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A Message from the Sponsors

We welcome you to this first Department of Defense/Ft. Meade, Maryland sponsored Symposium on
Document Image Understanding Technology.

The purpose of this symposium is to provide a forum where technical personnel from industry, academia,
and government can discuss emerging capabilities and their respective needs. We hope this will contribute
future solutions which automate some aspect of the input, analysis, retrieval, or dissemination of data related
to document images.

You were invited to participate because you are experienced in technology associated with document
processing or have project responsibilities that can benefit from these technologies.

If we can be of any assistance to you during this Symposium, please feel free to contact us or the University
of Maryland staff with the Center for Automation Research. Your feedback on this event will be helpful in
future planning and will be used to determine how best to serve the interests of the research community,
technology developers, and organizations engaged in applying these advanced capabilities for systems working
in a variety of environments.

We encourage you to see out your colleagues and look for productive way to collaborate on meeting the
technical challenges. We thank you for participating in this Symposium and extend our best wishes for a
successful Symposium.

Linda Kay Steve Dennis
Document Analysis Imaging Research




A Message from the Organizers

On behalf of the Document Processing Group at the University of Maryland, I would like to welcome you
to the 1995 Symposium on Document Image Understanding Technology.

The Symposium program contains over 30 presentations from academic, government and industrial re-
searchers located all across the country, dealing with a wide variety of document image understanding
topics. We have tried to organize each session so that a general overview talk is followed by progress reports
by of researchers in the field. A demonstration session has also been scheduled on the first afternoon to give
participants the opportunity to interact with working systems.

I would like to thank everyone who has contributed to this Symposium. A special thank you is extended
to the staff of the Center for Automation Research: Jeannie Sullivan, Sailaja Akunuri, Janice Peronne, and
Margaret Masters, for their many hours of work on the local arrangements; and Sandy German, for her
technical expertise in preparing the program and proceedings.

David Doermann
University of Maryland
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Adobe Acrobat Capture

David Emmett
Adobe Systems, Inc.
P.O. Box 7900
1585 Charleston Road
Mountain View, CA 94039-7900

Abstract

Adobe introduced Acrobat Capture at the AIIM show tn April of this year. Capture integrates page decom-
position, image processing, optical character recognition and font recognition to convert a scanned page into
a look-alike Acrobat PDF document. The converted document can then be viewed distributed and managed by
Acrobat on any platform. In this presentation Dave Emmett, Adobe’s Director of Recognition Technologies
will demonstrate Capture and he will also describe a modular version of Capture that allows integrators to in-

corporate Capture technologies into their own applications. The presentation will conclude with a description
of Capture’s FlexFrame architecture.
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Document Image Retrieval

Stephen J. Dennis
Department of Defense
9800 Savage Road
Fort Meade, MD 20755-6000

1 Interest

The Department of Defense at Fort Meade, MD, has
a long term interest in the research and development
of technologies to analyze and represent documents
images for a wide variety of image qualities, docu-
ment formats, and written languages. The goal of
our research is to develop the component technolo-
gies that enable robust system architectures to be
portable across written languages, subject domains,
and computer systems.

While there are many different Intelligence Com-
munity (IC) requirements for the antomatic process-
ing of document images, one of the most common
application areas is content based selection and pri-
oritization. This application area is very similar
in concept to the information retrieval or routing
of electronic text, but is significantly more complex
given the flexibility of a less constrained input media,
e.g.paper documents. Additional layers of complex-
ity arise from uncontroliable damage to image data
that can often cause significant disparity between
an original document and the corresponding image
data.

For years the IC has funded significant research
and development efforts for image processing tech-
nology to address automatic processing require-
ments for all kinds of images apart from those of
paper documents. These efforts have contributed
many useful technologies and have served to unify
the field of image processing into a separate and re-
spected engineering discipline. There is an immedi-
ate need to begin a transfer of previously developed
image processing technology to the context of pro-
cessing document images.

The DoD has initiated internal research programs
to execute short term technology development ef-
forts that will address some of the desired capabil-
ities. However much of the technology that is re-
quired to develop fully automatic content based se-
lection systems for document images does not exist.

2 Research and Development

Previous commercial efforts in the research of doc-
ument image understanding systems have been Iim-

ited to very lucrative but narrow commercial niches
that do not serve broader IC requirements. These
systems rely on intense human interaction in order
to manually process and index documents for future
retrieval tasks. These systems are very limited in
their capability to process variants of a single writ-
ing system, document styles, or image qualities and
are comprised of very narrow and deep engineering
solutions that are not easily ported to new problem
sets.

We are involved in and are tracking other cur-
rent government sponsored research efforts to ad-
dress single component technologies that will aid in
document image understanding. While these efforts
have a positive impact on our eventual goal, there
is no consolidated model of government operations
that can be used to focus the research community in
order to optimize research efforts.

The DoD research goals include the investigation
of open architectures for document image processing
that allow for a variety of feedback paths as opposed
to the traditional pipeline feed forward architectures
of today. This architecture will be comprised of
a variety of modules for document image and text
analysis that can be easily combined to identify the
priority relevance of document images to an ana-
lyst query statement. There is little known about
the performance of systems that combine the best
of image analysis, language processing, and statisti-
cal features to discover useful representations from
document images.

In a scenario of routing document images, the
analysis and recognition techniques are required to
automatically disseminate a document image corpus
to end users based upon a query statement. Because
the number of images is large, and a combination
of image and text analysis could require significant
computational complexity, the speed of any dissemi-
nation technology will be a factor in the development
of resulting algorithms or systems.

Once a document has been successfully analyzed,
there are requirements to create large archives of
document images that can be used for topical re-
search. This requirement forces the issue of doc-
ument representation. Once the components of a




document image have been discovered, there is little
known about efficient structures for the maintenance
of component relationships within a document im-
age. Much less is known about the maintenance of
the kinds of relationships that an analyst will form
based upon reporting requirements and human in-
ferences.

The final and most important area of research in-
volves the investigation of technologies that enable
an analyst to browse, research, and retrieve relevant
document images on demand through intuitive com-
puter interface operations. The success of any re-
search and development program rests entirely upon
the degree to which we are able to increase the effi-
ciency of a process. Since the goals of these efforts
are to deliver content based selection technologies for
use by human analysts, the tools which enable suc-
cessful interface technologies are as important as the
analysis and representation technologies themselves.

3 Proposal

We continue to support the consolidation of IC and
other government research requirements for doc-
ument image processing and related technologies
through common funding and project offices like
those found in ARPA. It is clear that basic research
in this area will be required to support the discov-
ery and entrepreneurial development of technologies,
algorithms and systems.

In addition to supporting these activities, the DoD
has formed a committee to establish a government
wide Document Understanding Conference (DUC).
This conference will focus the image and language
processing research communities on common tasks
in document image processing that area beneficial to
the IC, civilian government agencies, and commer-
cial industry. This conference will serve to establish
a common technology baseline, to identify compo-
nent technologies, and to force the integration of ex-
isting image and language processing technologies to
ensure rapid identification and retrieval of relevant
document images in response to government analyst
requirements.

The evaluation techniques that are currently be-
ing developed as part of the joint ARPA and CIA
effort will serve as the basis for DUC evaluations
and will provide requirements to the standards com-
mittee. Data collection efforts have been established
that will provide initial image corpora for DUC tasks
beginning as soon as June of 1996.

The format for this effort, and the inclusion of
government, academic, and industry experts in the
planning process is key to the success of this effort.
The DUC will be modeled after the Message Under-
standing Conference (MUC) and the Text Retrieval
Evaluation Conference (TREC). These efforts were
key to successful revitalization of the language pro-
cessing and information retrieval communities.




Media Independent Data Representation

Context Vector Techniques for the Unification

of Text and Image Information Spaces

Bill Caid
HNC Software Inc.
5930 Cornerstone Court West
San Diego, CA 92121-3728
619-546-8877 x322
caid@hnc.com

Abstract

Management of large sets of mixed media
documents has become a major issue such that the
ability to identify and locate information of interest
has become a problem of large proportions. Retrieval
of information that is in a text-only format is a
historically difficult problem that has been studied for
years. However, substantial progress has been made
in improving the quality of information retrieval
technology and many systems exist today. Images,
however, are quite different and require a more
creative approach for successful information retrieval.
To date, only a very few image retrieval/management
systems have been developed. None of these systems
provide a unified information space for representing
both text and images.

A vector space technique has been developed that
can provide a unified representation for text and
images. This technique can provide a set of unique
capabilities that can be applied to the mixed media
management problem. This context vector technique
for text was developed as part of the ARPA-
sponsored . TIPSTER Text Program and has been
demonstrated on multi-gigabyte corpora.

The context vector approach has been extended to
data in the image domain as part of the Image Content
Addressable Retrieval System (ICARS) SBIR. This
research, though in a preliminary state, has
demonstrated the viability of the context vector
representation of images based upon a machine-
derived set of image “symbols”. The context vector
approach is very powerful and generic because it can
be applied to any form of data that can be represented
by a finite set of symbols. A key aspect of the context
vector technique is that it is fully automated. That is,
no external knowledge is utilized to form the final
context vector representation.

This paper provides an overview of the context
vector representation and how this representation can
be wused to provide a media-independent
representation of information, specifically text and
images. Current efforts within HNC seek to develop
a media independent context vector representation for
both text and images that will provide the capability
to use free text as a query to a mixed-media database
resulting in text and images as the query result.
Additionally, this research will provide the basis for
the ability to use images as queries to the system
resulting in both text and images as the query result.

1 Background

1.1 Problem Description

The proliferation of cost effective personal
computers has caused an explosion in the growth of
electronic documents. Additionally, the availability
of relatively inexpensive document scanners has
further increased the number of documents that are
available in electronic format. Management of these
large sets of documents has become a major issue
such that the ability to identify and locate information
of interest has become a problem of large
proportions.

The pervasive use of PC-based word processors as
well as document scanners has resulted in “mixed
media documents” that contain both text and images
(imbedded figures). Retrieval of information that is
in a textual format is a historically difficult problem
that has been studied for years, but substantial
progress has been made in improving the quality of
information retrieval for text-based information.
Images, however, are different and require a more
creative approach for successful information retrieval.




To date, only a few image retrieval systems have been
developed.

A system that provides a unified information
representation for both text and images could address
a number of Kkey issues associated with the
management of mixed media documents.
Specifically, a unified representation for both text and
image data could provide a mechanism for effective
multi-media information retrieval. Additionally, this
representation could allow automatic retrieval of
images mentioned or described in surrounding text
when using the surrounding text as a query.
Conversely, this technique could allow the use of
images as queries to the system resulting in both
images and surrounding text as query results.

HNC has developed a vector space technique that
can provide a unified representation for text, images
and numeric data. Key portions of the required
technical capabilities for text and images have already
been demonstrated. The text representation approach
was developed as a result of the ARPA-sponsored
TIPSTER effort. Image representation research is
currently being sponsored by Rome Laboratory and
early results have shown great promise.

This white paper describes an approach for
integrating the information representation for text and
images and proposes a set of research actions to
demonstrate the viability of this concept.
Additionally, this white paper provides an overview
of the context vector technique for text and describes
how this context vector approach has been extended
to images.

1.2 Context Vector Approach to
Information Representation

HNC has developed a mathematical approach to
information representation based upon symbolic
association of information symbols with high
dimensional vectors. These vectors, called “context
vectors”, provide a media-independent representation
that can learn N-way relationships between
information symbols. These learned relationships can
be used to provide a basis for information retrieval,
routing and clustering of sets of symbols that have
similar learned relationships.

The basic context vector technique is predicated
upon three key concepts. First is the concept of a
“quantized information vocabulary”. The second is
“symbolic association” and the third concept is
“proximate co-occurence”. The sections below
provide details about these concepts and how these
concepts can provide a basis for a unified
representation for text and image data.

1.2.1 Quantized Information
Vocabularies
The principle of quantized information vocabularies

is straightforward and is exploited every day by the
music industry. This principle states that any

continuous value information channel can be
represented by a set of discrete symbols. This
approximation can be achieved to an arbitrary degree
of precision by increasing the number of symbols in
the information vocabulary. The principles of
modern digital signal processing exploit this principle
in the compact disc where a continuous, time domain
signal is encoded as a stream of discrete symbols that
represent the amplitude of the signal. For the
compact disc, these symbols are derived by
quantizing the amplitude of the music signal using 16
bit linear pulse coded modulation. The resulting
stream of 2'® possible symbols represent the
associated music. The key concept is that a
continuous-valued signal can be represented by a
finite (but possibly large) set of discrete symbols.

1.2.2 Symbolic¢ Association

The concept of symbolic association is also
straightforward and states that a set of symbols can be
associated with an alternate form of information. A
common example of this concept is the association of
a home with a phone number or a person with a social
security number. The previous examples described
associations between two discrete sets of symbols.
Though this association is useful, it is very restricting.
The concept can be extended to include associations
between a discrete entity and a vector, in particular, a
high dimensional, real vector. The context vector
approach, as currently implemented, uses vectors of
real numbers providing a tremendous increase in the
representational power over a simple discrete symbol
set (like a social security number, for instance). The
key concept is that symbols in a finite set can be
mapped to a more powerful representation using
symbolic association. In the case of context vectors
applied to text, words are associated with high

dimensional floating point vectors!.  For images,
localized and quantized features are mapped to
context vectors.

1.2.3 Proximate Co-Occurrence

In many information mediums, co-occurence or
near (proximate) co-occurence of symbols convey
information. Clearly, in the text domain, co-occurent
and proximate co-occurence are the mechanisms used
to convey information using a finite set of symbols
(words). The characteristics of proximate co-
occurence can be learned by example from a training
set using symbolic association mapping of symbols to
a richer (vector) information space. This mapping is
followed by application of a self organizing learning
law applied to the vector space. The learning,
however, is driven by the proximate co-occurence of
the original information symbols. In this way, the
proximate co-occurence statistics of the symbols

1 1t should be noted that the act of symbolic
association makes the context vector representation
language independent.




determines the relationships of the associated vector
field. When learning is complete, the directions of
the symbol vectors encode the proximate co-
occurence relationships. The power of this approach
is derived from the ability to position vectors in the
space based upon their symbolic associations. This
technique is very generic and can be applied to any
form of information that can be represented by a

finite vocabulary of symbols2. The exact nature of
the learning law used to position the symbol vectors
can be tailored to system requirements and the
characteristics of the symbolic data. In the text case,
the learning law is designed such that words that are

used in a similar context will have their associated

vectors point in similar directions. For text, “context”
is really proximate co-occurence. In the image case,
image “primitives” that co-occur in fixed spatial
relationships will have their associated vectors that
point in similar directions. For a mixed-media case, it
is clear that some form of enhancement to the
learning law will be required.

1.3 Context Vectors Applied to Text:
MatchPlus

Early work by Salton [1,2,3], and later work by
Salton and Buckley [4] described a model for text
where each document was represented by a vector.
The vector space consisted of a number of
coordinates that was equal to the number of unique
terms in the system (the "vocabulary"). The direction
of the document vector was determined by counting
the number of terms in the document, then applying
an appropriate term weighting and normalization
(4,5] to these counts. This approach produces what
we will refer to as a "term orthogonal” space. That is,
each term in the vocabulary is a coordinate and all
coordinates are, by definition, orthogonal.

This approach results in several unavoidable
consequences. First, is the high dimensionality of the
resulting vector space. Second, there is no provision
for encoding similarity of meaning at the term level.
Given the availability and capacity of low cost, high
performance computing resources, the first
consequence (high dimensional space) has little
practical impact and can be ignored. The second
consequence, term orthogonality and inability to
represent similarity of meaning, however, remains.

Extensions to the term orthogonal model have been
proposed and demonstrated in the form of Latent
Semantic Indexing (LSI) [6]. The basic LSI model

2 1t should be noted that the approach can be
extended to any symbolic information of interest. For
example, context vectors could be associated with
bank accounts, dollar amounts, phone numbers,
people, places, etc. Because of this symbolic
association property, this technique has the potential
to be the ideal mechanism for integrating multi-media
data.

extracts information in vector form by identifying the
dependencies between terms and documents. This
approach is based on constructing and processing a
term-by-document matrix. In LSI, the resulting
dimension of the vector model is determined via
singular-value decomposition of the term-by-
document matrix and, in general, will be significantly
smaller than either the term or document count
(typically 100 - 300). As a consequence, the vectors
that represent words cannot be orthogonal. As such,
the LSI approach encodes a form of similarity of
usage, but at a low resolution, term-by-document
level. Efforts by Deerwester, Furnas, Dumais, et al.,
[6,7,8] demonstrated the viability of the non-term
orthogonal approach and provided the motivation for
the early MatchPlus concept as proposed by Gallant
[9]. HNC's approach used in MatchPlus is, in a
sense, a close relative of LSI in that:

1. The vector space is not term orthogonal.

2. Relationships are computed (learned) from a
training corpus.

3. 'The resulting dimensionality of the vector space
is much smaller than either the term or document
count in the corpus.

However, the MatchPlus approach has several key
differences:

1. Relationships are determined at a finer resolution
than the document level. That is, proximity of
occurrences is taken into account in the
MatchPlus approach. This provides sensitivity to
similarity of usage at the word level. Word
sense identification and disambiguation is a
direct consequence of this sensitivity [10].

2. The MatchPlus learning algorithm is based on
self organization and employs an adaptive neural
network learning law. This is in contrast to LST's
matrix manipulation approach which is a "block
update” approach.

3. No orthogonal basis sets are derived in the
MatchPlus technique. The learning technique
chooses a coordinate space that is convenient for
the algorithm and is unintelligible to the human.

The key innovations behind the MatchPlus
approach are motivated by the desire to exploit neural
network learning techniques to discover similarity of
usage at the word level, in a language-independent
manner, without the need for external dictionaries,
thesauri or semantic networks. Additionally, since
many domains use terms in a manner that are specific
to that domain, we seek to have the MatchPlus
algorithm determine these usages from the training
corpus directly. Additionally, we seek to use the
resulting word vectors to provide retrieval, routing,
document clustering and summarization.

The HNC MatchPlus system was developed as part
of the ARPA-sponsored TIPSTER text program.
During this effort, the initially proposed context
vector approach using human defined coordinates and
initial conditions was extended and refined to allow
fully automatic generation of context vectors for text




symbols (stems) based upon their demonstrated
context of usage in training text. The MatchPlus
system learns relationships at the stem level and then
uses those relationships to construct a context vector
representation for sets of symbols. For the text case,
these sets of symbols are paragraphs, documents and
queries. To start the learning process, each stem is
associated with a random vector in the context vector
space. Random unit vectors in high dimensional
floating point spaces have a property that is referred
to as “quasi-orthogonality”. Stated mathematically,
this quasi-orthogonal condition can be expressed as:

Hcv,ecv))<e v,
e~0

Equation 1. Quasi-Orthogonality Condition.

In words, the above relationship shows us that “the
expected value of the dot product between any pair of
random context vectors selected from the set is less
than epsilon, where epsilon is “small” (approximately
equal to zero). The value epsilon can be made
arbitrarily small by increasing the dimensionality of
the context vector space when the quasi-orthogonal
set is created. Dimensionality of the space, then,
translates into capacity of the space where capacity is
defined as the total number of vectors that can occupy
the space and meet the quasi-orthogonality condition
of dot products less than epsilon [16].

This property of quasi-orthogonality is important
because it serves as the initial condition for the
context vector learning algorithm. The usage of the
context vector technique is predicated upon the rule
that symbols (stems) that are used in a similar context
(exhibit proximate co-occurrence behavior) will have
trained vectors that point in similar directions.
Conversely, stems that never appear in a similar
context will have context vectors that are
approximately orthogonal. A graphical example of
this condition is shown below in Figure 1.

Space Shuttle

A

Atlantis

Peanut

>

Figure 1. Similarity of Context and Direction.

To achieve the desired representation, the context
vector learning algorithm must take the context
vectors for symbols that co-occur and move them
toward each other. Symbols that do not co-occur are
left in their quasi-orthogonal original condition. It is
a basic tenet of the MatchPlus approach that “words
that are used in a similar context convey similar
meaning”. Since the learning is driven by proximate

co-occurrence of words, the learning results in a
vector set where closeness in the space is equivalent
to closeness in subject content.

To perform learning, a convolutional window is
used to identify local context. The window has one
target stem and multiple neighbor stems. An example
of this convolutional window is shown in Figure 2.

Source Text
The Maoist rebel group, “Sendero Luminoso”, bombed the DEA office in Lima

Stemmed Text
Mao rebel group SenderoALuminoso bomb DEA offic Lim

Five Stern Window
rebei group SenderoL.uminoso bomb DEA

TARGET

NEIGHBORS

Figure 2. Convolutional Window Example.

Once the context window has been determined, the
learning rule of “Move context vector for target in the
direction. of the context vector of the neighbors” is
applied. Once correction is made, move
convolutional window to next location and the
learning operation is repeated. The equation for this
learning is shown in Equation 2.

L =T +y- Y (a; =T eN;)-N;

J

i=window
New
TNew - T;
j - l TNew
j
where:

T"" = Target context vector after update

T = Target context vector befor update
v = Adjustment step size
N; = Context vector for neighbor i, window j

a; = Proximity constraint for neighbor i, target j

Equation 2. MatchPlus Learning Equations.

Several points should be noted:

e It can be seen in Equation that the learning
technique is a constrained self-organization
where “alpha” is the constraint. Alpha
determines the maximum aliowable dot product
proximity for stem context vectors in a window.

e All stem vectors are of length 1 (unit vectors). In
this paradigm, only the direction of the vector
carries information.




e Fully trained vectors have the property that
words that are used in a similar context will have
vectors that point in similar directions as
measured by the dot product.

e Words that are never used in a similar context
will retain their initial condition of quasi-
orthogonality. That is, approximately orthogonal
with a dot product of approximately zero.

e Trained context vectors result in a concept space
where similarity of direction corresponds to
similarity of meaning.

¢ No human knowledge is required for training to
occur. Only free text examples are needed.

e The algorithm determines the coordinate space of
the context vectors.

When the training is complete, “words that are used
in a similar context will have their associated vectors

point in similar directions”. Conversely, words that
are never used in a similar context will have vectors
that are approximately orthogonal.

Once the stem learning is complete, it is possible to
“query” the vector set to determine the nature of the
learned relationships. To perform this operation, the
user selects a "root” word and the trained context
vector for that word is determined by a table lookup
in the context vector vocabulary. MatchPlus
computes the dot product of every other word vector
in the vocabulary to the selected word. The resulting
dot products are sorted by magnitude where larger
means closer in usage. Figure 3 below shows a
graphical example of the relationships learned from
250 Megabytes of the 1993 IRS Federal Tax Code,
US Tax Court Rulings and US Supreme Court Tax
Rulings.
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Figure 1. Learned Relationships for Baseball

Notice that in Figure 3, the length of the horizontal
bar corresponds to the strength of the learned
relationship (dot product). Also note that the words
are ordered from strongest at the top to weakest at the
bottom. Baseball is related to itself with a strength of
1.00. Note that professional baseball is very close in
this concept space to baseball. This is because in
terms of context of usage in the tax codes, they are
very similar, Additionally, it can be seen from
inspecting Figure 3 that football, soccer, basketball
and hockey are also close to baseball. These
relationships are learned solely from the training text
based on demonstrated proximate co-occurrence of
stems.

Sets of words (text passages and queries) and
documents can also be represented by context vectors

in the same information space. Document context
vectors are derived as the inverse document
frequency-weighted sum of the context vectors
associated with words in the document. Document
context vectors are normalized to prevent long
documents from being favored over short documents.
This process is shown in Equation 3.




DCV, =

where:

j=N_Stems, N
X loglr)-CV,
J

jel N.

J
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N = Total number of documents in the corpus.
N; = Number of documents that contain stem j.

CV, = Context vector for stem j.

N_Stems; = stems in document i.

Equation 3. Document Context Vector Formation.

