0 20 40 60 80 100

dTds

Figure 5: The value of Tds.

Table 2: Overview of procedures

Proc.4 Iterative Extension the top-level procedure
Proc.5 Extend Seed(s,l) to extend a seed s at the l-th iteration
Proc.6 Select Edge(s,v,l) to select the best edge for the extension from a vertex v of a

seed s
Proc.7 Select N Edge(s,v) to select N edges as candidates for the extension from a vertex

v of a seed s
Proc.8 Acceptable(e,v,s,l) to check if an edge e is appropriate for the extension of a seed s.

the current number of times of iteration l is utilized to change
the criterion.

Proc.9 Merge Edge(s,v,e) to merge edge e at a vertex v of a seed s.
Proc.10 Update Seeds(sold,snew) to update the graph S with an updated seed snew if sold 6= snew

merges it. The procedure “Update Seeds” updates the current seeds in S as well as the features of seeds,
when the seed s is actually updated.

The procedure “Select Edge” selects an edge from N candidates obtained by the procedure “Selec-
t N Edge”. In the procedure “Select N Edge”, candidates are selected based on the difference of angles
between an edge and a seed, as shown in Fig. 6.

The procedure “Acceptable” determines if an edge e is appropriate for the extension of a seed s. Let
θ(s) be the angle of the line segment which connects both ends of a seed s to the horizontal line, and
d(s) be the average of the distance of edges in s. An edge e is appropriate if the following criterion is
satisfied:

J(e, s, l) =
θe(e, s)
l
LCθ

+
d2
e(e, s)
Cd

≤ 1 (2)

where θe(e, s) is the difference of angles:

θe(e, s) = |θ(e)− θ(s)|, (3)

d2
e(e, s) is the square difference of the minimum distances:

d2
e(e, s) = (d(e)− d(s))2, (4)

8

s
N vertices

v
v’e1

e2

e3

e4

e5

Figure 6: Select N Edge.

θe

C θ

C d

L
1 C θ

de
2

Figure 7: A criterion for the extension of a seed. A seed corresponds to a point in the d2
e–θe plane.

L is the total number of times of iteration, Cθ = C THETA and Cd = C DIST. As shown in Fig. 7, the
criterion varies according to the current number of times of iteration l. In this procedure, an input edge
e for a seed s is tested whether Eq. (2) is satisfied in the case that e connects only with the seed s. Test
from a different seed s′ is additionally applied in the case that the edge e is between s and s′, in order to
avoid the situation shown in Fig. 8.

The procedure “Merge Edge” simply merges an edge e with a seed s at a vertex v, if a vertex v′ which
is the other end of e is not contained in a different seed. If v′ is in a different seed s′, the procedure
merges s, s′ and e.

6 Limitations

Since the method is based on the area Voronoi diagram of connected components, there exist some
limitations on the extraction of text-lines.

e

s’

s

Figure 8: Need of a test with a different seed s′. The edge e is acceptable from s but not from s′.

9

Figure 9: A text-line which cannot be represented as a subgraph of the neighbor graph.

• The limitations caused by touching underlines, touching text-lines: If a text-line touches with its
underline, it cannot be successfully extracted; the program often rejects the text-line due to its
large area. The extraction of a text-line also fails in the case that it touches with another text-line.
A similar kind of situation can be caused by touching characters, if they form a large connected
component.

• The limitations caused by the definition of “neighbor” relations: The neighbors of a connected
component is defined based on the area Voronoi diagram. Since the method searches the neighbors
of connected components to extract text-lines, there is no way to find the text-line whose parts
have no neighbor relation.

In the case shown in Fig. 9, for example, the text-line “Document Image” cannot be extracted,
since no Voronoi edge is shared by “t” and “I”.

7 Questions, Comments

If you have any questions or comments on the program, the algorithm and this note, please feel free to
ask me. The e-mail address is:

kise@cs.osakafu-u.ac.jp

Bug reports are also welcomed.

References

[1] K.Kise, M.Iwata, A.Dengel and K.Matsumoto, A Computational Geometric Approach to Text-line
Extraction from Binary Document Images, Proc. of 3rd Workshop on Document Analysis Systems
(DAS98), Nagano, Japan, pp.346-355, 1998.11

10

A Procedures of text-line extraction

A.1 Symbols

Table 3: Symbols
G (= 〈VG , EG〉) the neighbor graph
C (= 〈VC , EC〉) the graph in which each connected subgraph corresponds to

a seed candidate
S (= 〈VS , ES〉) the graph in which each connected subgraph corresponds to

a seed
T (= 〈VT , ET 〉) the graph in which each connected subgraph corresponds to

a text-line
e an edge of the neighbor graph
v a vertex of the neighbor graph
c a seed candidate (a connected subgraph of C)
s a seed(a connected subgraph of S)
d(e) the minimum distance between CC’s connected with an edge

e (see Eq.(1))
vd(c) the variance of distances between CC’s in a seed candidate

c

vθ(c) the variance of angles between CC’s in a seed candidate c
a(s) the average of a(v) in a seed s

d(s) the average of d of edges in a seed s
θ(s) the angle of the line segment between two ends of s
D(s) the average of D(v) in a seed s
θe(s, e) the difference of angles (see Eq.(3))
J(e, s, l) the evaluation function of an edge e for a seed s at l-th

iteration (see Eq.(2))
Tds a threshold of the distance (see Fig. 5)
N the number of times of iteration

