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Abstract. A new exemplar-based probabilistic approach for face recog-
nition in video sequences is presented. The approach has two stages:
First, Exemplars, which are selected representatives from the raw video,
are automatically extracted from gallery videos. The exemplars are used
to summarize the gallery video information. In the second part, exem-
plars are then used as centers for probabilistic mixture distributions for
the tracking and recognition process. Probabilistic methods are attrac-
tive in this context as they allow a systematic handling of uncertainty
and an elegant way for fusing temporal information.

Contrary to some previous video-based approaches, our approach is not
limited to a certain image representation. It rather enhances known ones,
such as the PCA, with temporal fusion and uncertainty handling. Ex-
periments demonstrate the effectiveness of each of the two stages. We
tested this approach on more than 100 training and testing sequences,
with 25 different individuals.

Keywords: Surveillance, Video-based Face Recognition, Exemplar-based
Learning

1 Introduction

Face recognition has been a major research topic in recent years. Among the
most successful approaches are [19; 14; 20]. The techniques have been thoroughly
evaluated in the FERET-Protocol [15] and produce acceptable recognition rates
in ideal conditions. However, if ideal conditions are not met, e.g., in case of
out-of-plane rotation or variations in facial expressions, recognition rates drop
drastically. The major reason is, that all the recognition approaches use the still-
to-still technique: gallery and probe sets contain still face images (mug-shots),
and recognition rates are high only if geometrical and photometrical conditions
of the test images in the probe set match those in the gallery set. An alternative
to the still-to-still approach is to select appropriate images from a video, i.e.
track the person under consideration and wait for a good shot. This approach
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is essentially equivalent to the still-to-still techniques and success is therefore
limited (see Sec. 2 for related literature).

Clearly, an alternative to representing each individual by a single mug-shot
would be to use a set of mug-shots per individual that cover the possible vari-
atinos between frames: multiple-stills-to-stills. This approach has, however, two
major problems:

1. How should one select the right mug-shots?
2. What happens if the conditions in the probe images still happen to be dif-
ferent from those in the gallery mug-shots?

To solve these problems we propose the wvideo-to-video technique. In this
setting, gallery and probe sets consist of videos, instead of single mug-shots, i.e.,
each individual is represented by a video, ideally showing a variety of views of
that person, and the individual is to be recognized in a video where he/she of
course also shows a wide variety of views.

Our aim, therefore, is to develop a paradigm that allows to

1. learn the probabilistic settings of each individual from a gallery video and
2. test a multiple number of those settings as hypotheses’ in a probe video.

The use of exemplars offers a good way to tackle the first problem [17; 3].
Exemplar-based models are constructed directly from the gallery videos, thus
preventing the need to set up complex intermediate 2D, 3D or feature-based
representations. We solve the second problem with an enhancement of the well-
known Condensation method [7; 21]. Here, the identity is treated as a state that
is to be estimated and that remains constant over time.

The paper is organized as follows: We will give an overview of the related
literature in the next section. Sec. 3 introduces some preliminaries. In Sec. 4
we will introduce our method for exemplar learning. The recognition method is
introduced in Sec. 5. We present experimental results in Sec. 6 and final remarks
are in Sec. 7.

2 Related Literature

Nearly all video-based recognition systems apply still-image-based recognition to
selected good frames. The face images are warped into frontal views whenever
pose and depth information about the faces is available [1].

In [6; 13; 18] RBF (Radial Basis Function) networks are used for tracking
and recognition purposes. In [6], the system uses an RBF (Radial Basis Func-
tion) network for recognition. Since no warping is done, the RBF network has
to learn the individual variations as well as possible transformations. The per-
formance appeares to varies widely, depending on the size of the training data
but has not been thoroughly evaluated. In [13] face tracking is based on a RBF
network to provide feedback to a motion clustering process. Good tracking re-
sults were demonstrated, but person authentication results were referred to as
future work. [18] present a fully automatic person authentication system. The



sustem uses video break, face detection, and authentication modules and cycles
over successive video images until a high recognition confidence is reached. Dur-
ing operation, the face is tracked, face images are normalized and then used for
authentication with an RBF network. This system was tested on three image
sequences; the first was taken indoors with one subject present, the second was
taken outdoors with two subjects, and the third was taken outdoors with one
subject in stormy conditions. Perfect results were reported on all three sequences,
as verified against a database of 20 still face images.