The resulting document context vectors have the
property that documents that discuss similar themes
will have context vectors that point in similar
directions. It is this property that translates the

problem of assessment of similarity of content for text
into a geometry problem. Documents that are similar
are close in the space and dissimilar documents are
far away. Additionally, it should be noted that all
document vectors are unit length. This prevents
system biases in retrieval due to document length.
Document retrieval is performed by converting the
user free text query to a context vector using Equation
3. Then, using the database of document context
vectors, the relevance of each document is
determined by dot product. The resulting list is
sorted by relevance to produce the final ranked list of
relevant documents that are presented to the user.

1.4 Context Vectors Applied to Images:
ICARS

1.4.1 ICARS System Overview

The ICARS image characterization concept
represents a revolutionary step forward in image
management. However, it is an evolutionary step

beyond the text characterization and retrieval
approach employed in the MatchPlus system.

Stated differently, ICARS is the MatchPlus

approach extended to handle images. A key

aspect of this technique is the recognition of the
parallels between the context vector approach for
text and the context vector approach for image
retrieval. Specifically, from the standpoint of
context vector generation and learning, there is a
close analogy between text and images. Consider
the following analogies: MatchPlus Text Case

ICARS Image Case

A document is a collection of words in a specific
sequence. A document might be a message, a
news article, etc.

An image is a set of "atomic" elements. These
atoms might be primitive shapes, textures, or
attributes of the image that can be identified by
wavelet transformations. These atoms are in a
specific spatial orientation to one another in the
image.

The specific words, their sequence and the
proximity of these words to one another define
the context and content information of the
document.

The specific atoms, their number and spatial
orientation of atoms relative to one another
defines the context and content information of the
image.

For a collection of documents, the set of unique
words in the collection defines the "vocabulary”
of the language used in the documents. This
vocabulary defines the "frame of reference” used
for conveying information.

For a collection of images, the set of unique
atoms in the collection defines the "vocabulary”
of the atomic language used in the images. Stated
differently, the set of atoms defines the basis of
communicating meaning in the image collection.

Figure 4. Text-Image Analogies

Thus, using a slight redefinition of normal usage of
terms, text and images are a direct analogy if "atom" is
substituted for "word" and "image" is substituted for
"document”. There is the additional complexity of two
dimensional spatial relationships rather than simple
sequence. However, this complexity can be easily
accommodated within the framework of the context
vector concept.

It is important to note that for both the text and image
cases, there is no requirement to understand the data
objects being characterized. For text, MatchPlus does
not attempt to understand the words or their meanings.
Only the relationships between the words are learned -
which is 2 much simpler problem. Similarly, in the case
of images, the ICARS system does not aitempt to
recognize objects within images. ICARS only needs to




determine features and characterize the relationships
between usage of these features to be effective.

Recent research has established that there exists an
efficient approach to localized characterization of
information contained within images, [11 - 15). These
studies show that the Gabor "wavelet” transformation
provides a robust representation scheme that is sensitive
to orientation and localized spatial frequency content.
As such, wavelets provide a mechanism for
characterizing the information content of images in a
compact and efficient fashion. There is strong evidence
that the wavelet approach is employed in biological
organisms for vision [15]. These wavelets fit the
receptive profiles found in the mammalian vision
system, and their parameters capture the
neurophysiological properties of localization, spatial
frequency and  orientation  sensitivity [17].
Consequently, wavelet representations provide local,
multi-resolution features that are robust and relatively
noise immune.

A key concept of the ICARS system is the
representation of images by a set of atoms. These
atoms are most easily thought of as primitive building
blocks of images: an "atomic vocabulary” for images.
These building blocks, when combined in the correct
sequence and in the correct spatial positions, define the
image. Under this definition, images can consist of any
number of individual atoms in any combination. The
information content of the image used in the ICARS
system is defined solely in terms of the specific atoms
that comprise the image and the spatial orientation of
the atoms to each other. For ICARS, an atomic
vocabulary consisting of ensembles of Gabor wavelet
transformations are used. The resulting feature vector
vocabulary represents a comprehensive set of image
primitives that serves as a basis for atomic
characterization of arbitrary images.

ICARS uses a multiple-wavelet representation of the
information contained within the image as the basis for
defining the vocabulary for context sensitive retrieval,
To implement this approach, wavelet parameters are
selected to capture orientation sensitive spatial
frequencies at a variety of orientation/frequency
combinations over the range of interest. The final
combination, for examnple, might be eight orientations,
five spatial frequencies. Using this approach a total of
8*5 (40) real valued numbers would be computed for
each point in the image that is sampled. Stated
differently, each sample point is characterized by a 40
dimensional vector. An example of this set of wavelet
kernels is shown in Figure 5.
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Figure 5. Wavelet Ensemble Example.

Using this approach, an image would be characterized
using wavelet ensembles representation evaluated at
each point on a grid superimposed on the image
("sample points”). The current technique uses a simple,
offset grid sampling. Clearly, the accuracy of the
representation is linked to both the number of points
sampled, where they are sampled and the discrimination
of the wavelet transformations employed.

Since the actual values that result from the wavelet
transformations are real valued vectors, the feature
vector values would, in general, be unique possibly
resulting in a near-infinite number of combinations. The
next step is to statistically select the "atomic
vocabulary” from the set of 40 dimension feature
vectors using a vector quantizer. This vocabulary, then,
yields the finite symbols set required to allow context
vector learning. A block diagram of this operation is

shown inFigure 6.
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Figure 6. Atomic Vocabulary Definition.

A key feature of the ICARS system is the ability to
learn the context of image atoms from examples. This
learning procedure is referred to as “bootstrapping” and
is based on the concept of atomic proximate co-
occurrence. That is, atoms that appear spatially close to
one another in a significant number of images are
related. The closer the atoms appear to one another in
the image, the stronger the relationship between the
atoms. Additionally, the importance of the atoms is
related to both the local frequency (within this image)
and the global frequency (within the image corpus as a




whole3). The proximate co-occurence and frequency
relationships are handled as part of the two-dimensional
learning algorithm.

Once atomic learning is complete, a context vector
representation for an image can be computed in the
same fashion as text. Specifically, the image context
vector is the frequency weighted sum of its constituent
atom context vectors. This operation is shown in Figure
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Figure 7. Image Context Vector Generation.

Once the capability to generate image context vectors
is available, image retrieval “by example” can be
achieved. Like the context vector approach used in
MatchPlus, all image components are represented by a
context vector: atoms, groups of atoms, images, and
queries. This consistent framework allows queries to be
created using several approaches. Regardless of the
approach used to generate the query, all queries will be
represented by a context vector. Whole images can be
used as queries. This is, in essence, asking the system
to retrieve images that "look like" the image used as the
query. Image retrieval is performed in an identical
fashion to document retrieval in MatchPlus. Image
relevance is assessed by computing the dot product of
the image context vector with the query context vector.
Large dot products correspond to close similarity, lower
products to less similar images. Images will be ranked
by dot product and are presented in a ranked list for
easy identifications of images "close" to the user query.

This process is shown inFigure 8.
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Indexing of unlabeled imagery can also be achieved
by using a database of human-labeled images as
examples. The basic assumption is that "images that
have similar content will have similar index terms".
Thus, this approach relies on the context vector
approach to find images with similar content. The

3 ICARS, in its current version, supports the concept of
an atomic “stop list” where very high frequency atoms
can be eliminated from subsequent computations. This
is a direct extrapolation from the text case.
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Figure 8. Image Retrieval.

Indexing of unlabeled imagery can also be achieved
by using a database of human-labeled images as
examples. The basic assumption is that "images that
have similar content will have similar index terms".
Thus, this approach relies on the context vector
approach to find images with similar content. The
block diagram for this operations is shown in Error!
Reference source not found..
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Figure 9. Indexing Mode Block Diagram.

1.4.2 ICARS Conclusion

A summary of attributes of the ICARS approach are
as follows:
¢ Defines image content based on automatically
derived atomic features.

Retrieves unlabeled imagery based on learned
proximate co-occurence of atomic features. ICARS
ranks all images in the database according to
similarity to query. As many images as desired are
returned for any query.

Provides fully automated generation of system.
Given an atomic vocabulary and a set of images,
generation of the ICARS system is automatic. No
human knowledge base is needed for creation of
the image retrieval portion of the system.

Assigns index terms to unlabeled imagery based
upon a set of human indexing examples.

1.5 Summary

As described in the preceding sections, the context
vector approach is very powerful and can be applied to
multiple information domains. The MatchPlus effort
has demonstrated the viability of the context vector
approach for text. The ICARS effort has provided a
preliminary demonstration of the applicability of this
approach for images. This foundation can provide the




basis for a wunified information representation.
However, no work has been performed to date on a
unified information space that contains context vectors
associated with both text and image symbols. It is
precisely this area of research that is believed to hold
the key to a generic, media-independent information
representation.

2. Approach to Integration of Text and
Image Information Spaces

The previous sections describe how the context vector
technique can be applied to learning relationships from
text and images. In the text case the principles of
quantized information vocabularies (stemming) and
symbolic association are combined with proximate co-
occurence to learn contextual similarity of usage at the
stem level. These context vectors are then used to
perform useful text processing tasks such as stem-stem
relationship discovery, word sense identification,
document retrieval and document clustering.

In the image case, the principles of quantized
information vocabularies were applied to Gabor
wavelet-based image feature vectors using a vector
quantizer to produce a finite symbol set. These symbols
were then associated with random context vectors prior
to application of the context vector learning law. The
resulting “image symbol” vectors can be used to form a
context vector representation for images and can be
used to perform image retrieval by similarity of content.

Many documents written and stored in today’s
information processing systems are mixed media. That
is, they contain both free text and imbedded figures.
This white paper is an example of such a document. A
general characteristic of these documents are that the
text that surrounds a figure, in general, describes or
refers to the figure. As such, there is a proximate co-
occurence relationship between the image symbols in a
figure and the symbols in the surrounding text (stems).
It is possible to develop a technique to learn the
relationships between the image symbols and the
symbols in the surrounding text. Since a context vector
representation will be used for both text and image
atoms, a common frame of reference is available for the
learning process. An example of the proximate co-
occurence between text and image symbols is shown
below in Figure 10. This figure represents a segment of
a mixed media document and has both “fake” text and
an associated figure consisting of some map symbols.
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Figure 10. Example Mixed-Media Document.
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Figure 11. Example Co-occurence Learning Window.

Figure 11 shows an example of a co-occurence
learning window that spans both text and image
symbols. In Figure, it can be seen that the map symbol
icons have been replaced by their image symbols. Also,
it can be seen that the size and scope of the learning
window will impact which word and image symbol
context vectors will be modified during the training.

As described above, both the text and image cases
have a series of key similarities (see Figure). Indeed,
the ICARS concept was developed by using analogies
to extend the text approach to images. However, in
both cases, the key information symbols are associated
with context vectors prior to learning. To achieve the
goal of mixed media learning, the following steps are
required:

Identify a set of appropriate features for the image
data and generate a set of image symbols. Use
stems as the text symbols and quantized atomic
features for image symbols.

Provide initial conditions for context vectors for
both text and image symbols from the same context
vector space.

3. Utilize a learning law to exploit proximate co-
occurrence for both text and image symbols in
documents. This learning algorithm would, by
necessity, have to be robust enough to
accommodate overlap conditions of mixed media
symbols in the learning window. In other words,
the relationships between the text symbols and




image symbols in the window will be learned based
on spatial co-occurence within the learning
window.

4. Exploit these relationships for document
management tasks. Exploitation will require the
development of a preliminary access and retrieval
capability. However, the basic system architecture
utilized for the MatchPlus and ICARS systems
would be sufficient to provide this capability.

This technique will automatically learn and exploit
relationships from mixed media documents, for both
text and image components. As such, this approach can
provide advantages in terms of the ability to manage
these mixed media documents. Free text could be used
as a query to the system and the result would be both
text and images. Conversely, an image could be used as
a query and both images and associated text would be
retrieved. Many other advantages may exist, but due to
the newness of this concept, they are not yet fully
understood.

3. Summary and Conclusions

The techniques described above represent work in
progress for several related research efforts. Many
technical issues remain to be resolved. However, major
progress has been made in developing a conceptual
framework for the integration of text and images in the
same information space. Efforts in these areas will
continue as part of the DOCUVERSE and ICARS
projects and a substantial number of “reportable results”
are expected within the next 9 months.

Key areas and technical issues remaining for
investigation are as follows:

1. More investigation of context vector learning laws
that operate optimally in a mixed media
environment are required. One vital issue is the
development of a scoring algorithm to permit rapid
evaluation of learning techniques.

2. Experiments must be conducted to determine the
optimum “scope” of the learning window and the
amount of allowable overlap between the image
symbols and surrounding text.

3. Optimum feature vector configurations for mixed
media environments need further research.
Additionally, optimum vocabulary sizes need to be
investigated.

Research efforts in this area have only just begun.
However, the context vector technique shows true
promise as demonstrated by the single media results
embodied in both the MatchPlus and ICARS systems.

4. References

[1] Salton, G. (ed.), The SMART Retrieval System -
Experiments in Automatic Document Processing,
Prentice-Hall (1971).

[2] Salton, G., Another Look at Automatic Text
Retrieval Systems, Communications of the ACM,
Vol. 20, 1986, pp. 648 - 656.

12

(3]

(4]

[5]

[6]

{7

(8]

(9]

[10]

(11

[12]

[13]

[14]

[15]

(16]

Salton, G., Automatic Text Processing (Addison-
Wesley, 1989).

Salton, G. Buckley, C. Term Weighting
Approaches in Automatic Text Retrieval,
Information Processing and Management, Vol.
24, No. 5, 1988, pp 513-523.

Buckley, C., Allan, J., Salton, G., Automatic
Routing and Ad-hoc Retrieval Using SMART:
TREC-2, in Proceedings TREC-2 Conference, D.
Harman, ed, Gaithersburg, MD. Aug. 1993.

Deerwester, S., Dumais, S.T., et al, Indexing by
Latent Semantic Analysis, Journal of the Society
for Information Science, 1990, Vol 41, No. 6, pp
391-407.

Dumais, S.T., LSI Meets TREC: A Status Report,
in Proceedings TREC-1 Conference, D. Harman,
ed, NIST Special Publication 500-207, Rockville,
MD. Nov. 1992,

Dumais, S.T., Latent Semantic Indexing (LSI)
and TREC-2, in Proceedings TREC-2
Conference, D. Harman, ed, Gaithersburg, MD.
Aug. 1993,

Gallant, S.I., Context Vector Representation for
Document Retrieval, AAAI-91 Natural language
text Retreival Workshop, Anaheim, CA. July
1991.

Gallant, S.I, A Practical Approach for
Representing Context and Performing Word
Sense Disambiguation Using Neural Networks,
Neural Computation, Vol. 3, No. 3, 1991, pp
293-309.

Daugman, J, "Six Formal Properties of Two-
Dimensional  Ansiotropic  Visual  Filters:
Structural Principle and Frequency/Orientation
Selectivity", IEEE Transactions on Systems, Man
and Cybernetics, Vol. SMC-13, p.p. 882-887,
Sept. 1983.

Daubechies, I, "Time-frequency Localization
Operators: A Geometric Phase Space Approach”,
IEEE Transactions on Information Theory, Vol.
34, p.p. 605-612, July 1988.

Mallat, S.G.  "Multifrequency  Channel
Decompositions of Images and Wavelet Models",
IEEE Transactions on ASSP, Vol. 37, p.p. 2091-
2110, Dec. 1989.

Mallat, S.G., "A Theory for Multiresolution
Signal Decomposition: The Wavelet
Representation”, IEEE PAMI, Vol. 11, p.p. 674-
693, July, 1989.

Porat, M., Zeevi, Y., "The Generalized Gabor
Scheme of Image representation in Biological
and Machine Vision", IEEE PAMI, Vol. 10, p.p.
452-468, July 1988.

Watson, G.S. "Statistics on Spheres”, Wiley, p.p.
40-43, 1983




nn Daugman, J.G., "Uncertainty Relation
for Resolution in Space, Spatial Frequency and
Orientation Optimized by Two-Dimensional
Visual Cortical Filters", J. Optical Soc. Am., Vol.
2, p.p. 1160-1169, 1985.

13




Combining Text and Image Information
in Content-Based Retrieval

Rohini K. Srihari*
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Abstract

This paper ezplores the interaction of textual and photographic information in an integrated text/image
database environment. Specifically, we have developed an automatic indexing system for captioned images
of people (i.e., human faces) where groups can consist of one or more members; the indezing information
along with other textual information is subsequently used in a content-based image retrieval system. Our
approach is unique since it goes beyond a superficial combination of existing text-based and image-based
approaches to information reirieval. By understanding the caption accompanying a picture, we are able
to (1) extract information useful in retrieving the picture and (i1) extract information useful in directing an
image interpretation system identify relevant objects (in this case, faces) in the picture. A multi-state system,
PICTION, which uses captions to identify human faces in an accompanying photograph has been developed.
We discuss the use of PICTION’s output in content-based retrieval of images to satisfy focus of attention in
queries.

*This work was supported in part by ARPA grant 93-F148900-000.
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DocBrowse: A System for Mixed Graphics/Text Document
Image Analysis and Retrieval
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Abstract

This paper presents the software architecture for
DocBrowse: a system for mixed text/graphics doc-
ument image analysis and retrieval. DocBrowse is
intended to be an open and extensible environment
that permits the user to manage and perform queries
on highly degraded document image databases while
also serving as a research environment for developing
document image analysis and query by image exam-
ple (QBIE) algorithms. DocBrowse consists of a user
interface, an object oriented document database and
a variety of document image analysis engines. Us-
ing DocBrowse, it is possible to perform queries that
retrieve documents based on both graphical and tex-
tual content. We describe the graphical user inter-
face that is used to perform such queries. We also de-
scribe briefly our approach to QBIE along with some
example results on a large test database of document
and logo images that we have developed. We con-
clude with a description of the document database
and the analysis engines used in the current proto-

type.

1 Introduction

Digital documents are a fixture in modern office
working environments. Digital documents come in
many different forms, ranging from simple ascii text
files to complex compound documents stored in a
special formats involving both text and graphics.
With the advent of word processors, scanners, and
FAX machines, and the drop in the cost for digital
data storage, massive numbers of digital documents

are being acquired, analyzed, and stored. When the
document is acquired by a scanner or FAX machine,
the digital image will contain at least some noise and
may be highly degraded. Analyzing and managing
this massive flow of information remains-a major
challenge.

Several commercial and public domains systems
have been developed expressly for the problem of
management and analysis of images. These include
Excalibur EFS, Visual Recall from XSoft, Page-
Keeper from Caere among others. These systems
usually feature sophisticated techniques for docu-
ment analysis problems such as page segmentation
and optical character recognition (OCR). They offer
state-of-the-art tools and techniques for document
analysis and management, and some achieve excel-
lent performance in dealing with clean (low-noise)
digital image data. All of the existing systems, how-
ever, suffer some of the following limitations:

o The primary orientation is for analysis of digital
documents based on roman text. Non-roman
text and graphics is supported in varying de-
grees, and often not at all.

o The performance is seriously impaired for very
noisy or highly degraded documents, sometimes
to the point of being useless.

e No single system is omnipotent, it is usually
necessary to develop specialized interfaces be-
tween multiple applications.

e Many systems have a closed software architec-
ture and do not allow the user to extend the
system.
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The aim of our project is to overcome these lim-
itations in the development of DocBrowse, a soft-
ware system for managing large collections of com-
plex digital documents which have both text and
graphics and may be subject to serious degradations.
DocBrowse is intended to be used both as a research
test-bed for document image analysis algorithms as
well as an on-line mixed mode document query in-
terface.

The overall system architecture for DocBrowse is
displayed in figure 1.

Page Seg.

Figure 1: DocBrowse Architecture

DocBrowse consists of three main components

1. A browser/GUI for visual querying and sift-
ing through a large digital document image
database. Support is provided for queries based
on both textual and graphical information.

2. An object-relational database management sys-
tem for storing the data.

3. Several analysis engines, including specialized
document analysis software (OCR and page seg-
mentation) and general purpose quantitative
programming environments.

An important feature of DocBrowse is an open
architecture with interchangeable software compo-
nents. This permits the user to extend the system
in various ways. For example, the user can recon-
figure the user interface, add additional databases
of documents, add additional algorithms to existing

document image analysis engines that are part of
the system, add user-defined or derived attributes to
new or existing documents, or even add other anal-
ysis engines. Document analysis software is highly
specialized and rapidly evolving. Consequently, ex-
tensibility and flexibility is the key to development
of a next generation software system.

In this paper we give an overview of DocBrowse
and its software architecture. Section 2 presents
DocBrowse from a “user’s viewpoint”, describing
the user interface and presenting several scenarios
of common usage. One scenario describes how to
perform query by image example (QBIE) using lo-
gos on business letters as cues. In section 3, we
describe the methodology used to perform QBIE in
DocBrowse. Section 4 discusses the object relational
database management system and the schema for
the document image data. Section 5 describes the
various components that make up the analysis en-
gines of DocBrowse. Future directions are discussed
in section 7.

2 A User’s View of DocBrowse

Document image management and analysis systems
are often used in scenarios where the user would like
to browse, retrieve and analyze large numbers of
highly degraded scanned document images. These
collections of documents and the user who is brows-
ing these collections could reside on various comput-
ers connected in a network. The document images in
the database could contain both textual and graph-
ical components. Graphical components include all
regions of the image that would not ordinarily be
readable by an OCR for e.g. signatures, logos, line
drawings etc. Each document in the database is as-
sociated with a variety of attributes both derived
(extracted from the document image in some auto-
matic fashion) and user-defined. Derived attributes
could include - OCR’ed text, page layout, a segmen-
tation of the page into zones, signatures associated
with graphical/non-text zones etc. Given these tags
it is then possible to compose relatively complex
queries that retrieve documents based on a combina-
tion of document attributes. The query mechanisms
themselves are sophisticated enought to allow the
user to iteratively refine the scope of a search on a
large collection of documents.
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Figure 2 shows an overall view of the GUI for

DocBrowse.
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Figure 2: Using DocBrowse

DocBrowse offers three modes for the user: 1)
view and analyze, 2) insert, and 3) query. All op-
erations in each of the three modes are supported
by the GUI in an intuitive and easy to use manner.
These modes are described in detail below.

2.1 View and Analyze Mode

In the first mode (which we call the view and analyze
mode) the user scans, views and analyzes document
images. The user is able to pan and zoom on docu-
ment images. The user can invoke an OCR to pro-
duce text output, use page segmentation software
to segment the page into text and non-text regions,
use any other analysis algorithms present to operate
on the image. These will eventually include skew
detection and correction algorithms, and denoising
algorithms. In view and analyze mode, the user will
also be able to compute signatures/features on seg-
mented zones and store these feature vectors in the
database. These can be then used to create a train-
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ing/test set for a classifier that is part of S-Plus or
any other analysis engine.

2.2 Insert Mode

In the second mode (which we call insert mode),
the user inserts a document page (or pages) into
DocDB. The various steps the user performs are -
scan the page, define values for pre-existing docu-
ment attributes, define new document attributes, in-
sert into database. Pre-existing document attributes
include page text, segments, signatures for QBIE on
graphics zones or segments, pixmap resolution, au-
thor etc. If certain attributes apply to all documents
the user sets up session-wide attribute-value pairs
that are automatically associated with all documents
inserted in that insertion session. Examples of such
session-wide attributes or tags include scan resolu-
tion, insertion person etc. User defined attributes
can be either numerical, textual or logical entities.

2.3 Query Mode

In the third mode (which we call query mode) the
user uses the attributes of the documents to retrieve
and visualize documents in the database. The user
can query in a combination of three different ways.
Figure 3 shows the DocBrowse query manager inter-
face that allows the user to combine various types of
queries. The documents returned by the query are
thumbnailed and presented to the user and appear
below the query manager window in the figure. The
scale at which the thumbnailing is performed is de-
termined by a combination of the screen resolution
and the number of documents returned by the query.