11

A.2 Procedures

Procedure 1 Seed Extraction
1 Edge Grouping
2 Seed Identification

Procedure 2 Edge Grouping
1 let (e1, ..., en) be the sorted list of edges in G, where ∀i d(ei) ≤ d(ei+1).
2 C ← 〈∅, ∅〉
3 i ← 1
4 while d(ei) ≤ Tds do

. Tds is a threshold not to select edges with too large distance.
5 let vi1 and vi2 be the vertices connected by an edge ei in G.
6 if vi1 /∈ VC or vi2 /∈ VC then

. This guarantees that a seed candidate contains no loop.
7 C ← C ∪ 〈{vi1, vi2}, {ei}〉
8 end if
9 i ← i+ 1
10 end

Procedure 3 Seed Identification
1 S ← 〈∅, ∅〉
2 foreach seed candidate c in the graph C do

. c is a connected subgraph in C.
3 if c consists of more than a single edge and
4 c does not include a branch and
5 vθ(c) ≤ ANGLE FILTER and

. Connected components in a seed should be arranged approximately linear.
6 vd(c) ≤ DIST FILTER

. Connected components in a seed should be arranged at approximately even intervals.
7 then
8 S ← c ∪ S
9 end if
10 end

Procedure 4 Iterative Extension
1 T ← 〈∅, ∅〉
2 for l = 1 to L(= LOOPTIMES) do
3 foreach seed s in the graph S do

. s is a connected subgraph in S
4 Extend Seed(s,l)

. Extend a seed s as much as possible with a criterion depending on l.
5 end
6 end
7 foreach seed s in S do
8 n ← the number of edges in s
9 if n ≥ MINNOE then

. Only the seeds with more than or equal to MINNOR edges are identified as text-lines.
T ← s ∪ T

10 end if
11 end

12

Procedure 5 Extend Seed(s,l)
1 if the seed s exists in S then

. Unless the seed s has been removed by Update Seeds, do the following steps.
2 do

. Continue executing the following steps while the seed s is updated.
3 let v1 be a vertex at an end of s
4 let v2 be a vertex at the other end of s
5 sold ← s
6 e1 ← Select Edge(s,v1,l)
7 e2 ← Select Edge(s,v2,l)
8 s ← Merge Edge(s,v1,e1)
9 s ← Merge Edge(s,v2,e2)
10 while Update Seeds(sold,s)
11 end if

Procedure 6 Select Edge(s,v,l)
1 (e1, ..., eN) ← Select N Edge(s,v)
2 for i = 1 to N do
3 if Acceptable(ei,v,s,l) then
4 return ei
5 end if
6 end
7 return φ

Procedure 7 Select N Edge(s,v)
. See Fig. 6.

1 E ← ∅
2 foreach edge e(∈ EG) whose end is v do
3 let v′(∈ VG) be the other end of e (v′ 6= v)
4 if v′ is not contained in the seed s and
5 v′ is at an end if it is a vertex of a different seed and
6 R(a(s), a(v′)) ≥ T AREA and
7 R(D(s),D(e)) ≥ T DIA

. where R(x, y) = min(x, y)/max(x, y)
8 then
9 E ← E ∪ {e}
10 end if
11 end
12 return the sorted list of edges (e1, ..., eN) where
13 ei ∈ E, N ≤ APTNBR, θe(ei, s) ≤ θe(ei+1, s)

. Sort the edges in the ascending order of the difference of angles.

13

Procedure 8 Acceptable(e,v,s,l)
1 if J(e, s, l) ≤ 1 then
2 let v′ be a vertex on the other end of e (v′ 6= v)
3 if v′ belongs to a different seed s′ then
4 if e ∈ Select N Edge(s′,v′) and
5 J(e, s′, l) ≤ 1 then
6 return true
7 else
8 return false
9 end if
10 else
11 return true
12 end if
13 else
14 return false
15 end if

Procedure 9 Merge Edge(s,v,e)
1 if e 6= φ then

. If there is an edge to be merged:
2 let v′ be a vertex on the other end of e (v′ 6= v)
3 if v′ is in a different seed s′ then
4 return the updated seed s ∪ s′ ∪ 〈{v, v′}, {e}〉

. The seeds s, s′ and the edge e are merged.
5 else
6 return the updated seed s ∪ 〈{v, v′}, {e}〉

. The seed s and the edge e are merged.
7 end if
8 else

. If the seed s is not updated:
9 return s
10 end if

Procedure 10 Update Seeds(sold,snew)
1 if snew 6= sold then

. if the seed snew is updated:
2 foreach seed s in S do
3 if s shares some edges with snew then
4 Delete s from S
5 end if
6 end
7 S ← snew ∪ S
8 Recalculate the features of snew (a(snew),d(snew), θ(snew), D(snew))
9 return true
10 else
11 return false
12 end if

14