In [9], a generic approach to simultaneous object tracking and verification
is proposed. The approach is based on posterior probability density estimation
using sequential Monte Carlo methods [2; 7; 8; 10]. Tracking is formulated as a
probability density propagation problem and the algorithm also provides verifi-
cation results. However, no systematic recognition evaluation was done.

In [16], a system called PersonSpotter is described. This system is able to
capture, track and recognize a person walking toward or passing a stereo CCD
camera. It has several modules, including a head tracker, and a landmark finder.
The landmark finder uses a dense graph consisting of 48 nodes learned from 25
example images to find landmarks such as eyes and nose tip. An elastic graph
matching scheme is employed to identify the face.

A multimodal based person recognition system is described in [1]. This system
consists of a face recognition module, a speaker identification module, and a
classifier fusion module. The most reliable video frames and audio clips are
selected for recognition. 3D information about the head is used to detect the
presence of an actual person as opposed to an image of that person. Recognition
and verification rates of 100% were achieved for 26 registered clients.

3 Preliminaries

Before delving into details about exemplar learning and recognition, we will
introduce some terminology borrowed from the FERET evaluation protocol [15].
A GalleryV = {V1,Va,...,Vx} is here a set of videos. Each V; is associated with
a single individual, i.e., N individuals A" = {1,2,..., N}, are represented in the
Gallery V.

A Probe set P = {Py, Pa,..., Py} is aset of M probe videos which are used
for testing.

3.1 Objects, Faces and Exemplars

In our framework a face is defined to be a gray value image that has been
suitably processed. We therefore treat faces in an appearance-based 2D manner.
An exemplar is a selected “representative”, extracted directly from raw video.

3.2 Geometric and Photometric Transformations
An image Z may undergo a geometrical or photometrical transformation

Z=T.{2} (1)



for a € A, where A is the set of possible transformations.
For example, 7, represents the similarity transforms, if with a = (c, 0, s)

T.{Z(x)} = Z(To(x)) = Z(sR(0)x + ) . (2)

The set of possible transformations A has to be pre-defined in our framework.

3.3 Likelihood Measure

Let F ={f1,f2...,fn} be a set of faces, with A" = {1,2,..., N}.

Let further X € A x A/ be a random variable. This random variable defines
the transformation 7, and the number i of a face f; € F. Thus, having observed
a video image Z, the observation likelihood for a hypothesis X = («, ), is given
by

p(Z1X) = p(Z]o, i)
Lz Ty 3)
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Eq. (3) computes the probability that the observation Z shows the face of an
individual ¢, while the face f; undergoes the transformation «. Here, d(-,-) is a
suitable distance function. In face recognition, one usually deals with the inner
face region of the subject, rather than the entire image. We therefore interpret
Eq. (3) such that 7,{f;} is compared to a subimage of Z where the position and
scale of the subimage is specified by «.

Clearly, the computation of this posterior joint probability does not depend
on the specific choice of certain distance function d. The choice of a suitable d
depends rather on the choice of image representation which may be chosen from
a large variety (PCA, LDA, bunchgraph) that have proven to be useful for face
recognition. o and the normalizing constant z have do be chosen with respect to
the chosen distance measure d.