The first query sub-mode called the tag query
sub-mode allows the user to query on attribute
value pairs. For example a tag query can take
the form “Retrieve all documents that have a tag
called author with a value Andrew Bruce.” These
queries are entered via a check-box GUI inter-
face. In the second query sub-mode (called the
text query) sub-mode the user queries on text key-
words that are present in the OCR text of the doc-
ument pages in the database. Key words can be
combined in a boolean fashion. Documents are re-
turned rank-ordered in decreasing similarity with
the query words. The measure of similarity used
in the query engine is the well-known and accepted
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Figure 3: Querying using DocBrowse

cosine distance measure. The third query sub-mode
(called the QBIE sub-mode) allows the user to select
a graphical zone on a page and search for all other
images with similar graphics regions. The query in-
terface for QBIE searches is shown in Figure 4. The
user selects the document graphic that is to be used
for the query. A variety of signature representations
are pre-computed and stored with each document
in the database and it is possible to use one or a
combination of signatures in performing the query.
Documents containing graphics zones similar to the
zone of interest are returned in decreasing order of
similarity. Figure 5 shows the results of one such
query.

Figure 4: Graphical queries using DocBrowse
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3 Graphical Queries on Document
Images

There are a large number of ongoing research efforts
that tackle the problem of query by image example.
IBM’s QBIC system [10] and Illustra’s Visual Intel-
ligence Recall product [5] both address the problem
of querying for color photographic images based on
attributes of these images. In [8], the authors de-
scribe a retrieval system for graphical documents,
principally line drawings of machine parts. [6] de-

Figure 5: Graphical query results in DocBrowse
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scribes a system that uses wavelet transform based
methods for sketch based retrieval of digitized color
paintings. As mentioned earlier, unlike these sys-
tems DocBrowse supports graphical queries on on
highly degraded document images.

Querying based on graphical content is an intrin-
sically difficult problem. The search is not based on
matches or partial matches, but instead on a mea-
sure of similarity. Similarity searching is often based
on some statistical technique (e.g., linear discrimi-
nant analysis or nearest neighbor analysis). In clas-
sical statistical classification/discrimination, the di-
mension of the space to search (p) is relatively small.
In graphical querying, the dimension is enormous:
p = 10° or 107 and traditional statistical techniques
are neither practical nor appropriate.

Our underlying approach towards graphical
querying is based on reducing the dimension of the
problem by computing a variety of signatures from
each of the graphics zones (logos) present on docu-
ment pages. These signatures are designed to be ro-
bust to noise, rotation, translation and scale changes
in the data. A variety of signatures (shape de-
scriptors) have been proposed for 2-d object recog-
nition and binary machine vision [11]. Many of
these techniques that are robust with respect to
noise are based on Fourier shape descriptors. Re-
cently, wavelet transforms [2] have been shown to
provide certain advantages over Fourier transforms
in terms of better signal compaction for a given
signal to noise ratio. With the exception of re-
cent work [3] that deals with overcomplete wavelet
representations, wavelet transforms are not rotation
or translation invariant. Our approach proposes to
overcome this problem while retaining the other ad-
vantages of wavelet representations. Details of the
procedure are given in [7].

The algorithms for signature computation proceed
in three separate stages:

1. Filter to minimize the impact of noise.

2. Compute a rotation, translation and scale in-
variant representation of the logo. This proce-
dure assumes that the page orientation is up-
right when the document image is scanned.

3. Compute three signatures for each logo

o Wavelet transforms of projections in the
two axes directions.

o Wavelet transforms of a parametric repre-
sentation of the bounding contour of each
logo.

e Two-dimensional wavelet transforms.

In order to describe the capabilities of the system
as it stands, we present a few sample results.

We now show three examples to illustrate the per-
formance of various aspects of our QBIE algorithms.

In the first example, the test database consists
of 4 versions of each of 100 logos - digitized at 300
dpi and subsampled versions at 200, 150 and 100
dpi. Figure 6 shows the result of a query logo and
the top eight logos returned by DocBrowse using
the wavelet boundary signature. The top left hand
corner is the query logo at 100 dpi. The remaining 7
(top-to-bottom, left-to-right) are the logos returned
in descending order of Euclidean distance from query
vector in the signature space.

In the second example, the test database consists
of 12 versions of each of 73 logos - rotated at eight
different angles between +60 and -60 degrees about
the vertical. (Typical skew angles in document im-
ages are in the range of less than 5 degrees) Figure 7
shows the result of a query logo and the top ten logos
returned by DocBrowse using the wavelet projection
signature.

In the third example, the test database consists
of 5 versions of each of 500 logos contaminated by
shot-noise ranging between 1 and 5% of the pixels.
Figure 8 shows the result of a query logo and the
top ten logos returned by DocBrowse using the two-
dimensional wavelet transform signature.

4 Document Database

The document structure in DocBrowse is based on
several existing standards for document description
and layout including the ISO Office Document Ar-
chitecture standard (1], SGML, DAFS from RAF
Technology [12], and RTF [9]. Figure 9 illustrates
the structure of a document in DocBrowse. A doc-
ument is defined as a collection of document pages.
Document pages are in turn decomposed into zones.
The decomposition of pages into zones operates at
multiple granularities. At the coarsest level, the
page can be decomposed into header, footer and lLive
matter zones. At the finest level of granularity each
character on the page can be considered a zone. At
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an intermediate level of granularity each paragraph
or body of text which is distinctly separated from
adjoining bodies of text or figures can be referred
to as a zone. It is this level of granularity that we
adopt for this project. Zones can be of two types -
text and non-text or graphics zones. A graphics zone
contains information such as figures, line drawings,
half-tones or bit-maps (such as logos). Each docu-
ment, document page and zone can have associated
with it one or more tags in the form of attribute
value pairs. Specifically, these tags could include in
the case of a document page, the scanned pixmap of
a page, the type of document, scan resolution, OCR
text etc. In the case of a zone it could include a pro-
cessed pixmap of the zone or features extracted from
the zone that could be used for zone classification or
classifier construction. The focus of the DocBrowse
system is to permit the user to interact with and pro-
cess a large set of documents all the while adding to
what she/he knows about these documents by using
various visualization and processing tools.

Page

First

B CELLLRE COL T

3
2222022223222 \-

Figure 9: Documents in the DocBrowse
The database component (DocDB) of this project

is implemented using an object-relational database
management system (ORDBMS) called Illustra,
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which is produced by Illustra Information Tech-
nologies, Inc. [4]. ORDBMS have the advan-
tages of both relational DBMS (RDBMS) and pure
object-oriented DBMS (OODBMS) in that unlike
an RDBMS they support complex datatypes and
inheritance mechanisms and unlike an OODBMS
they have a sophisticated query language (SQL3 in
this case). In addition it is also possible to extend
the database server using “datablades” that support
query and computational operations on specialized
datatypes. For example, the text datablade incor-
porates support for a variety of operations on text
data that are used to extend the functionality of
DocBrowse. These capabilities included the ability
to construct and maintain inverted full-text indices
from document collections, and a weighted boolean
information retrieval engine for text based retrieval.
It is possible to easily extend the database with any
other IR engine/algorithm that operates on the same
set of text data.

5 Analysis Engines

DocBrowse utilizes a variety of document image
analysis algorithms to compute derived attributes
of documents from their image pixmaps. These al-
gorithms are based on two types of software:

o Specialized “off-the-shelf” document analysis
software.

e Customized routines typically written in a lan-
guage supported by a quantitative program-
ming environment (QPE).

The prototype of DocBrowse integrates the Scan-
Worx OCR API from Xerox Imaging Systems [14].
This OCR is used to extract text from document im-
ages which is then stored in DocDB via the Illustra
Text datablade.

The prototype also incorporates S-Plus and
Khoros, two general QPE’s for scientific comput-
ing. Background on these systems, and why they
are valuable for document analysis, is given below.

5.1 S-Plus

In order to meet the requirements of providing an
extensible environment for image analysis, feature
extraction and classifier construction one of the anal-
ysis engines used in the DocBrowse prototype is the
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S-Plus data analysis environment from the StatSci
Division of MathSoft Inc. S-PLUS is a system with
extensive capabilities for data analysis and scientific
computing. It originates from the S language devel-
oped by researchers at AT&T Bell Labs. It is an
interactive interpreted language with the following
attractive features:

¢ S-PLUS is a versatile matrix calculator, drawing
its inspiration from the language APL.

S-PLus has a built-in transparent database
mechanism to make objects persistent, main-
taining data ands results across sessions.

S-Prus supports “Lisp-like” data abstractions,
providing considerably more flexibility than
conventional array based interactive languages.

S-PLus supports both object oriented program-
ming and functional programming.

S-PLus treats procedures as data and permits
creation of new procedures, making the system
fully extensible.

S-PLUS makes it easy to interface to existing
Fortran and C code.

S-PLus has powerful and flexible interactive
graphics, and can produce publication-quality
plots.

S-PLus has an extensive collection of over 2000
statistical and mathematical functions provid-
ing a broad range of capabilities, such as clus-
tering analysis, nonlinear regression, time series
analysis, and optimization.

S-Plus is similar to other scientific computing sys-
tems, such as MATLAB or Mathematica. What sets
S-Plus apart from other systems is its support for
object-oriented programming, complex data struc-
tures, and its extensive collection of functions de-
voted to data analysis and statistics.

In addition, S-Plus has been extended with
S+WAVELETS which is an object-oriented toolkit
for wavelet analysis of signals, time series, im-
ages, and other technical and scientific data.
In addition to the basic wavelet decomposition,
S+WAVELETS also includes sophisticated time-
frequency decompositions such as a wavelet packets
and cosine packets. We use the S+WAVELETS
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toolkit extensively in developing signatures for

QBIE.
5.2 Khoros

In addition, we also use the Khoros image analy-
sis environment [13] from Khoral Research, Inc. to
develop image analysis algorithms. Khoros is a sci-
entific data analysis and software development en-
vironment which has a strong following in the im-
age processing and signal processing communities.
Khoros offers an extensive image processing and im-
age analysis capability and is capable of operating
on large document images in a variety of file for-
mats. As part of the DocBrowse project we propose
to implement an interface between Khoros and S-
Plus that will allow us to exchange data easily be-
tween the two and use S-Plus as a scripting language
for Khoros. So for example, we can use Khoros to
perform image feature extraction and use the exten-
sive library of classification routines available in the
S-Plus environment to develop a zone classifier.

6 Digital Document Data Testbeds

To evaluate DocBrowse, we have generated a
database of 1500+ logos which have been degraded
in different ways (combinations of photocopying and
FAX transmission) for a total of 6000+ logos. We
also have a database of 200 letters degraded in five
different ways - faxing, faxing and photocopying,
first generation photocopies, second generation pho-
tocopy with normal contrast and second generation
photocopy with dark contrast - that we use for our
experiments. This database continues to grow to
meet our experimental needs. In addition to “real”
degradation, we also multiplied our logo database
by introducing various artificial degradation sources
and studying how well our QBIE algorithms perform
(as discussed in Section 3). Figure 10 shows a few
example logos from the logo database. They include
logos that have been photocopied and FAXed prior
to being scanned. We are exploring the possibility
of making this database available to interested re-
searchers via anonymous ftp.

7 Future Extensions

In future generations of DocBrowse, we propose to
use the concept of abstract services in a message




Figure 10: Example logos in Logo Database

passing context to allow the integration of arbitrary
analysis engines. We will also incorporate object
request broker technology to enable interchange of
data between heterogeneous platforms and software
packages.

In terms of user functionality future versions of
DocBrowse will incorporate spelling variations and
equivalences (synonymy) between tags. For exam-
ple author and writer and auther would all be
interpreted as the same tag. Document similarity
searches will also be supported. We also propose to
incorporate topological information into the signa-
tures as well as use intelligent strategies to combine
results from various signature spaces. Scalability
(with respect to database size) of QBIE algorithms
is desirable. We propose to explore mechanisms for
index construction and database clustering in signa-
ture space to reach this goal.
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Abstract

The first level of document structural decomposi-
tion consists of zone delineation and zone classifica-
tion. The purpose of zone delineation is to define the
regions which cover the page such that each region,
excluding its holes, (the regions which it contains), is
entirely a text region or a non-text region and such
that in each text region no text line is fragmented.
After zone delineation, each text zone is then fur-
ther decomposed into text lines and words. The pur-
pose of zone classification is to identify each delin-
eated zone into one of the classes: text or non-text.
Non-tezt regions may be further classified into line
drewing, graph, half-tone, etc. Zones whick have
been classified as text regions can then be given to
an OCR system to produce computer readable text
for the zone.

We have ezamined doing zome delineation by
means of dynamic thresholding of recursively com-
puted morphological open and closing transforms.
We also have done zone delineation by grouping of
the bounding bozes of the connected components of
the black pizels. And we have performed zone clas-
sification on the basts of first and second line length
moments taken in four directions of the black and
the white pizels in each zone. Text vs non-text clas-
sification accuracy was above 97% on a database of
over 12,000 zones.

1 Introduction

The first step of zone delineation consists of deter-
mining the geometric page layout of a document im-
age page. This means a specification of the geom-
etry of the maximal homogeneous regions and the
spatial relations of these regions. A region is homo-
geneous if all its area is of one type: text, half-tone,
figure, etc. and each text line of the page lies entirely
within some text region of the layout. A Manhat-
tan page layout is one where the regions of the page
layout are all rectangular and the rectangles are in
the same orientation. Hence after an appropriate
page rotation the sides of the rectangles will all be
either horizontal or vertical. Furthermore, each pair
of rectangles either is mutually exclusive or one con-
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tains the other.

The purpose of zone delineation is to define the
regions which cover the page such that each region,
excluding its holes, (the regions which it contains), is
entirely a text region or a non-text region and such
that in each text region no text line is fragmented.
Then within each text region the text lines and text
words within the lines must be delineated. The pur-
pose of zone classification is to identify each delin-
eated zone into one of the classes: text or non-text.
Non-text regions may be further classified into line
drawing, graph, half-tone, etc. Zones which have
been classified as text regions can ther be given to
an OCR system to produce computer readable text
for the zone.

We have examined doing zone delineation by
means of dynamic thresholding of recursively com-
puted morphological open and closing transforms.
And we have performed zone classification on the
basis of line length moments taken in four directions
of the black and the white pixels in each zone. Text
vs non-text classification accuracy was above 97%
on a database of over 12,000 zones.

2 Literature Review

Early work on zone delineation was done by Wahl
et al. (1982). They use a technique called the con-
strained run length smoothing algorithm. It actu-
ally consists of a morphologically closing of the doc-
ument image with a horizontal structuring element
of specified length (they used 300) intersected with a
morphological closing of the document image with a
vertical structuring element of specified length (they
used 500). The intersection is then morphologically
closed with a horizontal structuring element of spec-
ified length (they used 30). The bounding rectangles
of the connected components of the resulting image
constitute the block segments. Features of the blocks
include the area of the connected component of the
block, the number of black pixels in the block on the
original document image. the mean horizontal black
run lengths of the original image within the blocks,
and the height and width of the bounding rectan-
gle of the block. Text areas are classified into tezt,
horizontal solid black lines, graphic and halftone im-




ages, and vertical solid black lines. No measure of
performance is given.

Nagy and Seth (1984), and Nagy et al. (1986) em-
ploy an X-Y tree as the representation of a page
layout. The root node of an X-Y tree is the bound-
ing rectangle of the full page. Each node in the tree
represents a rectangle in the page. The children of
a node are obtained by subdividing the rectangle
of the parent node either horizontally or vertically,
with horizontal and vertical cuts being alternately
employed in successive levels in the tree. Hao et al.
(1993) describe a variation on this technique.

Fisher et al. (1990) sample a 300dpi document im-
age by a factor of 4 and use the run length smoothing
algorithm. They then compute the connected com-
ponents of the run length smoothed image. The con-
nected components and their bounding boxes consti-
tute the blocks of the geometric page layout. They
extract connected component features such as com-
ponent height, width, aspect ratio, density, perime-
ter, and area for classifying each block as tezt or
non-lext.

Lebourgeois et al. (1992) sample the document im-
age by a factor of 8 vertically and 3 horizontally.
Each pixel on the sampled image corresponds to an
8 x 3 window on the original image. If any pixel
on the 8 x 3 window of the original image is a bi-
nary one then the sampled image has a binary one in
the corresponding pixel position. Then the sampled
image is dilated by a horizontal structuring element
to effectively smear adjacent characters into one an-
other. Each connected component is then character-
ized by its bounding rectangle and the mean hori-
zontal length of the black runs. Connected compo-
nents having a vertical height within given bounds
and mean horizontal run length within given bounds
are then labeled as a text lines and outside the given
bounds are labeled as a non-text lines. Components
assigned as text regions are then vertically merged
into larger blocks using rules taking into account
alignment. Blocks are also subdivided to separate
their horizontal peninsulas. No measure of perfor-
mance is given but an indication that the method
needs improvement was stated.

Bloomberg (1991) uses morphological operations
on the document image at various resolutions to de-
termine identify font style for each word. Class la-
bels include bold, italic, and normal The method
employs a small vertical dilation followed by a close
open sequence to remove noise followed by a hit and
miss transform to identify seed points of characters
in the italic class or bold class. Then the words
which are in italic or bold can be delineated by
conditionally dilating the seed with a precalculated
word segmentation mask. No accuracy performance
results are given.

Saitoh and Pavlidis (1992) proceed sampling by
8 vertically and 4 horizontally and then extracting
the connected components. They then classify each
component into text, text or noise, diagram or table,
halftone image, horizontal separator, or vertical sep-
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arator, using block attributes such as block height,
height to width ratio, and connectivity features of
the line adjacency graph, and whether there are ver-
tical or horizontal rulings. Page rotation skew is
estimated from a least squares line fit to the the
center points of blobs belonging to the same block.
Blocks are subdivided based on the vertical distance
between lines in a block, and the height of the lines
in a block. The technique was tried on 52 Japanese
documents and 21 English documents. No quantita-
tive measure of performance was given.

Pavlidis and Zhou (1991) determine the geometric
page layout by analyzing the white areas of a page
by computing the vertical projection and looking for
long white intervals from the projections. Then the
column intervals are converted into column blocks,
merging small blocks into larger blocks. Blocks are
clustered according to their alignments and the ro-
tation angle estimated for each cluster. The column
blocks are then outlined. Finally, each block is la-
beled as text or non-text using features such as ratio
of the mean length of black intervals to the mean
length of white intervals, the number of black inter-
vals over a certain length, and the total number of
intervals. No performance results are given.

Baird (1992) discusses a computational geometry
technique for geometric page layout by finding the
maximal rectangles covering the white ares of the
page. The rectanglar regions not covered by the
maximal sized white rectangles then constitute re-
gions which can then be classified as text or non-
text.

Amamoto et al. (1993) determine the geometric
page layout by operating on the white space of the
sampled document image. They open the white
space of the sampled document image tith a long
horizontal structuring element and open it with a
long vertical structuring element. The union of these
two openings then constitute the white space of the
blocks. The blocks are then extracted from this
white space. They decide that a block is a text
block if the length of the longest black run length in
the vertical and horizontal directions is smaller than
a given threshold. A decision is made whether the
writing is horizontal or vertical based on the number
Np of blocks whose width is greater than twice its
height and the number Ny of blocks whose height is
greater than twice its width. If Ng > Ny, then the
decision is horizontal writing. Else vertical writing.
Each block is then assigned a class label from the
set: tezxt, figure, image, table, and separation line.
No performance results are given.

O’Gorman (1992) discusses what he calls the doc-
strum technique for determining geometric page lay-
out. This technique involves computing the k-
nearest neighbors for each of the black connected
components of the page. Each pair of nearest neigh-
bors has an associated distance and angle. By clus-
ter the components using the distance and angle fea-
tures, the geometric regions of a page layout can be
determined.




Hirayama (1993) develops a technique for deter-
mining the geometric layout structure of a document
which begins by merging character strings into text
groups. Border lines of blocks are determined by
linking edges of text groups. Then blocks which
have be oversegmented are merged and a projection
profile method is applied to the resulting blocks to
differentiate text areas from figure areas. Hirayama
reports that on a data set of 61 pages of Japanese
technical papers and magazines 93.3% of the text
areas and 93.2% of the figure areas were correctly
detected.

Ittner and Baird (1993) determine a geometric lay-
out by doing skew and shear angle corrections, parti-
tioning the page into blocks of text, inferring the text
line orientation within each block, partitioning each
block into text lines, isolating symbols within each
text line, and finally merging the symbols into words.
The rotation skew angle is determined by taking the
projections of the centers of the connected compo-
nents of the black pixels on the page at a given an-
gle. The angle is iteratively updated to optimize the
alignment without having to compute the projection
over each possible angle. After rotating the image
shear is corrected by a similar technique. They re-
port an accuracy to within 3 minutes of arc indicat-
ing that the method fails perhaps one in one thou-
sand images. Blocks are determined by the white
space covering technique of Baird (1992). They re-
port that on 100 English document image pages from
13 publishers and 22 styles, 94% of the layouts were
correctly determined. The orientation of text lines
in a block is determined from the minimum span-
ning tree of the connected components of the black
pixels. The mode of the histogram of the directions
of the edges in the minimum spanning tree is the
orientation of the text lines in a block. Symbolsin a
text line are determined by taking the projection in
an orthogonal direction to the text line. The projec-
tion profile is checked for a dominant frequency and
the segmentation into characters is done from the
projection profile with the knowledge of the domi-
nant frequency. To determine the words in a text
line, they determine a scalable word-space thresh-
old for each text block separately. Then each text
line is independently segmented to distinguish the
inter-character spacing with the inter-word spacing.

Ankindele and Belaid (1993) determine a geomet-
ric page layout that permits blocks to be polygonal
as well as rectangular. The determine the elongated
white spaces in the document image and then deter-
mine the intersections of these white spaces. Points
of intersection are candidate vertices for a polygo-
nal block. The polygonal blocks are then extracted
from the geometry of the intersection points. No
performance results are given.

Tsujimoto and Asada (1990) assume that each
block of the geometric page layout contains exactly
one logical class. They organize the geometric page
layout as a tree. Each new article in a document
such as a newspaper begins with a headline which is
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Figure 1: Inter-character Spacing Distribution for a
12-pt font size document: The abscissa ,measured in
the pixel unit, represents the horizontal distance be-
tween the bounding boxes of two adjacent connected
components in a text-line and the ordinate denotes
the number of occurrences. The image resolution is
300 dpi and the number of characters used in the
document image is 2935.

in the head block. They find the paragraphs which
belong to the head block by rules relating to the or-
der of the geometric page layout tree and are able to
assign logical structure labels of title, abstract, sub-
title, paragraph, header, footer, page number, and
caption. They worked on 106 document images and
correctly determined the logical structure for 94 doc-
ument images.

Visvanathan (1990) employs an X-Y tree to rep-
resent the geometric layout and then employed a
regular grammar scheme to label the document im-
age blocks. Block labels included: title, author, ab-
stract, seclion titles, paragraphs, figure, table, foot-
note, footers and page numbers. No performance
results were given.

Yamashita et al. (1991) use a model-based
method. Character strings, lines, and half-tone im-
ages are extracted from the document image. Verti-
cal and horizontal field separators (long white areas
or black lines) are detected based on the extracted el-
ements, then appropriate labels are assigned to char-
acter strings by a relaxation method. Label classes
included: header, title, author, affiliation, abstract,
body, page number, column, footnote, block and fig-
ure. The technique was applied to 77 front pages of
Japanese patent applications. They reported that
the logical structure for 59 were determined per-
fectly.

Dengel (1993) discusses a technique for automat-
ically determining the logical structure of business
letters. He reports that on a test set of 100 letters,
the recipient and the letter body could be correctly
determined.

Saitoh et al. (1993) determine logical layout with
text block labels of body, header, footer, and cap-
tion. They tested the technique on 393 document
images of mainly Japanese and some English docu-
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(see Section 2.3), the combination of local pla-
narity and rigidity is used. For arbitrary motion, rigidity
between environmental points is used to recover motion
parameters from a small ber of image locations (See
Section 2 and Section 3.1).

The inder of this section introd the notati
used throughout tlm paper. Sectxon 2 describes how the
local directi timated from a flow
field and cases oi motion for whxch this is particularly ro-
bust. Section 3 describes how the p ters of relative
sensor motion can be ed from the esti d local
directions of translation. Section 4 d
the local lational d ition directly from real
image ithout the untla.l extraction of optic
flow and other areas for fature work.

1.1 Notation

The coordinate system used in this paper is shown in Fig-

ure 1. The origin of this right-handed coordinate system

lies at the focal point of the camera. The image plane

is parallel to the Xy -plane and is centered on the point

(0 0 f), where f is the focal length of the camera. A
| env tal point will be referred to

__ Hrh *T

(a) original image (b) text line bounding boxes

(c) word bounding boxes (d) text block bounding boxes

Figure 2: Example of Document Image Decomposition: (a) a document image written in English, (b) text
line bounding boxes, (c) word bounding boxes, (d) text block bounding boxes.
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(a) original image (b) text line bounding boxes

(¢) word bounding boxes (d) text block bounding boxes

Figure 3: Example of Document Image Decomposition: (a) a document image written in Korean, (b) text
line bounding boxes, (¢) word bounding boxes, (d) text block bounding boxes.
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ments. To characterize performance they measured
the average number of times per document image
an operator has to correct the results of the auto-
matically produced layout. They report that on the
average 2.17 times per image areas not suitable for
output have to be discarded, .01 times per image
mis-classified areas have to be correctly labeled, and
1.09 times per image does a text area have to be re-
set. With respect to text ordering they report that
it required moving connections .47 times per image,
on the average, making new connections .11 times
per image, and re-assigning type of text .36 times
per image.

3 The Bounding Box Algorithm

The input to the bounding box algorithm is a
deskewed binary document image. A connected
component algorithm is applied to the black pixels
of the deskewed binary image. For each connected
component, the smallest rectangular box which cir-
cumscribes the connected component is computed.
Each of the bounding boxes is considered as a sin-
gle unit on the page. The algorithm does the hor-
izontal and vertical projections of these bounding
boxes. The projection profiles are analyzed and
the textlines are extracted. The spatial configura-
tion of bounding boxes within each of the extracted
textlines is analyzed to extract words. Textlines
are merged into text-blocks based upon the inter-
textline spacing distribution and also based on the
changes in the textline justification. The details are
as follows.

Step 1: Bounding Boxes of Connected
Components

Let I be the input binary image. A connected-
component algorithm (described in {13]) is applied
to the black pixels in [ to produce a set of con-
nected components. Then, for each of the connected
components, the smallest rectangular box which cir-
cumscribes the connected component is computed.
Such a rectangular box is called the bounding box.
- A bounding box can be represented by giving the
coordinates of the upper left and the lower right cor-
ners of the box. Figure 6 shows an example of the
bounding box of the character ‘g’.

Many kinds of symbols are used in document
pages: alphanumeric characters, punctuation marks,
mathematical symbols and so on. These symbols can
be classified into two groups: “single-component”
symbols and “multiple-component” symbols. Char-
acter ‘g’ in Figure 6 is an example of single-
component symbols, while character ‘1’ in Figure 6 is
an example of multiple-component symbols. All En-
glish alphabets except ‘1’ and ¢’ belong to the former
group. Of course, a single-component symbol can be
“broken” into several pieces on a degraded image. In
this case, the symbol is also considered as a collec-
tion of subsymbols, that is, a multiple-component
symbol.
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Figure 4: Character ‘g’ and its bounding box.
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projection direction

projection profile

bounding boxes

projection line

Figure 5: Horizontal Projection Profile, which is ob-
tained by accumulating the bounding boxes onto the
vertical line. It is a frequency histogram of the num-
ber of projected bounding boxes.

Figure 6a shows a segment of an English document
image (taken from the UW English Document Im-
age Database-1, page id “LO06SYN.TIF”) and Fig-
ure 6b shows the bounding boxes produced by the
algorithm in this step. Note that, the number of
bounding boxes are larger than the number of sym-
bols since multiple bounding boxes are produced for
multi-component symbols. Our page decomposition
scheme analyzes the spatial configuration of those
bounding boxes of connected components to extract
textlines, words, and paragraphs.

Step 2: Projections of Bounding
Boxes

Analysis of the spatial configuration of bounding
boxes can be done by projecting those bounding
boxes onto a straight line. Since paper documents
are usually written in the horizontal or vertical di-
rection, projections of bounding boxes onto the ver-
tical and horizontal lines are of particular interest.
While projecting bounding boxes onto the horizon-
tal or vertical line, they will accumulate onto that
line, which results in the projection profile (Fig-
ure 5). A projection profile is a frequency distri-
bution of the projected bounding boxes on the pro-




The plane formed by #;; and the focal point of the
camera must include #; ;. Let this plane be designated
by its normal n; ;.

g = B X Bije )]

Since n;,; is perpendicular to §; ;
nij -8 =0 (2
In the case of purely translational motion, the direction
of 4; ; is constant for all 5. Therefore, Equation 2 can be

rewritten as

-t =0 (3
where 9; = ¥;; for all i. This equation is linear with
three unknowns, and can be eolved using a least squares
technique.

An error measure is used to evaluate the validity of
the local translation approximation. The error measure
we use is the average, taken over the local neighborhood,
of the angle between each flow vector plane and the local
translation. Using the normals n;,; from Equation 1, the
error measure is deﬂned as
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(b) bounding boxes of connected components

(d) vertical projection profile

Figure 6: Bounding Boxes of Connected Components and the Projection Profiles: (a) a document image
written in English, (b) bounding boxes of connected components, (c) horizontal projection profile, (d) vertical
projection profile.
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Figure 6: (continued) (e) text-line bounding boxes,
(f) text-line height distribution, (g) inter-text-line
spacing distribution. The abscissa represents the
heights of text lines/inter-text-line spacings in pixel
unit and the ordinate represents the number of oc-
currences.

jection line. The bounding box projection profiles
provide important information about the number of
bounding boxes aligned along the projection direc-
tion. Figure 6(c) and 6(d) shows the horizontal and
vertical projection profiles of the bounding boxes in
Figure 6(b).

Step 3: Extraction of Text-Lines

In this step, our algorithm first determines the
textline direction of the page by analyzing both hor-
izontal and vertical projection profiles. Once the
text-line direction of the page is determined, the
algorithm partitions the page bounding box into
textline bounding boxes.

If we take a careful look at the projection profiles
in Figure 6(c) and 6(d), it is clear that the text-lines
are horizontally oriented: Within the horizontal pro-
jection profile, there are distinct high peaks and
deep valleys at somewhat regular intervals, whereas
within the vertical projection profile, there is no such
distinction. Since the bounding boxes are repre-
sented by a list of coordinates of the two-points, the
text-lines are easily extracted. The result is shown
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in Figure 6(e).

Other important informations can be deduced
from the horizontal projection profile: the frequency
distribution of textline heights and inter-textline
spacings (Figure 6(f) and 6(g)). These distributions
will be employed in the text-block extraction pro-
cess.

Step 4: Extraction of Words

In this step, the algorithm groups the bounding
boxes on each text-line (produced from the last step)
into bounding boxes of words.

Our algorithm first computes the projection pro-
files within each of the textline bounding boxes.
Again, the units of the projection profile are bound-
ing boxes, not pixels. Next, the algorithm considers
each of the projection profiles as a one-dimensional
gray-scale image, and threhsolds each of the images
to produce a binary image. The threshold value is
set to 1. Figure 6(h) shows projection profiles within
textlines and Figure 6(i1) shows the corresponding bi-
narized 1-D profiles. Note that, during the binariza-
tion, a symbol (or a broken symbol) with multiple
bounding boxes may be merged into one, as well
as, those adjacent symbols within the same text-
line whose bounding boxes are overlapping with each
other. But this will not cause any problem in the re-
sult of our word extraction process, since our algo-
rithm extracts words by merging symbols’ bounding
boxes to form words.

After binarization, the algorithm performs a mor-
phological closing operation on each of the binarized
text-line projection profile with structuring element
of appropriate size (The fastest algorithm for one-
dimensional morphological closing operation is in-
troduced in the Appendix II). The length of the
structuring element is determined by analyzing the
distribution of the run-length of the zero’s on the bi-
narized text-line projection profile. In general, such
a run-length distribution is bi-modal. One mode
represents the inter-symbol spacing, and the other
represents the inter-word spacing. Figure 6(j) shows
the frequency distribution of inter-character spac-
ings, The length of the structuring element is cho-
sen between the two modes. As the result, the mor-
phological closing operation closes spaces between
symbols, but not the spaces between words. (See
Figure 6(i) and 6(k)). Figure 6(1) shows the results
of this step.

In a printing process, each symbol is associated
with its width, the amount of space it occupies when
it appears in a text-line. In some fonts this spac-
ing 1s constant, i.e., it does not vary from char-
acter to character. These fonts are called fixed
pitch or monospaced fonts; they are used mainly for
typewrite-style printing. Most fonts used for high
quality typography, however, associate a different
width with each character. Such fonts are called
variable pitch fonts. In either case, most of alpha-
betic languages are usually printed in such a way
that less spacing is put between consecutive char-
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Figure 6: (continued) (m) text block bounding boxes, (n) superimposition of text line bounding boxes and the
original image, (o) superimposition of text word bounding boxes and the original image, (p) superimposition
of text block bounding boxes and the original image.
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Figure 6: (continued) (h) vertical projection profiles, (i) binarized vertical projection profiles, (j) inter-
character spacing distribution (see Figure 3).
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Figure 6: (continued) (k) vertical projection profiles, (1) binarized vertical projection profiles.
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acters in a word while more spacing is put between
neighboring words on a text line. This fact can eas-
ily be observed from the vertical projection profile
for each text line (Figure 6(h)).

Figure 6(j) shows the frequency distribution of
inter-character spacings, which are actually used in
the example text shown in Figure 6(a). As is ex-
pected from the fact that more spacing is usually
placed between words rather than between charac-
ters, the inter-character spacing distribution is usu-
ally bimodal: The mode on the left side corresponds
to the inter-character spacings and the mode on the
right side to the inter-word spacings. In fixed pitch
typefaces such as the Courier typeface the separa-
tion of two modes is outstanding while it is not so
in variable pitch typefaces such as the “Times Ro-
man” typeface. Anyway, some value between the
two modes will function as a threshold value for word
extraction.

Characters may be kerned to improve their visual
spacing. Kerning is a modification to inter-character
spacing of text. Kerning is applied with proportion-
ally spaced typefaces for purely visual reasons: ei-
ther because it looks better, or because it improves
the legibility of the text [14]. When kerning occurs,
the bounding boxes of the characters to which kern-
ing is applied will overlap, which is reflected on the
vertical projection profile (Figure 6(h)).

Sometimes, characters are decorated or accented as
can be seen, for example, in €. Such an accent is usu-
ally found in a variety of foreign languages as well
as in mathematical expressions. Accented symbols
are composed of multiple components whose bound-
ing boxes are aligned in the vertical direction. Also,
accentuation is reflected on the vertical projection
profile at a text line.

Step 5: Extraction of Paragraphs

In this step, the algorithm groups the bounding
boxes of the extracted text-lines into bounding boxes
of text-blocks.

There are four basic types of text line layout that
are in common use: centered, flush left, flush right,
and justified. These are also frequently referred to
as centered, left-justified, right-justified, and fully-
Jjustified.

Though a paragraph is a unit in the logical hierar-
chy, its physical appearance is noticeable in a docu-
ment image. Whatever justification has been used in
the preparation of a document, paragraphs are usu-
ally made either by changing the justification of the
current text line or by putting more space between
two text lines, one of which is from the previous
paragraph and the other of which from the current
one. In the former case, one might usually indent
the first line of a paragraph of text.

Extraction of paragraphs should be primarily
based on the above two basic paragraph-breaking
methods. When a significant change in text-line
heights or in inter-text-line spacings occurs, we
might say that a new paragraph begins. The distri-
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butions of text-line heights and inter-text-line spac-
ings (Figure 6(f) and 6(g)) together with the hori-
zontal projection profile (Figure 6(c)) give us a clue
for this kind of paragraph breaking. If there is a
change in the text-line justification, we might say
that a new type of text block begins.

Let us take a look at Figure 6(a). The fourth line
is a displayed math zone, which is right-justified in
this example, and in the fourteenth text line, some
amount of indentation was placed, and therefore, a
new paragraph begins, and so on. Figure 6(m) shows
the text block bounding boxes for our example text,
which can be obtained merely by taking into con-
sideration the above two basic text block breaking
methods. In Figure 6(n)-6(p) are shown superim-
positions of the bounding boxes obtained as above
and the original image.
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Page Decomposition and Related Research
at the University of Maryland

Document Processing Group
University of Maryland, College Park, MD 20742

Abstract

Document image understanding at the Universily
of Maryland has covered a number of areas in recent
years. Most recently, work has been directed toward
the application of page segmentation and classifica-
tion to very large heterogeneous databases of docu-
ment tmages.

In this report, we present results from work on
several currently disjoint projects relating to page de-
composition.

1 Introduction

This report overviews sponsored research in the doc-
ument processing group performed over the past
year and a half. In Section 2 we present an approach
to layout independent page segmentation and in Sec-
tion 3 a representation for generic document struc-
ture. In Section 4 we highlight several other projects
of interest to the general community with extended
abstracts.

2 Multiscale Layout Independent
Page Segmentation

In this project we address the task of layout indepen-
dent physical page segmentation. In an attempt to
handle even the most difficult cases of segmentation,
we make few assumptions about the document’s tex-
tual and graphical attributes and layout structure.
The system is designed so that as hypotheses about
document components are generated and verified,
more domain specific processing may occur.

Page segmentation and layout analysis methods
described in the literature make use of well known
image processing tools which can be broadly classi-
fied, depending on the nature of the precise appli-
cation [1-6]. We see our approach as complemen-
tary, since we make additional layout independent
assumptions.

In some applications it is desirable to have seg-
mentation methods that do not assume a priori
knowledge about the content and attributes of text,
or about the boundaries of major blocks. Such ap-
proaches should be robust to skew, noise and other
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degradations. Some of the difficulties which are com-
mon in the general class of documents, and which
make these goals hard to obtain include:

Noise and degradations caused by copying,
scanning, transmission or aging.

Page skew and text regions with different orien-
tations on the same page.

Text regions touching or overlapping with image
and graphics components.

Combinations of varying text and background
gray levels (e.g. inverted texts).

Complex and irregular layout structures that
are common especially in non-technical docu-
ments. Document objects may not have rectan-
gular or even convex boundaries and one may
be embedded in others.

Curved lines or multi-column pages where text
lines in the two columns pare not of the same
size and/or are not aligned.

Differences in'language, font sizes and other tex-
tual attributes.

In our approach, text, image and graphics regions
in a document image are described as three classes
of textures. The approach can be justified by the
fact that humans can identify document objects eas-
ily even from low resolution images or from distant
views of document page. This shows that the physi-
cal segmentation of document is not detail or content
sensitive and like texture segmentation is a low level
vision process. Given the following considerations,
some of the existing texture segmentation techniques
[12-14] can be modified and used to identify these
regions on the page.

Our method is based on the fact that there is
some uncertainty associated with the local decisions
over small windows, due to the limited view of sig-
nals and/or randomness and ambiguity inherent in
the problem. The alternative is using large win-
dows which is not recommended because over larger
windows signals are highly non-stationary and the
corresponding features are resulted from averaging
over heterogeneous micro-structures and therefore
are less reliable. Also larger windows provide less




spatial resolution which is of great concern in seg-
mentation schemes.

In the document domain, image sub-blocks may
contain text, picture and graphics sub-regions ad-
Jacent to, or overlapping, one another. Such situ-
ations may occur on the boundaries, where for ex-
ample, text lines come close to or touch image re-
gions, or when there are major text regions in an
image or on graphs. For such cases it is not appro-
priate, even for an optimally designed classifier, to
make hard (binary) local decisions. This shows an
inherent fuzziness of class membership which does
not come from the noise or randomness and it sup-
ports our claim that soft local decisions are more
realistic and efficient. The uncertainties reflected in
soft decisions are then reduced by propagating and
integrating decisions made independently in a neigh-
borhood within and across scales. A flowchart of the
system is shown in Figure 1.

Wavelet Dgzcoposition

Feature Vector
Computation

Lecal Classification
(Compute Raw Votes/Scores)
Y[i)’s i=1,2,3

Vote Propagation
(within and across scales)

AV[i1=YI[i].M
I
Integrate Soft Loca! Decisions }

V. [l = V,, 0+ &7

(

[

Combined Vote Matrices
or "Vote Images"

I
Majority Voting & }

Confidence Estimation

Knowledge Based
Post-processing

Figure 1: Vote propagation and integration steps.

2.1 Wavelet Packet Basis

Wavelet packet analysis algorithms (wavelet trans-
forms being special cases) allow us to perform adap-
tive Fourier windowing directly in the time domain
by successive filtering of the signal into different fre-
quency regions. The waveforms in the library are
mutually orthogonal and each of them is orthogonal
to all of its integer translates and dyadic rescaled
versions. The full collection of wavelet packets (in-
cluding translates and rescaled versions) provides us
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with a library of “templates” or “notes” which are
matched “efficiently” to signals for analysis and syn-
thesis.

We start with an exact Quadrature Mirror Filter
(QMF) h(n) satisfying

Y h(n=2k)h(n=20) =& e, > h(n) = V2. (1)

We let g = hr41(—1)* and define the operations
F; on £3(Z) into “¢?(2Z)” by

Fo{se}(7)

Fi{se}(1)

The map F(s;) = Fo(sg) @ Fi(sx) € £2(22) &
£2(2Z) results in an orthogonal “decomposition”,
and satisfies the alias cancellation and perfect recon-
struction conditions [7]. We now define the following
sequence of functions.

{ Won(z) = V23 W, (22 — k) 3)
Wont1(z) = V23 s Wa (22 — k)

A Wavelet Packet Basis [7] for L*(R) is
any orthonormal basis selected from the functions
2H/2W, (2% — j). The waveforms {W,} are in-
duced by three parameters ¥ = {k,n, ;} with physi-
cal interpretations of scale, frequency (or sequency),
and position. These waveforms constitute our tree-
structured basis. Each node in the tree represents
a subspace of its parent’s space and each subspace
is the orthogonal direct sum of its two children. In
wavelet analysis of 2-D signals, for simplicity, L(R?)
is typically considered as a separable Hilbert space.
In filter bank implementation of wavelet packets the
assumption about separability of the signal space
results in separable filters along the row and col-
umn directions [7]. Depending on the application,
the choice of a suitable wavelet packet tree can be
based on different criteria (Figure 2). Energy and
entropy based [7] as well as class separability [8, 9]
based algorithms for basis selection have been sug-
gested. In the following experiments, without any
claim of optimality, a pyramidal wavelet transform
and an energy based wavelet packet tree are used. In
the following classification experiments, the wavelet-
based features that are used are the second and third
central moments {p2 and p3) of the image subbands
computed over small windows W on each subimage
of the transformed image.

(2)

2.2 Propagation and Integration of
Local Soft Decisions

Many signal/image processing tasks consist of local
processing of data followed by the combination of
results obtained from the local windows. Image seg-
mentation and boundary detection are examples of
such tasks. On the other hand the recent success of
neural networks and fuzzy systems has reconfirmed
the fact that soft distributed decisions provide pow-
erful and robust tools for dealing with uncertainty,
ambiguity, and randomness [10, 11].
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Figure 2: Two-dimensional Wavelet Transform 2D-WT (a) QMF filter bank structure for one level of 2D-
WT, (b) corresponding subband decomposition, (c)two levels of 2D-WT, (d) feature vectors are computed

at each scale.

Local decisions, which are inevitable in many sig-
nal processing schemes, suffer from such ambiguities
and are not reliable on their own. There is therefore
a need to devise methods of resolving the ambiguity
and fuzziness of local decisions, in a consistent way,
by incorporating more and more “evidence” or “con-
textual” information from the input signal or image.
Since a reliable hard decision cannot be achieved by
observation over a single small window, we suggest
that local soft decisions/scores be propagated and
integrated based on a weighting pattern in a neigh-
borhood within each scale as well as across scales,
and that the majority of the combined votes be used
as a class identifier.

Assume that L classes of regions may be present in
the image. For example, in the document domain we
can set [ = 3, corresponding to text, graphics and
image regions. Our classifier is a map F(.) , typically
non-linear and many-to-one, from the feature space
{Ys,s = (i,7)} to the points in the “fuzzy” cube
[0,1]£. Thus

F:® — [0,1])
F(X,) Y,

4)

where Y, is the vote vector whose i* element is the
score or fit value associated with class ¢. This frame-
work, along with proper training, provides the soft
local decisions.

We also assume that the information contained
in a block B about a region A is proportional to
the intersection area of B and A. As the image is
analyzed using windows of size W and window shift
steps of size w, the area contained in each block
B is also partially covered by neighboring blocks.
Since analysis is performed at several scales, the area
in B is also covered by windows at each scale [11].
Therefore, the pattern of decision flow in space as
well as in scale has to be determined.

Based on our assumptions, we define a “Vote
Propagation Matrix” (VPM) M which shows how
much the vote of the window centered at s = (z,y)

41

should affect or contribute to its neighbors:

Mij=1=(lil + [i])/6 + i /6 for =8 < 4,5 <6 )
(5
WMztig+i = (Votiy+i + Yoy - Mij (6)
where 6 = w/W. The incremental vote AVy4; 44 =
Yz y - Mi ; is added to the vote of the corresponding
principal block (centered at location (i, j) relative to
the current block) to give its contribution to the sum
of the votes in that block. After one complete scan
of the image, the contributions of all neighboring
blocks in support of matrix M have thus been accu-
mulated, and matrix Viot contains the combined vote
for each block of size w. Note that the vote (V); ; is
a vector of L votes each corresponding to one class.
All “decisions” thus far have been expressed as real
numbers and no hard decision has been made.

To perform multi-resolution analysis we process
the image at different scales and combine the result-
ing classifications. This is typically done from coarse
to fine: we start at low resolution and use higher res-
olution where the confidence level is not satisfactory.
The combination of decisions can make use of the
fact that the windows of the low resolution image are
projections of larger areas of the high resolution im-
age. One can thus similarly define an “Across-Scales
Vote Propagation Matrix” (ASVPM) based on over-
lapping areas and add the relevant weighted votes.
The final majority votes and their confidence mea-
sures are based on the accumulation of all soft de-
cisions within and across scales and the closeness of
the best class candidates respectively:

(Vema)is = VO = max(VO);;

Conf; ; v I&:—i\fc(V(I)),-,j

Q)
(8)
2.3 Knowledge-Based Biased Voting

In some applications we may wish to incorporate
constraints into our decisions based on a priori or de-
rived knowledge about the domain. Although such
constraints are often considered at higher levels of
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have low levels of confidence.

processing, one may also utilize them at the early
stages of classification to get more reliable results. In
the context of the described majority vote method
this idea can easily be incorporated into the sys-
tem, without increasing its complexity, by using a
biased voting scheme. An expectation of observing
a certain class of patterns in part of the scene is re-
flected in a biased vote in favor of a particular class
within that region. In this case the system does not
start from an all-zero vote matrix Vi, rather, at
each position, small non-zero initial votes are given
to classes that have been frequently observed in that
location. Thus we start from a non-zero vote matrix,
on top of which the votes are accumulated. The ini-
tial vote may change during decision integration if
the combined decision strongly favors another class.
The method of “biased voting” based on prior ex-
pectations, can be viewed as not starting from the
middle of the fuzzy decision cube (i.e. the most am-
biguous point), but deviating from it toward one of
the corners; see Figure 3c. Note that if a hard de-
cision is made in each block, instead of a soft de-
cision, the suggested combination of votes at each
scale would be equivalent to a special form of me-
dian filtering on the vote matrix.

2.4 Post-Processing

The spatial patterns of combined soft decisions
in the vote matrices directly reflect the locations,
shapes and classes of major document blocks. In
order to resolve ambiguity and obtain a more pre-
cise segmentation, additional post-processing based
on knowledge about the structure of the document
may be required. The types of processing which can
be applied fall into two classes—class dependent and
class independent.