X Zexp —

4 Learning Exemplars from Video

In order to realize video-to-video recognition, a probabilistic model needs to be
learned from each gallery video V. For this we take an approach which is similar
to the ones proposed in [17; 3]. These two approaches have in common that
they try to find a set of exemplars that describe the set of training images best,
i.e., that minimize the expected distance between the given set of images Z =
{Z1,Z5,...,Zy} and a set of exemplars (cluster centers) C = {c1,ca,...,cx }:

E{d(Z,C)} . (4)

In other words let Z = {Z;, Zs,..., Zn} be the sequence of video images. It
is being searched for a set of exemplars C = {c1, ca,...,cx} for that video such
that

w(z) =Y [ pizlo.opolelp(epda (5)
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is maximal for all ¢.

In [17], a k-means clustering is applied to minimize Eq. (5), in [3] an EM ap-
proach is used. In spite of the essential differences between these two approaches
they have for our purposes the common draw-back that

— they find k exemplars, where k has to be given in advance. For face recogn-
tition this draw-back is essential: Clearly, in Eq. (4) the distance measure d
may be chosen arbitrarily and for face recognition it is wise to choose one
of the well evaluated ones (PCA, LDA, ...) [15]. Thresholds and variances
for each of these measures that minimize mis-classification are known and
considering them asks for a dynamic choice of the number of clusters rather
than a static one.

— they have to store the training data in order to compute the clusters which
becomes difficult for long video streams.

Being inspired by the probabilistically interpreted RBF neural network ap-
proach [11], we propose an online technique to learn the exemplars: At each time
step t, p(Z¢|a, ¢) of Eq. (5) is maximized. If p(Z;|a,¢) < p for some p (which
depends on the choice of d) then Z; is added to the set of exemplars.

4.1 Learning Algorithm

In this section we will discuss the details about our online-learning approach.
For this let Z = {2, Z,,..., Zx} be the training images, and C = {cy,...,cx}
be a set of already located exemplars.

1. The first step is the alignment or tracking step: a cluster ¢ and a deformation
a € A is found such that d(7,{c;}, Z¢) is minimized:

oy «— argminmin d(7,, *{Z;}, ¢;) and (6)
iy —— argmind(7,'{Z}, ;)

2. The second step generates a new cluster center, if necessary: if

P(Zi|ow, ¢i,) < p

then -
C— CU{Ts{Z}},

where 7, *{Z;} is the subimage of 7., ' Z; on which the computation of the
distance d the first step (6) was based.
Count the number of times, count(i;) = count(i;) + 1, that cluster ¢;, ap-
proximaged image Z; best.

3. Repeat steps one and two until all video frames are processed.

4. Compute the mixture weights m; o< count(s).

The result of this learning procedure is



1. aset C={c1...,cx} of aligned exemplars ¢;
2. a prior m; for each of the exemplars ¢;.

Clearly, the more careful the set A is chosen, fewer exemplars are generated.
Allowing A, e.g., to compensate only for translations, exemplars are generated
to compensate scale changes and rotation.

Given a gallery V of videos, the above has to be carried out for each video.

During recognition, as will be explained in the next section, the exemplars
are used as centers of mixture models.

The above learning algorithm is motivated by the online learning approaches
for artificial neural networks (ANNs) [4; 12] and clearly, all kinds of enhance-
ments can be imagined (topology preserving maps, neighborhood relations, etc.).
An online learning algorithm for exemplars used during testing could allow, in
a bootstrapping manner, to learn new exemplars from probe videos.

In [18] a similar learning approach was presented. In contrary to our work,
face images are not normalized with respect to A which results in a far larger
number of clusters. In [6] a "Unit Face’ RBF model is porposed where for each
individual, a single RGF network is trained. The authors have also investigated
different geometrical normalizations and have tested preprocessing such as the
application of a ’difference of Gaussians’ or Gabor wavelets.

The goal of both above works was to build a representation of a face intensity
by using an RBF network. We want to make clear once more, that this is exectly
what we do not want! Our intention is, to chose a well-known face representation
in advance (such as, e.g., PCA). Then, we learn the different exemplars of a single
face. The advantage is that this way we inherit the “face recognition capabilities”
of the PCA, LDA, etc. techniques and recognition rates can thus be predicted.
This representation can be viewed as an “appearance-based 3D model”, where
affine tracking is used to compensate for the missing calibration information.