If the class of document {e.g. correspondence,
journal article, advertisement,...), can be identi-
fied, class dependent processing may proceed in a
top-down manner using a hypothesize and test ap-
proach. We are able to use knowledge about the
expected layout to refine the segmentation, as well
as verify the document class hypothesis. As a gen-
eral case, suppose a two-column structure is inferred
from a simple projection profile. Rectangular blocks
are then be fit to the text blocks and precise column
boundaries are identified. If an advertisement is hy-
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pothesized, polygonal or non-vertical rectangles may
be used as an initial estimate. In our current system
we apply a collection of rules which are derived from
class independent observations about documents.
By applying structural rules to the different regions,
one can hypothesize and eliminate “logically unde-
sirable” gaps and small noise-like mis-classified re-
gions. We establish a set of rules which suggest that
a text region is typically uniform, with no small inset
graphic or image components. Graphic or image re-
gions are “large” relative to the line spacing and/or
font size. Graphic and image regions can have sub-
ordinate text, but such strings are assumed to be on
the order of several symbols long. If text regions are
touching graphic components, they are assumed to
be part of the graphic component, and will be sep-
arated later. Similarly, graphic and image regions
will not overlap and graphic regions having uniform
(possibly white-space) backgrounds. These proper-
ties are enforced by applying morphological closing
operations each region to filter out noise which is
too small to constitute a valid document region. For
text regions, a 10-12 step operation is sufficient to
eliminate regions smaller then the largest symbols
in a 9pt font, scanned at 300 dpi. For graphic and
image regions, a larger kernel is used, eliminating
slightly larger regions. The resulting regions are ex-
amined, and regions corresponding to “closed” holes
are eliminated. Since each region is processed sep-
arately, there is no risk of merging multiple larger
regions. When the segmentation component is incor-
porated into a more complete system which may in-
clude logical analysis, higher level processing, based
on the local hypothesis, will also be used to identify
rectangular structures, lines of text, and subordinate
text regions when appropriate.

2.5 Experiments

To show the effectiveness of the suggested soft deci-
sion integration method it has been applied to doc-
ument page segmentation.

2.6 Input Representation and
Training Set

In the following experiments both wavelet transform
and wavelet packet decomposition are used as input




signal representation. In the first two examples, fea-
tures are computed from a two-level wavelet trans-
form. At each level, only detail subbands are used
and there is one classifier for each scale. The re-
sult of classification at the two scales are combined.
In the other examples, features are selected using
separability measure on wavelet packet decomposi-
tion. For these experiments, six features that con-
tain the highest classification information, based on
the previously used separability measure, have been
selected and used.

The input data consist of several gray scale doc-
ument pages scanned at 200 dpi and the input fea-
tures are the second and third central moments (2
and p3) of the image subbands computed over small
windows W on the decomposed image:

1 ~ ynyl/n
pa(W) = W(zgv(f(@—fw))/ 9
X = {zi=pmW), (10)

s = pa(Wi)/us(Wi)
1= 0, 1,.. -,Nsubbands}

where W; is the local window on the i** subband.
In each subband f(z) and fw are defined as the in-
tensity value at location 2 and the average intensity
on window W centered at z, respectively,

The training set consists of about 200 samples
from each of the text, image and graphics sub-blocks.
These 16 x 16 pixel sub-blocks are extracted ran-
domly from several document pages. In order to
avoid over-training, a “validation” set is used to test
the performance of the network, after every 10 iter-
ations, during the training stage. As training pro-
ceeds, errors on both the training and validation sets
decrease. Training is suspended as soon as the error
in the validation set starts increasing. If the desired
performance is achieved, the process stops; other-
wise, part of the validation set is included in the
training set and training proceeds on the augmented
training set.

2.7 Network Description and
Training

In all of the experiments, multi-layer feed-forward
neural networks [15] are used as the soft classifiers
(16, 17]. The network consist of six input, eight hid-
den and three output units. The input units are lin-
ear, whereas the hidden and output units have sig-
moid nonlinearities. A conjugate gradient method is
used for fast convergence of the supervised learning
algorithm [18].

The three outputs correspond to text, image, and
non-text non-image classes. In other words, any sub-
block not identified as text or image is considered as
“graphics”. Blank regions are detected separately
in a straightforward way. The outputs can take val-
ues in [0,1] and the network is trained in such a
way that these outputs provide soft non-binary de-
cisions about the class memberships of the input im-
age blocks. This is essential because, as mentioned
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above, small regions may locally resemble more than
one class, or the image sub-block may be composed
of text, image or graphics subregions. In such cases,
during the training, outputs corresponding to text,
graphics and images are required to take target val-
ues roughly in proportion to the fraction of block
area they occupy. Including such composite blocks
in the training set results in better performance on
the boundaries. If a decision integration stage is
used the result will be much less sensitive to these
adjustments.

Despite its significance, the effect of a suitable out-
put representation is sometimes overlooked. In fact
in some cases, such as design and training of soft
decision based classifiers, choice of output represen-
tation can be as important as that of input repre-
sentation. In this experiment, in order to provide
the learning algorithm with a consistent set of input-
output pairs the following procedure has been imple-
mented: Assuming that the data in the training set
is labeled correctly and consistently, for any macro-
pixel w and any class ! one can compute the desired
soft decision for class-membership as:

Vwe V LT () = ﬁ 3" I(Lab(z) = 1) (11)

TEW

i.e., the relative number of pixels in the window la-
beled as {. This form of target value computation is
consistent with our assumption in Equation 3.11 and
is a suitable means of determining soft local decisions
when mixed classes are present in the window, e.g.
overlapped and adjacent text and image components
in the area covered by w.

Figure 4: This example shows the effectiveness
of suggested scheme for cases where image and text
regions are very close to each other and regions do
not have rectangular or even convex boundaries. For
this example the results of prescribed post process-
ing based on morphological operations are also illus-
trated.

Figure 5: This example shows a very difficult sce-
nario where text is embedded in the imagei.e. where
different class of objects are overlapped. Even in this
case the suggested method provides good results.

2.8 Results and Discussion

The decision integration scheme has been success-
fully used to identify text, images, and graphics ar-
eas on a document page. Improved performance is
obtained by making soft decisions. The decision in-
tegration method is advantageous when confident
hard decisions cannot be made because of poor fea-
tures, resolution or windowing problems, noise, or
the inherent fuzziness of some classification tasks.
The scheme has yielded good results using simple
feature sets and classifiers. It is based on a ap-
proach that can be applied to other segmentation
and classification problems. Almost all the compu-
tations and decisions are made independently and in
parallel, without iterative stages. Thus the scheme is
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Figure 5: An example where text is embedded in image.
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well adapted to fast implementation on distributed
architectures.
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3 Page Representation

Document understanding has attained a level of ma-
turity that requires migration from ad-hoc experi-
mental systems, each of which employs its own set of
assumptions and terms, into a solid, standard frame
of reference, with generic definitions that are agreed
upon by the document understanding community.

The logical structure of a document conveys se-
mantic information that is beyond the document’s
character string contents. To capture this additional
semantics, document understanding must relate the
document’s physical layout to its logical structure.
This work provides a formal definition of the logi-
cal structure of text-intensive documents. A generic
framework using a hierarchy of textons is described
for the interpretation of any text-intensive document
logical structure. The recursive definition of textons
provides a powerful and flexible tool that is not re-
stricted by the size or complexity of the document.
Frames are analogously used as recursive constructs
for the physical structure description.

Papers covering all areas of document image anal-
ysis can be found in the Proceedings of the 1991,
1993, and 1995 International Conference on Docu-
ment Analysis and Recognition [ICDAR]; the 1992,
1993, 1994 and 1995 Annual Symposia on Docu-
ment Analysis and Information Retrieval, sponsored
by the University of Nevada, Las Vegas; and the
International Conferences on Pattern Recognition
[ICPR]. For surveys of document image analysis
and document image understanding see (Casey and
Nagy, 1991) and (Tang et al. 1991).

3.1 Logical and Physical Document
Description

In order to describe a document’s physical and log-
ical characteristics consistently, it is advantageous
to first distinguish between the document’s content
and its structure.

3.1.1 Document Content vs.
Document Structure

The conient of a document is the information con-
tained in the document, which is not bound to a par-
ticular representation format. At the lowest level,
this information may include a stream of characters,
and these characters make up successively higher-
order objects built on top of each other such as
words, sentences, paragraphs, etc., up to the com-
plete document level.

The physical structure of a document is how
the document’s content is laid out on the physical




medium. The same content can be organized in a
variety of ways and therefore can have many physi-
cal layouts, which stem from different values of the
attributes of the physical components (point size,
line spacing, page size, etc.). The medium is tradi-
tionally paper, but may be any visual host, such as
a computer screen or photographic film, which emu-
lates the layout on the page. Bearing this extension
in mind, we refer to paper documents as the classical
representatives.

The logical structure of a document’s content is
how the content is organized prior to the enforce-
ment of a particular physical structure. A text-
intensive document, for example, typically consists
of sentences, words and characters, and possibly
higher-order constructs such as sections and chap-
ters for an article, or address block, body and signa-
ture block for a business letter.

It is essential to note that the same content can
be viewed with respect to both physical structure
and logical structure. A major goal of this report is
to describe the two types of structure and how they
can interact.

3.1.2 Generic Document Structures

Text-intensive documents can be classified into
many types including books (Over most text books,
edited books, ...) technical papers, correspondence
(business letters, memos, ...), newspaper articles,
and conference proceedings. When attempting to
describe the structural relationships between docu-
ment components, it is essential to provide a level of
abstraction, so as not to be caught up in the termi-
nology associated with a specific type of document.
To this end, we define terms that are generic at both
the logical and physical levels. The generic docu-
ment structure terminology allows us to define type-
independent relationships among document compo-
nents.

Following this rationale, we distinguish between
the generic (both logical and physical) document
structure and the instantiated generic document
structure. An instantiation of a generic structure al-
lows us to begin discussing a particular class of docu-
ment, and the relationships between known entities.
Such a distinction is in accordance with the basic
concepts of object-oriented analysis (OOA), where
objects are instances of their respective classes.

Terms such as column, line and symbol in the con-
text of physical structure, or chapter, section, and
subsection in the context of logical structure, are in-
stances of the generic terms we define below. Some
of them, such as the physical term “line” and the
logical term “sentence”, are applicable to a large va-
riety of documents, while others, such as the logical
term “session”, are document-type-specific.

Finally, a specific structure (physical or logical)
refers to the structure of a single given document,
and describes the structure of that instance of the
document.
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3.1.3 Realizing Document Structures

The progression from generic to specific instances
of a document 1s fairly straightforward, but the abil-
ity to reverse the process can be an important com-
ponent of any analysis system. At the first level,
the object class “Document” is instantiated as to
its type, both physical and logical, according to the
document content. The structure of each instance
of the generic document is thus dependent on the
document’s type.

By making such distinctions, it becomes possible
to prune the generic document tree to narrow the
analysis to a given document type. For example,
there is no use talking about a document’s physical
component called “volume” or the logical component
“chapter” when the document under consideration is
of type “business letter”. Such distinctions can be
made at an early point.

A second level of instantiation involves instantiat-
ing the object class of a particular document type,
such as “Proceedings”, to its specific structure, such
as “Proceedings of Document Analysis Systems ’94
Conference” (Dengel and Spitz, 1994).

We do not attempt to provide a full classification
of all the text-intensive document types, let alone
the particular logical or physical structure of each
type. In the remainder of this section, however, we
do provide a set of definitions and tools that en-
able this task to be done consistently and coherently,
along with a few examples.

3.1.4 Generic Physical Structure

Following are the definitions related to the generic
physical structure.

Frame - an area within a page of a document,
which may consist of a collection of (lower level)
frames and/or blocks.

Root Frame - a frame which encompasses the en-
tire physical document.

Page - a frame which occupies a rectangular re-
gion of a page, on which the document, or part
thereof, is physically recorded. A page is the
basic physical document object.

Page Set — a frame which consists of multiple
pages. An instance of a page set might be a
single volume or chapter, for example.

Block or Simple Frame - a terminal, lowest-level
frame, which, at the given level of granularity,
need not or cannot be further decomposed.

A frame is defined to be a recursive component,
as it may itself consist of one or more frames. A
block is the terminal frame, which defines a region
on the page and has content. Depending on the de-
sired level of granularity, a block’s content may cor-
respond to a column, line, word, or character, for
example.

Each type of frame has an associated set of at-
tributes. Information about a frame’s location, po-
sition on the page, justification, etc. is defined by its




attributes. For example, a character is characterized
by such attributes as font, boldness, point size, and
inclination; a line, by length; etc.

Being the leaves of the tree, only blocks have con-
tent, while items higher in the hierarchy, which are
compound frames, are lists of pointers to lower-level
frames. The block’s granularity must be at least
as fine as the smallest logical component to be de-
scribed. Thus, for example, if the lowest-level logi-
cal component is a word, then the block cannot be
a line—it must be at least a word, and it may be
a character. This data structure enables the recon-
struction of the structure of a frame at each level.

Consider, for example, a paragraph which is split
over two pages, or a word which is split over two
columns. In both cases, a single logical component
(paragraph or word) is a combination of two frames,
which should be concatenated to yield the entire log-
ical component.

If, on the other hand, a single physical component
is found to correspond to more than one logical ob-
ject, such as the string “092596”, which corresponds
to a date with three logical sub-components (month,
day, year), then the physical representation may be
subdivided to reflect the finer granularity. This is
quite rare, however, as the physical structure s nor-
mally aimed at reflecting the logical one.

An instance of a text-intensive document may
have blocks and frames corresponding to a

Character - ablock containing the image of a sym-
bol in the document’s language.

Word - a frame containing a group of one or more
aligned characters, separated by white space.

Word is both a logical object in a document (as
we define below), which conveys a certain mean-
ing, and a physical object—the frame (page
area) containing the union of its constituent
characters. If word is a block, then its content
is the image of the word, else it is a frame con-
sisting of characters (each of which is a block),
with each character having its image. The spe-
cializations of word are as follows:

Subword - a frame containing a group of one
or more aligned characters, which make up
the first part or the last part of a word.

Preword - a subword containing the first part
of a word. A preword is located at the end
of a line and ends with a hyphen.

Postword — a subword containing the last part
of a word. A postword is located at the be-
ginning of a line and completes its preced-
ing preword to a whole word.

Line — a frame containing 1) a collection of one or
more aligned words and 2) at most one preword
and at most one postword.

Stack - a frame containing a collection of one
or more lines stacked on top of each other
and possibly separated by a non-empty white
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space, such that its logical content is one
paragraph! at most.

Column - a frame containing a collection of one
or more stacks on top of each other. A page
may contain one or more columns. In struc-
tured documents, this number is generally fixed
throughout the document.

3.1.5 Generic Logical Structure

Like the physical structure, which is represented
as a hierarchy of frames, the generic logical structure
is similarly viewed as a tree, in which the leaves are
typically the characters, or symbols, and the root is
the entire document. This structure is depicted in
Figure 6.

To be able to describe generically the logical docu-
ment hierarchy that is not restricted by a particular
number of levels and associated level names, such as
“section” and “chapter”, we define the term “tex-
ton” as the logical analog of “frame”.

Texton - a logical component of a text-intensive
document, which consists of one or more (lower
level) textons or simple textons.

Root Texton — a texton which is the entire docu-
ment.

Examples of root textons include book, encyclo-
pedia, concordance, dictionary, journal, news-
paper, magazine, report, scientific paper, cover
letter and business letter.

Simple Texton - a logical component of a text-
intensive document, which is not further di-
vided.

Instances of a simple texton are paragraph, sen-
tence, phrase, word and character. If, for ex-
ample, word is the simple texton in a particular
document, then any subcomponent such as a
character is a primitive texton document.

Compound Texton - a texton consisting of a dis-
tinct header, body, and.optional trailer.

An example of a compound texton is a section
of a document, which has a header (the sec-
tion head), a body (the set of paragraphs), and
no trailer. Another, less obvious example of
a compound texton is a signature block in a
letter, which contains a header (the closing), a
body (the signature), and a trailer (the printed
name).

As shown in Figure 6, scanning the logical struc-
ture from the top down, the entire document (ency-
clopedia, book, article, business letter, etc.) is the
root texton—the root of the tree. Below it is a vary-
ing number of levels of textons. The black triangle
along the paths connecting a whole to its parts in
Figure 6 is the aggregation symbol (Dori, 1995).

Texton is the logical analog of the physical frame.
Like frame, the definition of texton is recursive, and
the halting condition is that the constituent texton

1Paragraph is a logical term defined below.




is a simple texton, i.e., the base logical unit, typi- .

cally a character. The recursive definition of texton
encompasses the entire spectrum of logical levels in
any text-intensive document, just as the root frame
encompasses all the physical levels.

Instances of a texton, in a text-intensive docu-
ment, include:

Character — a texton which is a symbol in the doc-
ument’s language. Normally, character is a ba-
sic texton.

Word - a texton containing a sequence of one or
more characters, which has some meaning in the
document’s language.

As we have noted, both character and word have
logical as well as physical definitions. The difference
between a logical character and a physical charac-
ter is that a logical character is the symbol itself,
while a physical character is the image representa-
tion of the logical character. Likewise, the differ-
ence between a logical word and a physical word is
that a logical word is a semantic-conveying object,
while a physical word can be considered either as
the image representation of the logical word or as
an ordered collection of its comprising physical char-
acters. Note that there is no logical analog to the
physical term subword, whose existence stems from
spatial arrangement considerations.

We continue with the definitions of higher-level
textons.

Phrase — a texton which is a meaningful collection
of one or more words that do not necessarily
form a complete grammatical sentence.

Examples of phrases include a title of a docu-
ment or part thereof, a name of a person or an
organization, an address, or a (possibly nested)
itemized list of such entities.

Sentence — a meaningful collection of one or more
phrases which correspond to a valid grammati-
cal sentence, complete with punctuation.

Paragraphon — a texton which is a generalization
of a paragraph. It consists of a group of one or
more sentences and/or phrases.

Each one of the items above is an example of
a paragraphon, where the title is a phrase, and
it is followed by another phrase and optional
sentence(s).

Unlike character and word, higher-level textons
have different names than the corresponding frames,
because the physical structure departs from the log-
ical one, and the correspondence becomes more and
more fuzzy as we climb up the two hierarchies. Thus,
above word at the physical level is the frame called
line, while the corresponding textons at the logical
level are phrase and sentence. However, it is obvi-
ously unlikely that a single sentence occupies exactly
one line. At the next level up, paragraphon is analo-
gous to stack, but again, the correspondence is only
partial, because a paragraphon may stretch across
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Figure 6: The logical structure of a document de-
scribed as a tree

more than one stack, if it starts at the end of a col-
umn and ends at the first stack of the next column,
or even across several whole columns and pages.

At yet higher levels, the relationships between tex-
tons and frames are type-dependent. For example,
the texton chapter in a textbook normally starts at
a new page, as does a paper in a proceedings.

A document may contain logical elements which
are referenced from multiple independent points
within the document itself. They are often self con-
tained logical units (i.e., textons) and should be
treated as such. To handle such components, we
define a referenced texton.

Referenced Texton — a graphic or textual texton
which is referenced from the document.

Examples of referenced components include fig-
ures, appendices, footnotes, citations, continu-
ation text bodies (e.g. in newspapers) and even
complete documents. The header of a texton is
a label or identifier which is “referenced” by a
pointer.

Pointer — a referencing texton pointing from the
main text of the document to the referenced
texton. This pointer is typically a phrase or a
sentence, such as “continued on page 5, column
3”, “see Figure X”, or “(Author, 1995)”.

Graphon - a referenced texton in a document
whose nature is mainly non-textual, and whose
function is to illustrate, explain or demonstrate
the text. Examples of graphons are line draw-
ings (engineering drawings or art-line), half-
tones, photographic (black and white or color)
images, maps, diagrams, charts, tables, etc.?

In graphons, if text exists, it supplements or
enhances the graphic. A graphon has graphic

2A table is a boundary case between text and graphon.
We classify it as a graphon, because even though it contains
text, the text normally does not have a definite linear reading
order and it is normally enclosed within graphics—the lines
that separate rows and columns.
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Figure 7: The object-process diagram of the generic
logical structure of a text intensive document

(imagery or geometric) contents and an optional
caption, which itself is a texton, and consists of
a mandatory caption header(the graphon identi-
fier), and an optional caption body(the textual
title or explanation of the graphon). The cap-
tion header is mandatory, because it serves as a
reference and is pointed to by the text.

Since a graphon, like the figures in this doc-
ument, normally occupies a considerable por-
tion of the page area, the physical location of
a graphon is frequently allowed to float in the
neighborhood of where it is referred to in the
main text for the first time.

Finally, in addition to the hierarchical structure
given by the recursive definition of the texton, the
logical structure must also preserve the reading or-
der.

Reading order - the order in which the characters
or symbols in a text-intensive document must
be traversed for the document to be correctly
understood.

The reading order corresponds to a depth-first
visit of the document’s logical structure. Reading
order normally makes sense only within and between
the text-intensive components of a document. In the
case of referenced textons, the texton appears phys-
ically only once, but may appear logically at many
locations. A pointer denotes the logical appearance,
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so the reading order follows a round-trip “visit” to
the referenced texton.

Graphons tend to “float” and can be referenced
from multiple locations in the main text. Hence, like
any referenced texton, the read-order is preserved by
requiring a visit from the reference pointer (typically
a phrase) to the graphon and back.

Document Complexity

We have seen that a text-intensive document has
a hierarchy whose textons depend partially on the
document’s logical type and may represent chapters,
sections, subsections, parts, etc. Hence, the number
of texton levels in a document is finite, normally
not greater than 10. This number depends on the
nature of the document and indicates its structural
complexity. The numbering of the levels is bottom
up, with zero assigned to the character level.

The logical complexity of a document is the level
number of the document’s root texton.

Consider, for example, a journal paper, whose
body consists of sections. The body of each sec-
tion is a paragraphon. Assigning the level numbers
0, 1, and 2 to the character, word, and sentence lev-
els, respectively, a paragraphon is a level 3 texton,
and the entire document is a level 4 texton. Hence
the complexity of this document is 4. If at least one
of the sections is divided into subsections, and no
subsection is divided into sub-subsection, then the
document complexity is 5.

Although usually there is a relation between the
document’s size and its complexity, these two terms
should not be confused. The size can be measured
by the number of pages, words or characters. A dic-
tionary, for example, may be a very large document,
but its complexity is not necessarily high. Similarly,
an outline may be relatively small, but may have
much higher logical complexity.

Simple and Compound Textons

Having defined textons and their roles in the doc-
ument logical structure, we turn to a more abstract
and comprehensive description of logical document
layout than the one given in Figure 6. Figure 7 is an
object-process diagram, or OPD (Dori et al. 1995;
Dori, 1995), which describes the structure of a doc-
ument.

The object Document is a specialization of a Tex-
ton, which is the root of the structure. This is de-
noted by the generalization symbol—the blank tri-
angle going from Texton to Document. Texton is
a generalization of Compound Texton and Simple
Texton. This is denoted by the blank triangle from
Texton to both Compound Texton and Simple Tex-
ton in Figure 7. A simple tezton is a generalization
of a paragraphon.

A character is defined to be a level 0 texton. A
word is a level 1 texton, as it consists of one or more
characters, and a sentence is a level 2 texton. A




simple texton in the main text of the document is
therefore a level 3 texton. Below it in the main text
reside the sentence or phrase (level 2 texton), the
word (level 1 texton), and the character (level 0 tex-
ton). As we show below, these level numbers may
vary for side text, such as the table of contents in a
book.

Although in the simplest form, one may conceive
of a primitive document consisting of a single char-
acter, perhaps conveying a coded message, a single-
word document, a single-sentence/phrase document,
or single-paragraph document, we consider the sim-
plest document to be document which is a compound
texton. Therefore, the minimal complexity of any
document is 4. A simple document, such as a stan-
dard business letter, is an example of a level-4 doc-
ument. It has a header (sender and recipient iden-
tification and subject), a body (one or more para-
graphs: level 3 textons), and a trailer (salutation,
signature, etc).

The black triangle between Compound Texton on
one hand, and Header, Body, and Trailer on the
other hand, is an aggregation (whole-part) relation,
expressing the fact that a compound texton consists
of these three parts. The default cardinality (par-
ticipation constraint) of the aggregation symbol is
(1..1):(1..1), i.e., exactly one (minimum 1 and max-
imum 1) part for exactly one whole.

Consider a texton of level n. The cardinality of
the header of this texton is 1, i.e., there is exactly
one texton of level n — 1 which is the header of the
level n texton. The cardinality of the texton’s body
is 1..m, meaning that there are between 1 and many
textons of level n — 1 in the body of the level n tex-
ton. Finally, the cardinality of the (optional) tex-
ton’s trailer is 0..1, i.e., there is at most one texton
of level n — 1 functioning as the trailer of the level
n texton. The “0..1” next to Trailer indicates that
Trailer is optional. In other words, a texton has ei-
ther two or three parts and must have exactly one
Header, one Body and at most one Trailer. In sum-
mary, Header has exactly one texton, Body has a
number of textons between 1 and many (denoted
“l..m” in Figure 7) textons, and Trailer, if it exists,
has one texton.

For example, a section in a paper is a compound
texton. It has a header (the section title); a body,
consisting of one or more paragraphons; and no
trailer. As another example, a textbook is a com-
pound texton, whose header is everything from the
beginning of the book to the beginning of the first
chapter. The body of the book consists of a number
of chapters and its trailer is everything from the end
of the last chapter to the end of the book (appen-
dices, glossary, index, etc.).

The Recursion in Texton Definition; the
Body Path

Since Compound Texton is Texton, and Com-
pound Texton has Header, Body and Trailer, each
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having at least one Texton, we get a recursive defini-
tion. As in any recursion, to avoid infinite looping,
a halting condition must exist. The halting condi-
tion, as expressed in the object-process diagram of
Figure 7, occurs when the textons of Header, Body
and Trailer of the Compound Texton are all Sim-
ple Textons. When a texton is simple, the recursion
stops, because from this level downward, we descend
through the phrase level and the word level down
to the character level. In the case of a referenced
texton, the pointer—a Simple Texton in the main
text—Ilinks it to preserve the reading order, while
the referenced texton itself is a Compound Texton,
whose header is the identifier the pointer points to.

Body Path - is the path in the tree structure go-
ing from the root node—the entire document—
through successively decreasing levels of com-
pound textons, all the way down to the sim-
ple texton (the paragraphon level), such that
the path always visits the body of each texton.
Since by definition any compound texton has a
body, such a path is guaranteed to exist, and it
is unique.

The level of a character, which is the last node—
the leaf—along the body path, is defined to be zero.
This implies that along the body path the level num-
ber of a word is one, the sentence/phrase level is
two, and the level of the paragraphon—the simple
texton—is three. Note that these numbers are not
necessarily the same for characters, words, sentences
and paragraphs which are not nodes along the body
path. As we show in the example below, the level
numbers may be higher or lower than the ones along
the body path, depending on whether the path from
the top texton (the document level) is longer or
shorter than the length of the body path. The fact
that of the three compound texton parts only two
are mandatory gives rise to a 2-3 tree structure, as
we demonstrate in the example in the next section.

DAS94 Proceedings—a case in point

To demonstrate the use of the concepts and terms
presented above, and to show how document com-
plexity is defined, consider the document Proceed-
ings of DAS94 (Dengel and Spitz, 1994). The struc-
ture of the document is described in Figure 8. The
structure is detailed down to the Simple Texton
level. Since a compound texton may have either
three parts (Header, Body, and Trailer) or two parts
(Header and Body), the resulting structure in Figure
8 is a 2-3 tree.

As indicated in the legend of Figure 8, the body
path is marked by thick line segments. The level
numbers are written in parentheses next to the
corresponding textons along the path. The body
path visits the nodes “Proceedings of DAS94”, “Ses-
sion”, “Paper”, “Section”, “Subsection”, and “Para-
graph”, in that order. Assigning the number 3 to the
paragraph level and counting up we find that “Sub-
section” is at level 4, “Section” is at level 5, “Paper”
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Figure 8: An OPD describing an instance of a generic logical structure—the Proceedings of DAS’94 (Dengel

and Spitz, 1994)

is at level 6, “Session” is at level 7, and the entire
document, “Proceedings of DAS94”, is at level 8.
Hence the complexity of this document is 8.

As a compound texton, “Proceedings of DAS94”
has a header, a body and a trailer. The header is
a level 7 texton, which, in turn, consists of three
level 6 texton: a header—“Front Page” and “Copy-
right note”, a body—“Chairmen’s Message”, and a
trailer—“Table of Contents”. Chairmen’s Message
consists of a level 5 header—the title “Chairmen’s
Message,” a level 5 body, consisting of seven level 4
paragraphons, and a level 5 trailer, containing two
level 4 paragraphons. The first phrase is “Kasier-
slautern, October 1994,” and the second is the names
of the two document editors. As we see here, both
the paragraphs and the phrases, which are basic tex-
tons, are at level 4 rather than 3. The reason is that
the path traversed here is not the body path. As
already noted, a basic texton is guaranteed to be
at level 3 only when it is on the body path. In
other paths it may be more (as here) or less than
3. The path that ends with “Author”, “Affiliation”,
and “Address”, for example, is the longest one. It is
longer by two edges than the body path. Therefore
“Address”, which is a simple texton, is a level 1 tex-
ton in this case, as shown at the bottom of Figure
8. Table of Contents is a level 6 texton, consisting
of a header—the title “Table of Contents,” a body,
and no trailer. The body of the Table of Contents
consists of eight items. Each item is a level 5 texton
called Session Contents. It has a header—session
number and name, a body—a phrase (itemized list)
of three level 4 items, each called Paper Details, and
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no trailer. Each Paper Details item is a level 3 tex-
ton. It consists of three paragraphons, each contain-
ing a single phrase. The first phrase is the paper
name, the second phrase is the author name, and
the third phrase is the page number.

In most of the papers, Section consists directly
of paragraphs, but several papers have subsections
(see for example page 139 in the document). To
accommodate this variability, we add the condition
“if m" = 0” along the aggregation link from Section
to Paragraph in Figure 8, where m’ is the number of
subsections in a section. This means that if there are
no subsections in the section, then Section consists
directly of paragraphs.

3.1.6 Relating Physical and Logical
Structure

Having defined generic terminology for both log-
ical and physical structure, it is straightforward to
relate the two at the content level, in most cases.
Figure 9 shows the structure of a simple document,
a multiple page chapter. The chapter is a com-
pound texton, with a header (title) and two body
components (one abstract and one section). The
abstract i1s a simple texton and the section is a
compound texton, consisting of two simple textons
(paragraphons).

The physical structure subdivides the document
into rectangular blocks. The content is shared in
both structures. Note that the structure allows log-
ical components (i.e., the abstract) to be split over
two pages. For most documents, the logical com-
plexity will be higher.
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Figure 9: A sparse schematic representation of the
physical and logical structure of the content of a doc-
ument “chapter”.

3.2 Summary

The structure of a document conveys semantic infor-
mation that is beyond its character string contents.
To capture this additional semantics, document un-
derstanding must perform a reverse encoding of the
document and relate the physical layout to the log-
ical structure. This work has proposed a formal
generic framework for the definition and interpreta-
tion of any text-intensive document’s physical and
logical structure, that is not restricted by the size
or complexity of the document. The physical docu-
ment is described by a hierarchy of frames and the
logical structure of text-intensive documents is de-
scribed as a hierarchy of textons. The definition of
textons provides a powerful and flexible tool for doc-
ument logical structure analysis. We also propose a
method for determining quantitatively, in an objec-
tive, reproducible, and unbiased way, the complexity
of such documents.

We have also presented a description of a new and
powerful document attribute format specification,
DAFS, which provides mechanisms for representing
and maintaining both physical and logical informa-
tion during the reverse encoding process, and have
shown how it can be used to relate logical and phys-
ical structure at the content level.

**This work done in conjunction with researchers
at the Technion and the University of Washington.
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4 Other Topics

Short descriptions of several recent projects are in-
cluded below. Additional information and papers
about these and other topics can be found on the
WWW page http://documents.cfar.umd.edu.

4.1 Handwriting Analysis

The purpose of this research is to advance auto-
mated recognition of handwritten Latin text. Two
key factors which significantly effect the performance
of recognition systems are segmentation and classi-
fication. To achieve an acceptable level of perfor-
mance, we are exploring ways to perform segmenta-
tion and classification concurrently.

The current approach uses model-based stroke de-
tection. To simplify the problem, we assume we are
given a model in the form of a set of strokes that
are typical of a specific writer. Since the model rep-
resents uncorrupted strokes, including what may be
classified in the image as retraced strokes, we have
an added dimension to aid in the segmentation of the
image. Using a model-guided approach, we classify
strokes simultaneously based on the model. Once an
understanding of the script writing of specific indi-
viduals is achieved we may extend this approach to
generalized script writing.

The current method which identifies strokes is an
energy-based line follower. This method follows an
unbroken line segment until it arrives at an am-
biguous region (or junction), then performs energy
minimization to obtain the ideal traversal. This en-
ergy is calculated by considering a combination of
factors which involve the image and model infor-
mation. Matching of the traversed stroke with the




model gives us an estimate of the direction. A suc-

cessful segmentation results in a valid classification
for unambiguous strokes. Our method has shown
promise on simple numerals but needs improvement
for generalized segmentation.

Snakes can be used to further integrate the seg-
menter with the recognizer. Snakes are adaptive
splines which allow graceful degradation with in-
creased deviation from a model. Minimum degrada-
tion can be tuned to allow for a set of known devi-
ations over other unlikely deviations, in an attempt
to maximize overall performance. The set of snakes
were model-based only in terms of the allowed set
of deviations. We plan to introduce a model spline
along with a tunable degradation model.

4.2 Hybrid Thinning

One difficulty with many pixel-wise thinning algo-
rithms is that they produce unacceptable results at
junction points, or in the presence of contour noise.
The primary advantages are speed and simplicity,
but such approaches suffer greatly from their my-
opic view of the data. Non-local algorithms, on the
other hand, can perform much better on intersect-
ing or noisy strokes, but can also be complex and
prohibitively slow.

In response, we present a novel approach to de-
tecting ambiguous regions in a thinned image. The
method uses the reconstructability properties of ap-
propriate thinning algorithms to reverse the thinning
process and automatically detect those pixels which
may have resulted from more then one stroke in the
image. The ambiguous regions are then interpreted
and reconstructed using domain specific or derived
contextual information. The approach has the ad-
vantage of using local methods to rapidly identify
strokes (or regions) which have been thinned cor-
rectly and allowing more detailed analysis based on
non-local methods in the remaining regions.

We have developed a hybrid approach to extract-
ing the skeleton of a binary pattern that has two ad-
vantages: First, the ability to quickly identify those
areas of the pattern that were successfully thinned
using local methods and those where ambiguity ex-
ists. Second, the ability to perform a more detailed
evaluation, using context, in areas that were not suc-
cessfully thinned. This algorithm can detect and re-
duce the number of erroneous “spurs”, reduce sensi-
tivity to thresholding, and reduce sensitivity to local
noise.

The hybrid algorithm uses local methods to per-
form an initial skeletonization of the image. Strokes
which are elongated and have slowly varying width
are thinned correctly. By growing the thinned
strokes back to their original width, again using a lo-
cal process, we can identify regions which may have
resulted from more then one stroke, and label them
as ambiguous. Non-local methods are then used for
only these regions.

Figure 10 shows three examples.
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4.3 Synthetic Data for Text
Understanding

In this project, we describe work on a system for
modeling errors in the output of OCR systems. The
project is motivated by the desire to evaluate the
performance of various text analysis systems un-
der varying, yet controlled conditions. We have de-
scribed a set of symbol and page models which are
used to degrade an ideal text by introducing errors
which typically occur during scanning, decomposi-
tion and recognition of document images. A first
generation of the software implements the page mod-
els and allows the use of transition probabilities, ei-
ther extracted from real data or generated synthet-
ically, to corrupt text.

It is often advantageous to use synthetic data for
any component of a large system whose input data
may be noisy or otherwise unpredictable. For such
systems, the amount of data necessary to cover a
sufficient cross section of the possible inputs may
be prohibitive. For example, in document image un-
derstanding systems, the input is typically a scanned
image of a physical document. The types of degra-
dations which appear in the input data may be intro-
duced during the production, manipulation or imag-
ing of the original “ideal document”. Although ex-
amples of degradations from any given source can
typically be obtained, obtaining a given combina-
tion of degradations with known magnitude may be
difficult. In many domains, the cost of data capture
alone can be enormous, and the results still may
not represent a useful distribution of expected in-
puts. The document understanding community is
benefiting from a number of approaches to model-
ing character image and page image distortions and
degradations [1-3, 7]).

We are developing a system which makes use of
enhanced synthetic data for the development and
testing of information retrieval (IR) and related text
analysis systems. There have been several recent pa-
pers which explore the effects of OCR errors on IR
accuracy. Croft et al. [4] have considered the effects
of different commercially available OCR, systems on
retrieval accuracy. They concluded that devices with
high word OCR rates have minimal effect on re-
trieval, but as word recognition rates decrease, a sig-
nificant decrease in retrieval is observed, especially
in short documents. More specifically, Taghva et al.
[5] evaluated the effect of OCR errors on the vector
space model for IR. They found that although the
average precision and recall from the vector space
model are not significantly affected by common OCR
errors, when different weighting schemes are applied,
the rankings observed between the OCR version and
a “corrected” version are affected. Finally, Taghva
et al. [6] showed that the difference in performance of
a set of queries on an OCR database and a corrected
version is not significant.

We explore the development of models for OCR
output, independent of the ultimate analysis task.
We use the current perceived state of OCR and doc-
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Figure 10: Examples - Row 1: pixelwise method, Row 2: hybrid method

ument analysis technology, including types of errors,
to define the classes of models. We present a method
for defining symbol set independent classifier models
and give several examples, and we describe several
page models. We provide a software tool-box (avail-
able upon request) which can be used to model a se-
ries of symbol level and page level events which are
common and may result in errors being produced by
the OCR. system.

4.4 Text Image Compression

In ongoing research, we are developing SCODI, a
system for the compression of text intensive docu-
ment images. The primary objective of the system
is to provide an encoded version of either a single or
multi-page document image. A secondary objective
is to provide an encoding which allows near random
access of regions within the image and facilitates tra-
ditional document processing operations.

We describe an encoding procedure which makes
use of the redundancy in the symbol bitmaps. The
system uses an efficient representation which allows
algorithms for tasks such as skew detection, segmen-
tation, block classification, and keyword searching to
be performed without requiring a complete decoding
of the image.

It is generally agreed that maintaining a scanned
document in image form is necessary to avoid both
the high cost of manual conversion and the introduc-
tion of a large numbers of errors during automatic
segmentation, OCR and/or graphics interpretation.
In addition, if we require that we be able to regener-
ate the original image with arbitrary precision, even
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partial OCR with an ASCII representation is not an
option.

Text intensive document images typically have a
great deal of redundancy in the bitmap representa-
tion of symbols. We attempt to make use of this re-
dundancy by encoding sets of similar symbols once,
and representing symbol by the encoded representa-
tive and a difference. Typically the differences will
represent noise on the symbol boundary due to quan-
tization. If this noise can be characterized, we can
provide a lossy scheme which ignores these extrane-
ous pixels.

In our approach, small regions are believed to cor-
respond to textual symbols are identified in the im-
age. They are clustered and a template is created for
each appropriate cluster. The regions are then rep-
resented uniquely by a combination of this template,
its location in the original image and an encoding of
the difference between the template and the origi-
nal image. Tiles are used to encode non-symbol-like
regions.

Clearly, the compression ratio is dependent on
having documents which are large enough to con-
tain multiple instances of the same symbol, and on
having noise levels low enough so that difference en-
coding is minimal. We anticipate the largest com-
pression to occur on multi-page documents in which
the relative overhead is reduced.
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Abstract

Document classification and functional decomposi-
tion are key components for processing heterogeneous
batches of documents. We describe our approach and
recent results in both these endeavors. Classifica-
tion is performed in two steps: first, the document
is sorted by the number of columns and second, func-
tional landmarks are detected to determine the class.
Two methods for functional decomposition are also
described: one, using content (or tezt-based) clues
and the other using only geometric clues. Results
for classification and functional decomposition are
provided for business documents.

1 Introduction

This paper describes extensions to the Intelligent
Document Understanding System (IDUS)[11]} in the
areas of document classification and functional de-
composition. Our development goal is to find single-
page business documents from heterogeneous docu-
ment batches and decompose these documents into
their functional components. This decomposition
enables sophisticated retrieval operations in which
one can pose queries (such as the one in Figure 1)
based on content and/or document objects and the
roles they play.

Documents in the business domain (such as busi-
ness leiters and memoranda) are rich in meta-
information such as sender, recipient, date, page
numbers, etc., as well as the main body content
which usually contains the topical information. Al-
though the business domain is constrained in the
sense that there is a basic underlying organizing
principle, there is enough variation in layout due to
writer’s style, non-native authors and cultural dif-
ferences, that the problem is quite challenging.

Several other systems have addressed the issue
of functional decomposition of documents {1, 5, 6],
some specifically for business letters [3-5, 7, 8]. In
general our environment seems to be more “uncon-
strained” than in other systems. We are quite liberal
in our definition of “business document” as we are
not tied to any particular method or result of phys-
ical segmentation, do not rely on a database of an-
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ticipated recipients, and do not expect there to be
a one-to-one correspondence between physical seg-
ments and functional components. Again, this is due
to the wide range of style and cultural differences.

The document classifier and functional decompo-
sition modules were developed within the framework
of the IDUS system [10, 11]. IDUS consists of com-
ponents for layout analysis: physical, logical and
functional decomposition. We distinguish between
logical and functional decomposition in the follow-
ing way. Logical organization groups physical com-
ponents appropriately (e.g., into articles on a news-
paper page) and sequences them in the correct read-
ing order for further text analysis. Functional de-
composition discovers the underlying functional role
of each component (e.g., title, inside address, date)
within an article or document. After processing, ar-
ticles/documents may be stored in a corpus for sub-
sequent retrieval.

The classifier is discussed in Section 2 and Sec-
tion 3 details the functional analysis component. Re-
sults and system performance are presented in Sec-
tion 4.

2 Document Classifier

A document classifier plays two important roles in
a document analysis system: one, to find particular
class or classes of documents and two, to sort all
documents into classes by type (such as newspapers,
business letters, or technical journals).

The classifier architecture (Figure 2) is a two-layer
hierarchy, designed to classify one-page documents
(or classify multiple page documents from their first
pages). Full details are provided in [12] and summa-
rized here.

The document is first sorted by the number of
columns in the document. In some instances (such
as technical journal articles) a class may have more
than one column configuration, but for many classes
(such as business letter or memorandum as a one
column document or a newspaper page as a “more
than two” column document) it is unlikely for the
document to fall into more than one class.

After column detection, the document is passed to
all classification engines which fall under the same
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Figure 1: Document database query using functional decomposition.

column configuration. Each classification engine is
based on the presence of key functional components
or landmarks for a particular class. The output
of each classification engine is either yes or no. If
none of the functional classification engines produces
an output, we implement a backtracking mecha-
nism which tests all remaining classes (regardless
of column configuration). After this second pass,
if none of the remaining functional classification en-
gines produce a positive output, the document is
classified as unknown.

Column Detection

1 2 >2
column column column
ANIWA \
/ ctibnal assifier
CLASS CLASS cLass |, .. |cLass
1 2 3 N N

UNKNOWN

Figure 2: Two-layer document classifier.

In the classifier, if a document contains a partic-
ular number of the landmarks for a class (this num-
ber can vary for the class), then it is categorized
as that class. Currently, it is possible to label a
document as belonging to more than one class, al-
though plans to implement conflict resolution are in
progress. We found one or two cases where a docu-
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ment could reasonably be classified as either a mem-
orandum or a business letter. For example, the doc-
ument contained a salutation typical of a business
letter (e.g., Dear J. Doe), but also header fields
typical of a memorandum (e.g., Re: Meeting on
Friday). Because of this type of ambiguity and the
anticipation of adding more classes, conflict resolu-
tion will become imperative in the future.

The lower layer of the classifier uses the presence
of functional components as discriminating features.
In order to determine the most likely features for
each class, we ran the test data through our content-
based functional analysis module (Section 3.1) and
scored the frequency of each component’s occurrence
for the true class and false class data. We chose
landmarks that were very likely to occur in the true
class and much less likely to occur in the false class.

The rules to compute these functional components
were decoupled from the functional module and ap-
plied separately for classification. However, no posi-
tional relational information (such as “the title block
in a journal article is above the author block”) was
used in order to keep the decision schemes as sim-
ple and fast as possible. If the original rules as im-
plemented in the functional analyzer contained any
inter-component dependencies, these dependencies
were removed from the classifier version of the rules.

The classifier has been designed for English-,
French- and German-language business letters and
English-language memoranda.

3 Functional Decomposition

For our main thrust — English-language business let-
ters — two approaches to functional decomposition
were undertaken. Initially, we worked on a content-
based approach, which while also taking positional
knowledge into account, focused on string matching
of keywords associated with particular components
and thus required OCR. This had the advantage of
being able to find functional components embedded
within physical segments, but bore the disadvantage
of being computationally expensive. Fuller coverage




to this approach is given in [9] and a summary is
provided in Section 3.1.

Our current pursuit is a geometric-based ap-
proach, which is OCR independent and executes
quickly, but completely relies on the physical seg-
mentation. Intra-object knowledge is implemented
via fuzzy logic; inter-object knowledge with stan-
dard predicates. Section 3.2 provides coverage of
this method.

3.1 Content-based Approach

After scanning, our initial step is a physical seg-
mentation to obtain objects on which to test func-
tional labeling rules. As we will show, we do not as-
sume a one-to-one correspondence between physical
segments and functional components. In fact, this
method seeks functional components even if they are
“buried” inside physical segments or span multiple
physical segments. Functional labels are mapped to
physical segments (or portions) via a process whose
rules include intra- and inter-object knowledge of
various kinds.

Inferencing is carried out in four phases as follows:

e In Phase 0 we perform initialization including
determination of column boundaries [13], which
gives us the width of the content fill (as op-
posed to the stationery frame) and allows us to
preliminarily identify and set aside likely body
blocks. In addition we seek certain “landmark”
components. By exploiting the positional rela-
tionships of blocks to these landmarks, we are
able to greatly reduce the search space for func-
tional components associated with these blocks.

In Phase 1 we find components which are co-
incident with physical segments. This search is
driven by the list of unfound components, not
the list of unlabeled blocks.

For those blocks not yet labeled, we assume in
Phase 2 that a block may contain more than
one functional object. Using bipartite divisions
of blocks, we examine each member of each par-
tition to see whether it is coincident with a func-
tional component.

As in Phase 1, Phase 3 is predicated on having
each physical block contain exactly one func-
tional object, but in this case the rules are based
on relative position rather than content. Thus,
we exploit the partial order of physical segments
and the partial order of labels in the quest to
find functional components. Merging opera-
tions are also performed in Phase 3 to locate
contiguous blocks with the same label.

Each rule is aimed at labeling a particular func-
tional component, although it may contain refer-
ences to others.

3.2 Geometric-Based Approach

Principally to avoid dependence on OCR and secon-
darily to reduce the computational expense of string
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matching, we have more recently pursued a content-
free approach. We use only the features derived from
the geometry of the physical segmentation and the
basic datatype of the block (tezt or image).

The features employed are:

o X origin of the block relative to that of the page
¢ Y origin of the block relative to that of the page

Block width relative to that of the widest (and
presumably only) column on the page

[ ]

e Line count (estimate)

The intra-object knowledge is applied using fuzzy
logic [2], combinatoric methods based on fuzzy sets.
Unlike an ordinary (or “crisp”) set, a statement
about the membership of an element in the fuzzy
set is not usually a predicate. That is, there is a
degree of membership associated with each element.

Reasoning on such entities aligns nicely with hu-
man intuition in many domains, for in real life de-
ciston making is often imprecise and must deal with
partial or conflicting information. Fuzzy logic is an
extension of classic logic, augmented with fuzzy im-
plication and inference.