5 Tracking and Recognizing in Video

In this section we discuss the recognition of individuals in videos. After the
application of the learning algorithm in the previous section, we have a set of
exemplars C* for each individual 7 € A/ in the Gallery V.

5.1 Tracking and Recognition in the Bayesian Framework

We can now compute the observation likelihoods as in Eq. 3 and we can track
and identify individuals in the video: Let Xy = (ay,i) € A X N be a random
variable. We want to find X; such that the joint distribution

p(XelZy1,.. ., Zy) (7)
is maximal. Using the classical Bayesian propagation over time, we get
p(Xt|Z1, Zay ..., Zt) = pe(au, iy)
= Z/ P(Zilow, in)p(ou, ie|og—1, t—1)pr—1(—1,9-1) - (8)
Qt—1

ir—1



Marginalizing the posterior over the possible transformations a € A we get a
probability mass function for the identity:

p(it‘Zl,...,Zt) :/ p(at,it|Z1,...7Zt) . (9)
Qi

Maximizing (9) leads to the desired identity.

5.2 Exemplars as Mixture Centers

To take into account a set of exemplars C* = {ci, ..., cqu} for each individual i,
we refine Eq. (3):

P(Z]X) = p(Z]a, i)
x 3 p(Zlay i, p'(e) (10)

ceCt

x Y zexp [—;d(z,n{c}) 7 (11)
ceCt

Here, the ezemplars in C* are used as the mixture center of a joint distribution
and p*(c) = 7, is the prior for mixture center ¢ of individual i.

5.3 Dynamic Model

In Eq. (8)
P(X¢| Xi—1) = plag, ig|og—1,9-1)

defines the probability of the state variable to change from X;_; to X;. The
transformation a; may change according to a dynamic model. The identity 4,
however, is assumed to be constant over time, i.e., it is assumed that the identity
of the tracked person does not change over time. Learning of a dynamic model
has been discussed in [17].

5.4 Computation of Posterior Distribution

We have used a particle method to efficiently compute p(i¢, ag|Z;) [21; 2; 7;
8; 10], where 4, oy depicts the hypothesised identity and transformation of the
individual in the video. In [7] only the transformation a; was estimated, in [21]
the special case was discussed where each individual is presented by only a single
exemplar. In our case, however, we have a Gallery of N = || persons and each
person i is represented by a set of exemplars C; = {c},..., ¢k, }.

In order to efficiently use the Condensation method, it has to be adapted for
our needs. Using Condensation the posterior probability distribution p;(i¢, k¢, ¢ | Z¢)



(where i refers to the individual and & to the exemplar number) is represented
by a set of M indexed and weighted particles

{(Z-<m)7j<m>7a<m),w(m>)}t . (12)

m=1...M

Here, (™) refers to the identity, ;™) to the exemplar, o™ to the deformation
and w(™) to the weight. Note that we have, for better readability, indexed the
entire set with ¢, instead of each component. Since all exemplars per person
are aligned, we do not have to treat the different exemplars for a single person
seperately. We can therefore increase efficiency if we rewrite set (12):

t
i 1, M) wgm)

(13)

-(m m (m)
7,( ),Ki("l)’a( )7wK,L' m=1..M"’

Set (13) is a set of K, x 4 dimensional matrices, and each matrix represents
. (m) . o (m)
one particle, where K;m) = ‘Cz ‘ We can now easily marginalizing over C*

to compute the posteriori probability p; (i, ay|Z;): We get with

Ki(m)
4(m)

(™ = e wg, ) (14)
k=1

a new set of weighted sample vectors:

{(i<m>7a<m>,w(m)>}t ' (15)

m=1...M'

In Eq. (14), ﬂ,’;(m) is the prior of exemplar k of person (™).

To compute the identity from the particle set (15) we marginalize over « in
the same manner. See [21] for a detailed discussion of convergance speed and
convergence properties of this particle method.

6 Experiments

We have tested our video-to-video paradim on 100 video sequences of 25 different
individuals.

The video sequences show the individuals walking on a tread-mill. We simu-
lated different walking styles to assure a variety of conditions that are likely to
appear in real life: Walking slowly, walking fast, inclining and carrying an object.
Therefore, four videos per person are available. The subjects were not aware that
their images were being acquired for face recognition studies and so did not move
their heads unnaturally. During recording of the videos, illumination conditions
were not altered. Each video constists of 300 frames (480 x 640 pixels per frame)
captured at 30 Hz.



Fig. 1. The figure shows example images of the videos (slowWalk).

Some example images of the videos (slowWalk) are shown in Fig. 1.

The inner face regions in these videos are between 30 x 30 and 40 x 40 pixels.

In the experiments we used one of the video types as gallery videos for train-
ing while the remaining ones were used as probes for testing.

For each gallery video, a first face sample was cropped by hand. Based on
this sample, the training process was started. Four examples of automatically ex-
tracted exemplar sets are shown in Fig. 2 (extracted from the videos slowWalk).
The top row shows the exemplars of subjects 04006 and 04079 (six exemplars
each). The leftmost exemplars of each of the two sets are the handextracted
ones. Rows three and four of Fig. 2 shows the exemplars of subject 04015, rows
five and six the exemplars of subject 04022. The top left exemplars of each of
the two sets are again the handextracted ones. Clearly, the number of gener-
ated exemplars depends on the variety of different views that are apparent in
the gallery video. To generate these exemplars, we set p = 0.65 and standard
deviation per pixel to o = 0.4. Increase of o to o = 0.5 roughtly decreased the
number of exemplars by a factor of two.

During testing, these exemplar galleries were used to compute, over time,
the posteriori probabilities pi(i:|Z¢). It is interesting to see, how the posteriori



Fig. 2. The figure shows the exemplars of a person in a gallery video. In this example,
slowWalk-videos were used as gallery videos.

probabilities develope over time. Examples for this can be seen in Fig. 3. The
dashed line refers to the correct hypothesized identity, the other five curves refer
to the probabilities of the top matching identities other than the true one. One
can see in the left and the middle plot, that the dashed line (true hypothesis)
increases quickly to one. The left plot shows an example of p; within the first
20 frames. Here, at frame ¢t = 18 the particle method had converged. In order to
consider all the frames of the video, we restart the algorithm after convergence.
Recognition is established by that identity, to which the SIS converged most
often.

Examples illustrating the robustness as well as of the limits of our approach
are shown in Figs. 2, 3 and 5: Due to the severe differences between the gallery
exemplars (derived from “slowWalk”) in Fig. 2 (5th and 6th row) and the sam-
ple images from the probe video in Fig. 4, the recognition of subject 04022 was
not successful. On the other hand, in spite of the differences between the gallery
exemplars and the probe video, subject 04079 was always recognized success-
fully (see Fig. 3, right). The major problems that we encountered during our
experiments were:

1. Subjects appear severely different in the gallery video and in the probe
videos: This was the case for about 50% of the failed experiments.



Fig. 3. The figure shows two typical probability evolutions of two successful recogni-
tions. The graphs plot the top 5 matches, the dashed line refers to the true hypothesis.
The z-axis refers to the time ¢t. The top graph shows the curve (subject 04006) for the
first 20 frames, the bottom graph (subject 04079) shows the curve for the entire video
(gallery: slowWalk; probe: fastWalk).

2. Subjects looked down while walking: This was the case for roughly 10 sub-
jects (Fig. 6). In some cases, where the subject looked down in the Gallery
as well as in the Probe, this wasn’t secessarily a problem. However, in cases,
where this happened in either the probe or the gallery (see Fig. 6, left), this
led to mis-classification.