The functional components we seek are the body,
date, inside_address, salutation, sender, closing, let-
terhead_top, letterhead botiom, signature and admin-
istrative, of which the last two actually are sought
chiefly by inter-object means. As for the administra-
tive component, we formerly sought separate compo-
nents for the secretery, distribution and enclosure.
However, without content information, we do not
feel we can reliably find those individual components
and have lumped them together into one administra-
tive unit. Similarly, we do not look for a reference
component at this time.

The goal of the labeling process here is to find the
best functional labeling of the given set of physical
blocks. Notice that we are constrained by the phys-
ical segmentation in the sense that without content
analysis we can not get inside a block; therefore, we
have no way of knowing whether a block contains
(portions of) multiple functional components. Ac-
cordingly, each block can be assigned at most one
functional label and no splitting will occur. How-
ever, this does not preclude reasoning about larger-
grained entities in that we can merge blocks with the
same label when it makes sense to do so, e.g., the
body.

3.2.1 Fuzzy Labeling Rules

There is one basic fuzzy rule per functional com-
ponent plus variations to accommodate the fact that
it is reasonable for certain components to appear at
more than one location. For example, the date might
be left justified or somewhere in the right half of the
page, so we have a fuzzy rule for each possibility. For
this component only one block could be assigned the
label. However, in the case of body or letterhead_top,
multiple assignments of the functional label are al-
lowed.




Each rule assigns a score in the range [0,1] to the
block under test as a candidate to bear a particular
functional label. Given a raw score, experimentation
has shown that simple numeric filtering should be
applied to determine whether it should be retained.
These filters are applied both at the component level
(a block must score at least 0.70 to be a candidate
for labeling as body) and overall (any score less than
0.20 is deemed insufficient to justify assignment of a
label).

We have found that just two types of fuzzy func-
tions suffice for our rules: the “Pi” function, which
tests whether a feature is around a certain value and
the “S” function where the distribution of a feature’s
values corresponds to a growth (or decline) pattern.
In Table 1 we show the correspondence between fea-
tures and fuzzy function types in our system.

A rule’s overall score results from a combination
of the fuzzy scores derived for the individual fea-
tures contributing to the rule. Following convention
we “AND” together the individual feature scores by
taking the minimum of the set. Convention also dic-
tates that we “OR” together the scores of the varia-
tions of a rule corresponding to the different physical
locations at which some components may be found.
The process of evaluating expressions of fuzzy func-
tions is called fuzzification. Later we will discuss the
corresponding process of defuzzification.

A sample fuzzy rule for the inside address, stated
in English, is:

If relative X coordinate is near beginning

of widest column

and relative Y coordinate is near 0.20

and relative block width is likely less
than half that of the widest column

and line count is near 4.5

then the segment is the inside address
with a score of 0.DDD.

3.2.2 Conflict Resolution

Our earlier method, centered on monotonic label-
ing, was contrary to a generate and test approach.
One reason we chose monotonic labeling was the
relative expense of the character-by-character com-
parisons at the heart of content-based labeling pro-
cess, meaning we severely needed to prune the search
space to maintain efficiency.

By contrast the fuzzy rules execute so quickly that
it is efficient to apply the rule for each functional
component to each physical block, and then perform
conflict resolution. When all the rules have fired
in a fuzzy logic system, the result is the definition
of a fuzzy output space. The process of mapping
back to a representative solution value is known as
defuzzification. In our application conflict resolution
plays that role by determining the “best” functional
label for each block (which may be no label) from
the set of fuzzy scores.

Conflict resolution proceeds as follows. A prior-
ity has been established for the functional compo-
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nents where the ones whose location is thought to be
the most independent of other components head the
list. For each component other than the body, letter-
head_top or letierhead_bot we find the block with the
highest score. If this block has been consumed (i.e.,
labeled), we take the block with the next highest
score for this component. If this block has not been
consumed, but there is another component which
has the highest score for this block, again we try the
block with the next highest score for this compo-
nent. This could eventually result in a label’s not
being assigned to any block. Finally, some inter-
object constraints are applied such as ensuring that
a block to be labeled as sender is below the block
labeled as body.

We then martial additional inter-object knowledge
to make certain that the labeling is consistent with
intuitive expectations. For example, we enforce that
a block labeled as sender is horizontally aligned with
and closely below the one labeled closing. If there is
an image block between them, then we assign that
the signature label. At this point we also try to iden-
tify the letterhead components, which must be above
or below every other labeled component; merge body
and letterhead blocks where appropriate and go after
the administrative component, which involves more
fuzzy function calculations.

4 Results

The current implementation of IDUS runs on a
SPARC™20 with the UNIX™operating system.
The IDUS system is written in the C programming
language except for its reasoning component of the
layout analysis module (for logical and functional
analysis) which is written in Quintus™Prolog.
OCR and segmentation are performed with the Xe-
rox Imaging Systems ScanWorX ™ Application Pro-
grammer’s Interface toolkit. The core functionality
is accessible via both an X-WindowsT™™MotifT™user
interface and a command user line interface.

The data set used for these experiments consisted
of one page documents. Our training and test data
have been culled from a variety of sources, including
individuals, law firms, banks, insurance companies,
industrial corporations, universities and (U.S.) gov-
ernment agencies. We were also provided with a set
of documents by the DOD. These were letters writ-
ten to the U.S. Library of Congress from other coun-
tries, i.e., meaning that English was not the native
language of the authors. In general, the data rep-
resent a wide variation in layout, which has a con-
comitant effect on segmentation and the subsequent
labeling. The documents were scanned as binary im-
ages at 200 dpi (dots-per-inch). This scanning reso-
lution was chosen because of a requirement to min-
imize the reliability on OCR. Therefore, there was
no reason to use the extra storage space or greater
processing times required for higher resolution im-
ages.




Table 1: Features employed in fuzzy functions

Origin Origin Relative Line Count
Relative X | Relative Y | Block Width
P X X X X
S X X X

4.1 Classifier Results

Training images were used in the design of the classi-
fier, either for finding the frequency of features from
the functional module or for refinement of compo-
nent rules for the classifier. The test data were used
for blind testing of the classifier. The false class
data (“other”) consisted of one column documents
which were neither business letters nor memoranda,
and their corresponding classification should be un-
known.

The business letter classification engine was de-
veloped using a training set (manually sorted for
class) consisting of 92 business letters (true class)
and 23 additional one-column documents from an as-
sortment of other domains. The functional module
was run on all of the training data to determine the
landmark components. The functional components
available for the letter class are: lefterhead, refer-
ence, date, inside address, salutation, body, closing,
sender, distribution, enclosure and secretary. The
following landmarks were used to design the classi-
fier for the business letter class: salutation, closing,
and inside address. Functional analysis for memo-
randa consists of finding three components: header,
body, and trailer. We found that subcomponents of
the header were the most discriminating for that
class. Therefore, to classify the the memoranda
class, we identify two or more specific header sub-
components, e.g., to, from, subject, by looking for
specific key words at the beginning of lines. The de-
cision to require more than one header component
resulted from the observation that many times lines
in any document will begin with the word to or from
(common key words in memorandum header mate-
rial). In addition, we restrict the search for these
header subcomponents to the upper portion of the
document.

The classification results for both the training and
test sets are summarized in Figure 3 and Table 2.
The business letter class results are presented by
written language in Figure 4. We scored the “other”
data as if they should be classified as unknown. Cor-
rect classification indicates that the document was
classified properly (either as business letter, mem-
orandum or unknown, in the case of the “other”
data). Undetermined classifications are the number
of business letters or memoranda that were classified
as unknown. False classifications are the number of
business letters that were classified as memorande
or vice versa, or unknowns (from the “other” data
base) that were classified as either a business letter
or a memorandum.

On a sample set of 40 images, the classifier took
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an average of 0.2 cpu seconds/document to complete
(see performance comparison in Section 4.3).

4.2 Evaluation of Functional
Decomposition

4.2.1 Scoring Methodology

Performance is measured in terms of precision and
recall, standard measures in the field of Informa-
tion Retrieval. These were computed with respect
to what a knowledgeable human would achieve in
carrying out the functional labeling task on sets of
single-page, English-language business letters, more
fully described below.

In our context recall becomes the ability of the
system to find and label the functional components
which are actually present, while precision measures
how many of the labels the system applies are cor-
rect. In arithmetic terms recall for a given document
is the ratio of correct labels to all actual labels and
precision is the ratio of correct labels to labels out-
put by the system.

Scoring is based on the goal of finding the above
specified list of target components, not on labeling
all blocks in the physical segmentation. The raw
scores for the components are based on the following:

o Components are weighted according to their im-
portance in a document class or their impor-
tance to the user. The default weight is 1.0 for
all components at present.

o The degree and nature of the overlap between a

labeled physical region and an actual functional
component govern partial credit. In general a
score for a labeled region is based on the relative
area of the region to that of the actual compo-
nent, where the actual component has been so
specified by a knowledgeable human being.
In particular, if a physical segment envelops two
(or more) functional components, but only one
is labeled, full credit is given for the component
found; zero credit is given for the component(s)
not found; no false positives are scored. Thus,
precision is not affected in this situation.

o Note that a text component may be correctly la-
beled even though it is resistant to OCR. In this
case full credit is given even though a database
entry containing its ASCII contents would not
be useful for later searching.

4.2.2 Results for Functional

Decomposition

We trained our content-based functional label-
ing module on a set of 38 single-page, English-




Table 2: Recognition rates for classifier.

Training Set Test Set
letters memoranda other | subtotal | letters memoranda other | subtotal | total
Recognition rate 0.96 0.90 0.96 0.95 0.88 0.93 1.00 0.92 0.93
Undetermined 0.04 0.07 0.00 0.04 0.12 0.07 0.00 0.98 0.06
Incorrect 0.00 0.03 0.04 0.01 0.00 0.00 0.00 0.00 0.01
other
Training data memoranda =
business letters -
Bincorrect
other H undetermined
Test data memoranda e 8 correct
business letters [
0 20 40 60 80 100 120 140
Number of documents
Figure 3: Training and test set classifier performance by class.
Trainin ,
9 French Ej
Bincorrect
German | .
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correct
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Humber of documents

Figure 4: Classifier performance on business letter data base.
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Table 3: Comparison of results for functional decomposition.

Description Source Approach Images Recall Precision
Test Set A Native/English content 49 0.78 0.97
Test Set B Nonnative/English content 22 0.36 0.76
Test Set B Native/English geometric 22 0.52 0.77
Test Set C NonNative/English geometric 56 0.71 0.92

language business letters. For the most part these
images, which can fairly be described as “clean,”
were scanned from the original documents at 400
DPI (dots per inch). Overall recall was 0.87 and
precision was 1.00.

Training for the geometric-based approach took
part on a set of about 90 images. These images
were relatively “clean” single-page, English language
business letters, although, as in our earlier work [9],
the notion of business letter was interpreted rather

. informally, requiring our system to be fairly robust.

In all there were three blind test sets (A,B and C)
of which only Test Set B was evaluated under both
methods, making four test scenarios. A summary
of the results for the four scenarios is given in Ta-
ble 3. Blind testing for the content-based method
was initially performed on the set of 49 letters from
Test Set A. Again, we used only single-page, English-
language documents in which “business letter” was
interpreted rather loosely, for they represented a
wide range relative to what might be found in a
secretary’s traditional style manual. The chart in
Figure 5 shows recall and precision for each type of
functional component and those values overall. Fig-
ure 6 depicts the raw data which underlie Figure 5.
The graph in Figure 5 has a gap at the position of the
distribution component because given the raw data
shown in the table of Figure 6, we see that recallis
zero and precision is undefined for that component.
These results were also reported in [9].

Test Set B, containing 22 images, consisted prin-
cipally of letters written to the U.S. Library of
Congress from other countries. In some cases the
image quality was poor. Also these letters tended
to have more manual annotations than the training
set or either of the other two test sets. In general
they did not observe so well layout conventions one
would expect from a writer whose first language was
(U.S.) English. For comparison purposes, Test Set
B was evaluated using both the content-based ap-
proach and the geometric-based approach.

For Test Set B the overall scores under the
content-based approach were 0.36 for Recall and 0.76
for Precision. A graph of these statistics for each
component is shown in Figure 7 and a table of the
underlying raw scores is given in Figure 8. Under
the geometric-based approach Test Set B scores were
somewhat better at 0.52 for Recall and 0.77 for Pre-
cision. The corresponding graph and table for this
scenario are Figure 9 and Figure 10, respectively.

The results were lower in both cases from those
of Test Set A, largely because of the lack of con-
sistency in layout conventions and keyword phras-
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ing, the second which especially affected the content-
based approach. Recall that the knowledge base for
both approaches was geared to U.S. English. These
scores indicate the potential usefulness of a hybrid
approach which is discussed later.

Test Set C, comprised of 56 images, was very simi-
lar to the training set and produced higher scores. In
Test Set C the overall scores for precision and recall
were 0.92 and 0.71, respectively, as illustrated and
detailed in Figure 11 and Figure 12. Precision re-
mains high, so our discussion will focus on recall. As
might be expected, the recall scores for components
above the body were better than for those below.
Because the size of the body varies from document
to document, placement of components which occur
below the body will not be as consistent as it is for
those above. Given the content-free nature of this
method, it is entirely dependent on the physical seg-
mentation. Thus, a component like the signature,
which is rarely encapsulated in its own block, is not
likely to be found. In fact, frequently, the closing,
signature and sender occur in the same physical seg-
ment. Along the same lines, if the date gets merged
into the letterhead_top, it will not be separately iden-
tified. In several cases the letterhead_bot was not in
any physical segment, so it could not be found.

4.3 System Performance

Figure 13 shows the relative speed of the differ-
ent components of the IDUS system. There is a
2:1 difference in the processing speeds for the two
functional decomposition methods. These times are
separate from the actual OCR execution; the dif-
ference in speed is due to heavy reliance on the
content-based approach to dictionary lookup. How-
ever, OCR, in general is a huge time sink. By using
techniques that are not reliant on OCR and only us-
ing OCR when absolutely necessary, we can obtain
a huge savings in processing time.

5 Conclusions

Future work includes modifying the classifier so
that it is less reliant on content-based clues (OCR)
and more on geometric clues. Our success using a
non-ocr-based approach to functional decomposition
leads us to believe that we will be able to adopt a
non-OCR-reliant approach.

In this paper, we have discussed two different ap-
proaches for functional analysis. The content-based
affords us the luxury of using textual clues to label
functional components; however, it is at the expense
of computational speed. The geometric based ap-
proach is much faster; however, we are unable to
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Figure 11: Test set labeling results by functional component for geometric-based functional analysis for data set

(©).

TRUE FALSE

COMPONENT POSITIVE POSITIVE PRESENT

letterhead_tof 55.36 0.00 56.00
letterhead_bo 22.60 1.00 36.00
date 27.00 13.00 51.00
inside address 44.87 0.00 50.00
salutation 43.00 5.00 54.00
body 55.63 0.00 56.00
closing 30.00 9.00 56.00
signature 6.50 1.00 54.00
sender 50.57 2.00 56.00
administrative 8.00 0.00 13.00
TOTALS 343.53 31.00 482.00

Figure 12: Test set raw scores by functional component for geometric-based approach on data set (C).
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split physical segments to find functional compo-
nents occupying only a portion of them. To achieve
really good performance what is really needed is a
way to compensate for the physical segmentation
via the judicious incorporation of OCR and content
analysis. OCR should not be used indiscriminately,
as it is computationally expensive. Rather it should
be “surgically” applied as a verification tool or when
a component is. deemed important enough that it
needs to be excised from the physical region in which
it is embedded. We feel that this hybrid approach,
combining geometric and content knowledge, would
be extremely beneficial, recognizing that the key de-
velopment issue would be the fashioning of a control
structure which summons OCR only when it is ap-
propriate.
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A Complete Environment for Ground-Truthing
and Benchmarking Page Segmentation Algorithms

Luc Vincent

Abstract

We describe a new approach for the automatic and
objective evaluation of page segmentation (zoning)
algorithms. Unlike technigques that rely on OCR out-
put, our method is region-based: the segmentation
output, described as a set of regions together with
their types, ordering relationships, child-parent re-
lationships, etc, is compared to a pre-stored set of
ground-truth regions, and an assessment of segmen-
tation quality is derived. In order for this compar-
ison not to be fooled by slight variations in region
shapes, it is achieved using region maps in which
ON-pizels are painted according to the region(s) they
belong to. From the “ground-truth map” and the
“segmentation map”, error maps are derived, in
which segmentation mistakes and their locations are
encoded. Error maps enable an accurate assessment
of segmentation quality regardless of the number and
intricacy of the regions on the page. Misclassifica-
tions, splittings and merging of various types, are
among the zoning mistakes that are derived from
these error maps.

Our segmentation benchmarking system can be
finely tailored to a user’s needs: region types, sub-
types, attributes, etc, can be customized, the weights
of errors of different types are user-defined, and sev-
eral method are provided for combining errors into a
global quality measure. This approach is also of great
interest for benchmarking specific aspects of segmen-
tation, such as headline detection, text/image sepa-
ration, reverse-video text detection, elc.

The ground-truth data files needed by the sys-
tem can be easily generated and updated using
GroundsKeeper, an X-window based tool we devel-
oped. GroundsKeeper allows one to view a docu-
ment image, manually draw regions (rectangular or
arbitrarily shaped) on top of it, and specify informa-
tion about each region (type, atiribuies, etc). Just
like the benchmarking system itself, GroundsKeeper
is completely customizable: region types, sub-types,
attributes, elc, are spectfied by the user in a startup

file.

Berrin Yanikoglu
Xerox Desktop Document Systems
9 Centennial Drive, Peabody MA 01960, USA

Jucv@xis.xerox.com berrin@xis.xerox.com

70

1 Benchmarking Page Segmentation:
Introduction

Page segmentation is the process by which a docu-
ment page image is decomposed into its structural
and logical units, such as images, rulings, para-
graphs, headlines, tables, line-art regions, etc. This
process, often refered to also as “zoning”, “layout
analysis”, or “page decomposition”, is critical for
a variety of document image analysis applications.
First and most importantly, commercial OCR pack-
ages need page segmentation to understand the lay-
out of the page, read the text in the correct or-
der (without attempting to read the halftones and
graphics), and ultimately be able to recompose the
document in a word processing environment. Simi-
larly, reading machines for the blind need accurate
page segmentation to be able to deal with multi-
column documents and read the text in an ade-
quate order. Even digital copiers and related soft-
ware/hardware systems rely on document segmen-
tation techniques to correctly identify the various
types of regions present on a page (e.g., text, conti-
nous tone images, halftones, line-art, ...), and ren-
der them appropriately [8].

A very large number of page segmentation algo-
rithms have been developed in the past couple of
decades, some described in literature [9] and some
prorietary [20]. These algorithms use many differ-
ent aproaches to the problem, some of which include:
rule-based systems [4], use of connected component
bounding-boxes [5], use of background and “white
streams” information [12, 2, 1], etc. Some of these
algorithms are specifically designed to work on par-
ticular types of document, whereas others are meant
to be completely general. Furthermore, some algo-
rithms are designed for very specific sub-tasks of
what is generally refered to as page segmentation:
for example, some algorithms may simply detect
the graphics in a document page image, others may
only care about the text. Some algorithms generate
coarse segmentations (e.g., at the galley level) while
others decompose pages down to the paragraph level,




or even down to the line level. For some applications,
a page segmentation algorithm may need to distin-
guish between halftones and continuous tones, for
others, the distinction is irrelevant.

Faced with such a diversity of methods and such
a wide variety of goals, a question arises: how good
is a particular segmentation algorithms at perform-
ing a particular type of page segmentation? How
should we assess the quality of a given algorithm for
a given task? The accuracy of a page segmentation
system, is unfortunately very difficult to evaluate ob-
jectively. Typically, assessing the quality of a system
involves running it on a large number of document
images and “eyeballing” the results, a very tedious
and subjective process.

For all these reasons, systems that make it easier
to automatically and objectively evaluate the ade-
quacy of a zoning algorithm for a given segmen-
tation task are becoming more and more impor-
tant. Obviously, a good segmentation benchmark-
ing tool, would be very helpful in deciding between
commercial systems for a given application. But be-
yond that, such a benchmarking environment would
also enable developers of page segmentation sys-
tems to regularly test their algorithms against large
databases of documents, thereby speeding up the
process of testing new ideas and fine-tuning exist-
ing segmentation algorithms.

Two main approaches have been proposed in lit-
erature for benchmarking page segmentation. The
first one, developed at UNLV, is purely text-based
[17, 6, 7], whereas the approach we have chosen is
region-based instead [15, 21]. These two approaches
are briefly described below, and we explain why we
believe our region-based approach to offer significant
advantages over the UNLV system.

The rest of the paper is organized as follows: in
Section 2, we describe our ground-truthing method-
ology, the tool we developed to easily create segmen-
tation ground-truth files, as well as the file format
used to represent the greound-truth information. In
section 3, we describe the benchmarking itself: the
use of region maps by the system is first described,
then we deal with error identification and combina-
tion. Finally, we show how the system can be cus-
tomized to virtually any user’s need, and conclude.

1.1 Text-Based Approaches to the
Evaluation of Page Segmentation
Algorithms

The Information Science Research Institute (ISRI)

of the University of Las Vegas (UNLV) has designed

an interesting technique to evaluate the quality of
page segmentation algorithms working within OCR

software packages: schematically, this method works
as follows:

1. Run page segmentation (including region order-
ing) and character recognition on a document
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page, and output the result as an ASCII string;

. Calling ¢; the cost of an elementary insertion
operation in a string, and ¢,, the cost of a block
move, use string matching algorithms derived
from [19] to determine the number of insertions
n; and the number of block moves n,, that are
needed to turn this output string into the ideal
ground-truth string while minimizing the asso-
ciated page cost C = n; X ¢; + Ny X Cm;

. From this number, subtract the cost of errors
that are purely due to OCR mistakes, as op-
posed to segmentation mistakes; this is done by
running the OCR system on the same page, us-
ing manual zoning information, and subtracting
the resulting error cost (expressed in numbers
of insertions times cost ¢; of an insertion) from
the page cost C.

The big advantage of this technique is that it is
purely text-based, and therefore does not require the
page segmentation sub-system to specifically output
zoning results in any particular format. In addition,
although its underlying string-matching algorithms
are rather elaborate, the overall approach is fairly
straightforward: for one thing, ground-truth files for
use with this system are very easy to create. There-
fore, the UNLV zoning evaluation system has been
relatively well accepted by the document recognition
community.

Nonetheless, this system has a few severe limita-
tions:

¢ Although this may not be true any longer, the

UNLV segmentation quality metric only takes
insertions and block moves into account, dele-
tions are assumed to have zero cost. In prac-
tice, this means that an algorithm will not be
penalized for finding extra text regions where
there are none, or worse, for detecting images
as text.

With this method, only one zone order, or a
small set of zone orders, are considered accept-
able. If a zoning algorithm produces a perfect
segmentation, but does not output regions in
one of these acceptable orders, it will be penal-
ized. This is sometimes unfair, since in many
cases, region order is not uniquely defined (see
Section 2.1). For example, how should such text
regions as captions, headers, footers, or insets,
be ordered? Clearly a range of options should
be considered equally correct.

Similarly, this approach requires running the
OCR system twice: once with automatic seg-
mentation and once with manual zoning, so that
errors purely due to the OCR can be subtracted.
The underlying assumption here is that OCR
accuracy is unchanged regardless of scanning
order. This is often not true in practice: a
messy segmentation generally results in poorer




OCR quality (for example, if the segmentation
splits or joins two galleys, hyphens are incor-
rectly paired, so the OCR engine can rely on
fewer words to be lexically verified...). There-
fore, this benchmarking approach tends to give
lower segmentation scores than it would if the
OCR engine was perfect.

The method requires the zoning algorithm be-
ing benchmarked to be part of of an OCR sys-
tem. Without OCR, there is no way to bench-
mark segmentation! Specifically, this means
that the segmentation of documents in “exotic”
languages (not supported by the OCR engine)
cannot be benchmarked. More annoying, the
segmentation of document images containing no
text cannot be evaluated with this system.

Along the same lines, the UNLV segmentation
benchmarking system can only deal with text
regions: the accuracy measure produced only
reflect accuracy on text zones!

Lastly, the output of the UNLV system is merely
a set of numbers (number of insertions, block
moves, and perhaps deletions). It therefore pro-
vides very little information on the types of mis-
takes that were actually made (Were regions
split or merged? Were images mistaken for
text? Were headline regions messed up more
than regular text regions? etc). Such informa-
tion would be very valuable to the segmentation
algorithm developer.

1.2 Our Region-Based Approach to
Automatic Segmentation
Benchmarking

For all the reasons listed above, we started working
on a region-based approach to page segmentation
benchmarking. As will be shown in the rest of the
paper, the system we developed is more complex and
cumbersome to use than a text-based system, but
offers much more flexibility, and avoids most of the
shortcomings of the UNLV approach.

In our system, the output of the segmentation
“algorithm to be benchmarked is modeled as a set
“of regions, a region being a polygon (representing

the outline of a page zone) together with such at-
tributes as a type (text, image, etc) and a parent
zone. This set of segmentation regions is matched
against a pre-stored set of ground-truth regions, and
such problems as erroneous region merging and split-
ting, misidentified region types, or extra “noise” re-
gions are flagged. i

A tool, GroundsKeeper, was developed to help

the creation of ground-truth files. This tool, de-
scribed in Section 2.2, allows the user to bring up
a document image, draw a set of regions (enclosing
image features such as halftones, paragraphs, cap-
tions, etc), specify ordering and “attachement” re-
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lationships between regions, and save the result in
a simple ASCII format called RDIFF (Region De-
scription Information File Format). This format is
described in Section. 2.1. As will be emphasized
later, GroundsKeeper can be customized to a user’s
needs.

During the actual benchmarking, the set of
ground-truth region represented in the RDIFF file
is matched against a set of segmentatlion regions.
This region matching step is actually performed us-
ing sets of pizels instead of polygonal representa-
tions. In other words, each region is modeled as
the set of ON-pixels its associated polygon contains:
this way, the shape of region polygons is not taken
into account, only their ON-pixel contents matters.
Errors can therefore be accurately flagged, and in-
significant differences between ground-truth and seg-
mentation polygons are automatically ignored. This
overall scheme is efficiently implemented through the
use of region maps and error maps, as described in
Section 3.

As we stress later, both the ground-truthing tool
(GroundsKeeper) and the benchmarking tool (cur-
rently called cluzo) are completely customizable. At
ground-truthing time, region types, subtypes, and
attributes are user-defined. Additionally, in the
benchmarking, some region types can be ignored
while some can be made equivalent to other (exam-
ple: ignore all halftone regions, and make caption
type equivalent to regular-text), the types of er-
rors that are important can be specified by the
user, together with the error weighting method. All
this information is stored in init files used by the
ground-truthing and benchmarking tools.

2 Creation of Ground-Truth Files

2.1 Representation of Ground-Truth
Information

To represent ground-truth information as well as
segmentation results, the RDIFF format is used. For
simplicity, this is an ASCII format, containing some
header information such as the name of the associ-
ated document image, the resolution, the page size,
and then a list of regions. Each region has an as-
sociated type and sub-type, may refer to a “parent”
region, and may have any number of attributes. Re-
gion shape itself is encoded as a simple polygon (list
of coordinates).

Providing the complete specifications of the
RDIFF format would be beyond the scope of this
paper. Let us however point out a few interesting
features of this format:

e RDIFF is a Tag-Value based format, meaning
that each entry in the format starts with a tag,
the rest of the entry being the value of this tag.
The advantage of this approach is its flexibility:
an RDIFF reader typically only knows about




the tags that are relevant to its purpose, and
ignores the rest. In addition, even as new tags
are added with each new release of the format,
the new RDIFF files remain backwards compat-
ible with previouly written RDIFF readers.

Region shape is currently encoded using a poly-
gon. In most applications, this is sufficient.
However, if it became important to support re-
gion with holes, or disconnected regions, the
RDIFF format could easily be expanded. New
region representations, using for example lists
of polygons, or run-length encoding, could be
added, and a new tag would be used to specify
the representation scheme chosen for each re-
gion (the default scheme being the current one:
single polygon).

Note that there are no restrictions on region
location: regions can overlap, be included into

one another, etc.

An example of RDIFF file is given below. Fig. 3
shows the GroundsKeeper window with the corre-
sponding set of regions overlayed on the document

image they were created from.

BEGIN_IMAGE

FILENAME /data/tif/h/halftone21.tif
IMAGE_WIDTH 2560

IMAGE_HEIGHT 3300

IMAGE_XRES 300

IMAGE_YRES 300

END_IMAGE

BEGIN_SUMMARY

INIT_FILE_VERSION 1.8 1995/04/18
TOTAL_REGIOKS 25

TEXT_REGIONS 25

IMAGE_REGIONS O

V_RULE_REGIONS 0

H_RULE_REGIONS O

ORDER_FLAGS ANY

END_SUMMARY

BEGIN_REGIONS

R_TYPE IMAGE

R_SUBTYPE HALFTONE

R_NUMBER 1

R_ATTACHMENT O

R_PARENT 0

R_DRAW_TYPE Box

R_BAME Zonel

R_ATTRIBUTES SHADED_BACKGROUND
REGION_POLYGON 301 692 71 681

......

R_TYPE TEXT
R_SUBTYPE CAPTION
R_NUMBER 9
R_ATTACHMENT 1
R_PARENT 0
R_DRAW_TYPE Box

R_NAME Zone9
REGION_POLYGON 722 838 78 266

R_TYPE TEXT

R_SUBTYPE CAPTION

R_NUMBER 10

R_ATTACHMENT 2

R_PARENT 0

R_DRAW_TYPE Box

R_NAME Zone10

REGION_POLYGON 1510 1584 82 348

R_TYPE IMAGE

R_SUBTYPE HRULE

R_NUMBER 15

R_ATTACHMENT 0

R_PARENT O

R_DRAW_TYPE Box

R_NAME Zonel$

REGION_POLYGON 136 150 0 1920

R_TYPE IMAGE

R_SUBTYPE VRULE

R_NUMBER 16

R_ATTACHMENT 0

R_PARENT 0O

R_DRAW_TYPE Box

R_NAME Zonel6

REGION_POLYGON 306 3034 1142 1156

R_TYPE TEXT

R_SUBTYPE REG_TEXT

R_NUMBER 18

R_ATTACHMENT 0

R_PARENT 0

R_DRAW_TYPE Box

R_NAME Zoneil8

REGION_POLYGON 304 426 722 1110

R_TYPE TEXT
R_SUBTYPE REG_TEXT
R_NUMBER 19
R_ATTACHMENT 0
R_PARENT 0
R_DRAW_TYPE Constrained-Polygon
R_NAME Zonel9
REGION_POLYGON 428 1086 376 1116
COUNT 14

774 428

982 428

982 464

1116 464

1116 1048

954 1048

954 1086

718 1086

718 1048

376 1048

376 714

722 714

722 466




774 466

......

R_ORDER_RULE 18 < 19 < 20 < 21 < 22 < 23 < 24 < 25

Note the R_ORDER_RULE at the end of this file. This
represents a set of ordering constraints between re-
gions. Indeed, as mentioned in Section 1.1, we firmly
believe that one complete region order is inadequate.
Instead, a number of ordering constraints (or rules)
should be used. For example, ordering constraings
for regular text regions should be separate from or-
dering constrains among insets or side-bars. The lat-
ter regions are indeed not part of the main flow of
text. Similarly, having several ordering constraints
makes it possible to deal with ambigous cases such
as the one shown in Fig. 1.

Figure 1: Ambiguous case for region ordering. The
correct order between text regions R; through R4
could be R1, Rz, R3, R4 or R1, R3, Rz, R4

Accordingly, in the RDIFF format, any number
of partial ordering rules can be specified using the
R._ORDER RULE tag. An example where several of
these tags would be needed is shown in Fig. 2. Note
that ordering constraints are not always the correct
solution. Sometimes, attachements should be used
instead. For example, a caption is “attached” to a
picture, it does not come before or after this picture.
Attachements can also be specified in the RDIFF
language.

To conclude this section on RDIFF, let us point
out that region ordering relationships are often con-
sidered as not being part of page segmentation itself.
In fact, the R_ORDER RULE tags are currently used
only by a very small subpart of our benchmarking
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RI RS
R2 R6
R3
R7
R4
[V 14ad
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yd
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1
| |
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Figure 2: The order between regions in this “page”
can be specified using four partial orders: R; <
Ry < Rs < Ry < Ryp < Ry1 < Rz , Ry <
R; , Rs< R; < Rg, and Rjo < Ri2 < Ry3.

system. We made them part of our ground-truth
format mainly in an effort to be complete.

2.2 X-Window Based Tool to Assist
Ground-Truth Creation:
GroundsKeeper

To easily create test suites of segmentation ground-
truth files in the RDIFF format, we developed an
X-Window based tool called GroundsKeeper (see
Fig. 3). For convenience, this tool provides three
different region drawing methods: rectangles, that
are sufficient for most cases, constrained polygons,
i.e., polygons whose edges are bound to be vertical
or horizontal, and arbitrary polygons, that are use-
ful for complex layouts, or skewed pages. After their
creation, regions can be deleted, moved, or modified
at will. Previously created files can also be read
in and updated. “Sequences” (i.e. region ordering
rules) can be specified by simply clicking on regions
one after the other. The functionality described in
this paragraph is available under the “Zone” menu
shown in Fig. 4.

Different display modes are also available. By de-
fault, the image is shown, with the regions and the
sequences drawn over it, but one can also choose to
display only the regions, or only the image (see “Dis-
play” menu in Fig. 5. Sequences, normally shown as
a succession of arrows, can also be ommitted from
the display if desired. More importantly, different
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Figure 3: GroundsKeeper window showing document image halftone21.tif together with the complete
set of ground-truth regions created. Ordering constraints between regions are shown as arrows (currently
selected).
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Figure 4: GroundsKeeper's “Zone” menu.

zoom levels are available. In fact, a good way to use
Groundskeeper is to first draw the regions coarsely
at low-resolution, then zoom-in and adjust the poly-
gons created.

Figure 5: GroundsKeeper’s “Display” menu.

The polygons created are given unique identifying
numbers, and can be tagged with their type, their
sub-type, plus any number of attributes. Types, sub-
types, and attributes are defined in an init file that
GroundsKeeper reads at startup: they are therefore
completely customizable for any particular applica-
tion. In house, we use the init file shown in Fig. 6.
Note that we chose to create very detailed ground-
truth files: indeed, one can always choose to use
less information that these files contain, but if the
files were not detailed enough for a given application,
they would be much less useful.

Groundskeeper has a number of additional features
designed to ease and speed-up the creation of RDIFF
files. Depending on the complexity of the input doc-
ument, it takes between 2 and 30 minutes to cre-
ate a complete detailed ground-truth file. We have
created half a dozen test suites of ground-truthed
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ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME
ATTRIBUTE_NAME

ANGLED
BAR~CHART
BULLETS
CELL-TABLE
CURVED-TEXT
HARD-DRAWN
ILLEGIBLE
INCOMPLETE
OUTLINED
PIE-CHART
REVERSE_VIDEO
SHADED_BACKGROUND
TAB-TABLE
UNDERLINED
UPSIDE-DOWN
VERTICAL

IMAGE_TYPE_NAME CAPTION
IMAGE_TYPE_NAME CAPTION_or_HEADLINE
IMAGE_TYPE_NAME CAPTION_or_REG_TEXT
IMAGE_TYPE_KAME CELL
IMAGE_TYPE_NAME DROPCAP
IMAGE_TYPE_NAME FOOTER
IMAGE_TYPE_NAME FOOTNOTE
IMAGE__TYPE_NAME FRAMEBOX
IMAGE_TYPE_NAME GRAPHICS
IMAGE_TYPE_NAME GRID
IMAGE_TYPE_NAME HALFTONE
IMAGE_TYPE_NAME HEADER
IMAGE_TYPE_NAME HEADER_or_HEADLINE
IMAGE_TYPE_NAME HEADLINE
IMAGE_TYPE_NAME HEADLINE_or_REG_TEXT
IMAGE_TYPE_NAME HRULE
IMAGE_TYPE_NAME INSET
IMAGE_TYPE_NAME LOGOD
IMAGE_TYPE_NAME RAISEDCAP
IMAGE_TYPE_NAME REG_TEXT
IMAGE_TYPE_NAME SIDEBAR
IMAGE_TYPE_NAME SUBTITLE
IMAGE_TYPE_NAME TABLE
IMAGE_TYPE_NAME TABLE_COLUMN
IMAGE_TYPE_NAME TABLE_LINE
IMAGE_TYPE_NAME TIMESTAMP
IMAGE_TYPE_NAME UKKNOWN_TYPE
IMAGE_TYPE_NAME VRULE

Figure 6: Example of GroundsKeeper init file.




Figure 7: GroundsKeeper’s “Zone Info” dialog box.
The attributes shown correspond to the list present
in the init file of Fig. 6.
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documents (magazines, newspapers, business letters,
etc), for a total of about 500 RDIFF files. Currently,
these suites are primarily used for testing and im-
proving the segmentation benchmarking algorithms
in cluzo, but progressively, we will use them more
and more for benchmarking in-house and external
segmentation algorithms.

3 Segmentation Benchmarking
Algorithms

3.1 Use of Region Maps

One of the key features in our region-based approach
to benchmarking segmentation is that regions are
not compared based on their shape, but based on
their ON-pixel contents. Two regions that enclose
the same image features (text, image, etc) should
indeed be considered as identical regardless of how
tightly they enclose these features.

In order to efficiently deal with regions as sets of
ON-pixels, the first step in our system is to create
region maps. A region map is created for the ground-
truth regions, and another one for the “segmentation
regions”. These two maps are called ground-truth
map and segmentation map respectively. Each one
is a low-resolution representation of the original doc-
ument image, in which each ON-pixel is tagged ac-
cording to the region(s) it belongs to.

3.2 Region Matching and
Identification of Errors

The region maps are used for identifying the follow-
ing types of segmentation errors:

missed region

extra region

erroneous region type

vertical split

horizontal split

vertical merge

horizontal merge

To this end, both maps are scanned concurrently in
order to detect which segmentation regions intersect
with each ground-truth region, and which ground-
truth regions intersect with each segmentation re-
gion.

One-to-one matches are first considered: if the
region types involved are identical (or equivalent
for the purpose of the segmentation being bench-
marked), then they correspond to zones that have
been correctly segmented. Otherwise, mislabeling
errors are identified.

All other cases correspond to segmentation er-
rors. For example, if a ground-truth region does not
match with any segmentation region (i.e. does not
intersect with any segmentation region), it means
that the corresponding page object has been missed
by the segmentation algorithm.




Take now the case of a segmentation region S
that matches with several ground-truth regions Gj,
Go,..., G,. This means that regions have been er-
roneously merged. In this case, depending on region
types, and depending on the type of error analysis
desired, it may be useful to detect whether the merge
was vertical or horizontal. For example, if the seg-
mentation is to be used in the context of an OCR
system, vertical merging of text regions is usually
not a big deal, especially if the regions are consec-
utive within the same ordering rule. On the other
hand, horizontal merging of text regions should be
strongly penalized. To detect whether a merging is
horizontal, we scan the pixels of the segmentation
region S and see for each scanline if the correspond-
ing ON-pixels in the ground-truth map belong to
several regions. When this is the case, the entire
scanline corresponds to an erroneous merge and is
flagged as such. With this method, we are able to
only flag those pixels that are actually affected by
the horizontal merge. This is illustrated by Fig. 8.
The same analysis can be done for vertical merging
as well if needed.

Ground truth region

Segmentation region

Figure 8: When benchmarking the segmentation of
an OCR system, only the pixels in the shaded area
will be found to be part of an erroneous horizontal
merge of text regions.

Similarly, when a ground-truth region is found to
match several segmentation regions, this i1s a sure
sign that this region has been erroneously split by
segmentation. The same kind of analysis as de-
scribed in the previous paragraph can be done in
order to decide whether the split was vertical or hor-
izontal. For more details on how all the different
cases are handled, refer to [21].

3.3 Weighting and Combination of
Errors

When a segmentation error is detected, how should
it be weighted? How should the seriousness of this
error be assessed? How should errors be combined
if they affect the same ground-truth region? For
example, if (part of) a ground-truth region is found
to have been split twice by segmentation, should this
be considered twice as bad? Similarly, if this region
is found to have been both merged and split, should

one of these error types have precedence over the
other one, or should both error be charged?...The
answers to all those questions depend on the type
of segmentation being benchmarked, and should be
specified in the init file used by our benchmarking
tool (see next section).

To deal with all the possible ways one may want to
weight amd combine errors, we use a scheme based
on error maps. Each time an error 1s detected, the
ON-pixels involved are flagged in this error map.
Whenever a pixel is found to be involved in sev-
eral errors (for example, an erroneous split and an
erroneous merge), we can decide to flag this pixel
as being involved in all these errors, or only in the
most serious one (the seriousness of each error type
is specified in the init file).

Eventually, once all the errors have been detected,
the resulting error map is analyzed and the segmen-
tation quality is then characterized by a few num-
bers, such as: percentage of mislabeled pixels, per-
centage of pixels involved in horizontal merges, etc.
The set of numbers used to characterize segmenta-
tion accuracy is derived from the init file used by
the system.

As an example, consider the set of ground-truth
regions shown in Fig. 9: 8 text regions and 2 im-
age regions are present. The double-spaced text
was zoned into 5 different paragraphs, according to
our ground-truthing guidelines, but for most appli-
cations, zoning it into 2 galleys would have been
sufficient. The automatic segmentation algorithm
we used here did not see the two different galleys
present, and made a mess of this page, as shown
in Fig. 10. The corresponding error map created
by our benchmarking algorithm is shown in Fig. 11.
Note that in this map, only the pixels where horizon-
tal merging occured are flagged (black pixels in the
map). Indeed, the init file we used specified that
vertical merge/split of text should not be penalized.

The output of the benchmarking tool for this ex-
ample is given below. Note that for “historical” rea-
sons we are still distinguishing between labelling er-
rors and all other error types. The init file used
to produce this output specified 6 different types of
mislabelling, but only one type of vertical merge,
horizontal merge, etc. Also recall that the cost of
vertical merges and splits was set to 0.

Groundtruth file: bhngli.sgt
Segmentation file: bhngil.rdiff
Image file: bhngii.tif
ZORIRG:

Missed regions = 0.00 %
Boise regions = 0.00 %
Horizontal merges = 49.22 Y
Horizontal splits = 0.00 %




TMAGE

Figure 9: Display of the ground-truth regions for a document image.
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IMAGE,

Figure 10: A segmentation result for the same image as in Fig. 9. Note the horizontal merging of text galleys.
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Figure 11: Error map corresponding to the segmentatino result displayed in Fig. 10. Pixels involved in a
merging error are black in this map.
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Vertical merges = 0.00 %
Vertical splits = 0.00 ¥%
Overall zoning quality = 49.22 Y%
LABELING:

Text recognized as image = 0.00 %
Img. recognized as text = 0.45 Y%
Text recognized as noise = 0.00 %
Img. recognized as noise = 0.00 %
Noise recognized as text = 0.00 %
Noise recognized as image = 0.00 %
Overall labeling quality = 99.55 ¥

3.4 Customizing the Benchmarking

Just like GroundsKeeper, our benchmarking tool
cluzo can be customized to a particular application.
The init file required by the program is decomposed
into several sections:

o Listing of all the region types and attributes
that can be encountered in RDIFF files

Description of region equivalences: in this sec-
tion, a user can specify that type A is in fact
equivalent to type B, and that type D is equiv-
alent to type B as well, etc. For example, if
the user did not care about distinguishing be-
tween different types of image regions (such as
graphics, halftones, line-art, etc) and text re-
gions (such as captions, headlines, footers, etc),
the total number of region types could be re-
duced to 2.

Listing of all the different error types consid-
ered, together with their weights. This can be
done for generic regions as well as for particu-
lar region types. For example, the init file we
currently use contains the following:

Weight_of Vertically_split REGION O
Weight_of Vertically_split GRAPHICS 3
Weight_of Vertically_split HALFTORE 3

This specifies that a vertical split is of cost 0,
except when it involves a GRAPHICS region or
a HALFTONE region, in which case the asso-
ciated cost becomes 3.

Error weighting method to use. By default,
each error is weighted by its intrinsic weight (as
defined in the previous section) multiplied by
the number of pixels involved. In some cases
however, one may want to be able to spec-
ify that an error of a given type is of nominal
cost, regardless of the number of pixels involved.
Similarly, when text regions are involved, it may
make sense to use the height (= proportional to
the number of text lines) of the identified error
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region as weight. We are currently working on
techniques to enable all these different weight-
ing method to coexist harmonioulsy.

Definition of the error combination method:
when an area of the page is involved in multi-
ple segmentation mistakes, should ali these mis-
takes been taken into account, or should the
most serious mistake (the one with highest as-
sociated weight) prevail?

The format of this init file is still evolving, as we
are working on better and simpler ways to describe
a user’s benchmarking needs in this file.

4 Conclusions, Future Work

We described the region-based page segmentation
benchmarking environment currently under devel-
opment at Xerox. Every aspect of the system has
been developed with flexibility in mind, and we al-
ways tried to think of all the different ways this sys-
tem could be used in practice. Instead of computing
a single number/curve characterizing segmentation
accuracy, our system is able to keep track of an ar-
bitrarily large number of error types, and therefore
can provide very detailed information on segmenta-
tion quality. For these reasons, and because the sys-
tem does not require any OCR, we believe that it is
a compelling alternative to text-based segmentation
benchmarking approaches.

Most of the functionality has been implemented,
and we are currently in an incremental improve-
ment phase. In particular, we are working on better
and simpler ways to specify error types and weights
in the system. We are also considering a few op-
tions for extending our benchmarking system to deal
with grayscale images: this would potentially open a
whole new range of new applications for this system,
beyond document analysis.

The actual error numbers reported are still a bit
arbitrary at times, and this makes it still difficult to
use our system to compare very different segmenta-
tion algorithms. However, as is, the system is al-
ready invaluable for segmentation algorithm devel-
opers: indeed, absolute error figures are less useful
to developers than relative numbers. Using cluzo
on a large enough test suite makes it easy to au-
tomatically flag degradations and improvements in
different aspects of segmentation, and to fine-tune
the parameters of a given zoning algorithm.
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OCR: A Five Year Retrospective

Mindy Bokser
Caere Corp.
100 Cooper Court
Los Gatos, CA 95030

Abstract

The paper will take a retrospective look at how the state of the art in OCR has changed over the last five
years, by looking at how the distribution of errors has changed for one commercial system. The purpose is
to better understand the current state of the art and help guide future research efforts.
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The WILDFIRE FPGA-Based Custom Computing Machine
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Abstract

Modern computer technology has been evolving for
nearly fifty years, and has seen many architectural
innovations along the way. One of the latest advances
in computer architecture is the reconfigurable
processor-based custom computing machine (CCM).
CCMs use field programmable gate arrays (FPGAs) as
their processing cores, giving them the flexibility of
software systems with performance comparable to that
of dedicated custom hardware. The Splash 2 attached
processor developed at the Center for Computing
Sciences in Bowie, MD (formerly the Supercomputing
Research Center) is an example of a CCM. The
WILDFIRE architecture is based on the Splash 2
technology transferred from the Department of
Defense and the Institute for Defense Analyses,
Supercomputing Research Center. This architecture
has been proven to effectively solve many applications
related to document image understanding technology.
Several image processing kernels have been developed
at the Virginia Polytechnic Institute and State
University for the Splash 2 and Wildfire architectures
that can be used to develop document image
understanding  applications. =~ Other  Splash 2
applications that relate to the concept of document
image understanding include textual keyword
searching, DNA sequence comparison, and fingerprint
image understanding. How some of these applications
relate to document image understanding and an
implementation of text searching using WILDFIRE are
discussed in this paper.

1 Introduction

Advances in microelectronics have once again
provided the means to achieve advances in computer
architecture. A device called the field programmable
gate array (FPGA), combines the f