Clearly, both problems can be solved by using more gallery videos. We have
therefore done a second set of experiments, where two videos were used in the
gallery, while the testing was carried out on the remaining two videos. The overall
recognition results for one and two gallery videos are summarized in Table 1.
The ’g’ indicates, which videos were used in the gallery. The gallery contained
25 different individuals, however, for the “carrying” video set, only 24 different
individuals were available.

In [17] it is demonstrated that the dynamic information can also be learned.
We have done extensive experiments to incorporate facial and dynamic informa-
tion. However, we have observed, that the dynamic information of persons can
change severely with walking speed. Therefore, we have not used that informa-
tion.



Fig. 4. The figure shows sample frames 1, 35, 81, 100 of a probe video. One observes
large differences to the gallery. In this case recognition was not successful.

Fig. 5. The figure shows sample frames 1, 9, 40, 72 of a probe video. One observes
large differences to the gallery. In this case, however, recognition was successful.

Video images from our test data were converted from color to gray value
images, but no further processing was done. We used throughout our experiments
the Euclidean distance measure. The set of deformations A included scale and
translation. Shear and rotation were not considered.

In a further experiment, we have used our method for training and test-
ing on video data from a surveillance camera. The used camera was a Philips
EnviroDome camera, mounted on the cieling of the lobby of our building. The
camera has a resolution of 640 x 480 interlaced pixels. Images of an example
view of that camera are shown in Fig. 7. We have acquired a gallery video for
training and a probe video for testing. Training results from the gallery video
are shown in Fig. 8. One can see, that not only facial information is learned but
also the image noise that is due to interlacing and scaling!. Recognition in this
test was successful on the part of the probe video, where the contrast was high
(i.e. when the subject in the video passed unter a cieling light). For low contrast
the recognition failed, however. A thorough evaluation of our method on such
camera data is being undertaken.

! During training, to assure a lossless representation, we enlarged the face images to
80 x 80 pixels.



slow fast incline carrying slow fast incline carrying

g 100% 96% 92% g 96% 92% 88%
2% g 100% 96% 2% g 92% 92%
100% 96% g 96% 96% 96% g 96%
88% 96% 92% g 88% 88% 83% g
g g 100% 96% g g 96% 92%
g 10% g 100% g 100% g 100%
g 100% 96% g g 96% 96% g
100% g g 96% 100% g g 96%
100% g 100% g 2% g 96% g
100% 100% g g 100% 96% g g

Table 1. Overall recognition rates in percent for o = 0.4 (left), and o = 0.5 (right).
The ’g’ indicates the video used as gallery.

Fig. 6. Images show failure examples, where the galleries were not sufficient to recognize
the subjects.

7 Conclusion

The method presented takes advantage of the probabilistic framework for the
automatic generation of exemplar-based models from video sequences and for the
tracking and recognition in video sequences. One major power of this technique
is its independence from the choice of the distance function d:

— This allows to add temporal fusion to the different well known face repre-
sentations (see [15]).

— Also, as the distance function d measures the uncertainty in a recognition
process, it assures at the same time that enough exemplars for a successful
recognition under a variety of conditions are generated.

In order to show that our paradigm is able to recognize faces, one needs
to work with much larger face databases; What we can show, however, is that
the system is able to generate automatically an appropriate number of good
exemplars by taking into account the distance function d. Once the exemplars
are generated, they could theoretically be used as gallery images in a multiple-
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Fig. 8. The Figure shows the exemplars learned from the video shown in Fig. 7.

still-to-multiple-still (or still-to-multiple-still) face recognition approach. Here,
recognition is based on the pairwise computation of the distance measure d(-, -).

If we use one of the image representations that are already well known for
face recognition (such as, e.g., the PCA) and an appropriate distance measure,
we can consider the techniques that were tested in the FERET test [15] as a
“baseline” for our paradigm. That means, we can predict the recognition results
for our paradigm and the FERET-performances are a lower bound. We have
presented in this work a face recognition application. However, it appeares that
the presented method should be applicable also to other recognition-from-video
problems such as street-sign recognition from a driving car[5]
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