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Abstract

A motion-based, correspondence-free technique for human gait
recognition in monocular video is presented. We contend that the
planar dynamics of a walking person are encoded in a 2D plot
consisting of the pairwise image similarities of the sequence of im-
ages of the person, and that gait recognition can be achieved via
standard pattern classification of these plots. We use background
modelling to track the person for a number of frames and extract
a sequence of segmented images of the person. The self-similarity
plot is computed via correlation of each pair of images in this se-
quence. For recognition, the method applies Principal Component
Analysis to reduce the dimensionality of the plots, then uses the
k-nearest neighbor rule in this reduced space to classify an un-
known person. This method is robust to tracking and segmentation
errors, and to variation in clothing and background. It is also in-
variant to small changes in camera viewpoint and walking speed.
The method is tested on outdoor sequences of 44 people with 4 se-
quences of each taken on two different days, and achieves a clas-
sification rate of 77%. It is also tested on indoor sequences of 7
people walking on a treadmill, taken from 8 different viewpoints
and on 7 different days. A classification rate of 78% is obtained
for near-fronto-parallel views, and 65% on average over all view.

1 Introduction

Recently, gait recognition has received growing interest within
the computer vision community, due to its emergent importance as
a biometric. The term gait recognition is typically used to signify
the identification of individuals in image sequences ‘by the way
they walk’. Gait classification is the recognition of different types
of human locomotion, such as running, limping, hopping, etc. Be-
cause human ambulation is one form of human movement, gait
recognition is closely related to vision methods that detect, track
and analyze human movement in general.

Gait recognition research has largely been motivated by Jo-
hansson’s experiments [19] and the ability of humans to perceive
motion from Moving Light Displays (MLDs). In these experi-
ments, human subjects were able to recognize the type of move-

ment of a person solely from observing the 2D motion pattern gen-
erated by light bulbs attached to the person. Similar experiments
later showed some evidence that the identity of a familiar person
(‘a friend’) [1], as well as the gender of the person [9] might be
recognizable from MLDs, though in the latter case a recognition
rate of 60% is hardly significantly better than chance (50%).

Despite the agreement that humans can perceive motion from
MLDs, there is still no consensus on how humans interpret this
MLD-type stimuli (i.e. how it is they use it to achieve motion
recognition). Two main theories exist: the first maintains that
people use motion information in the MLDs to recover the 3D
structure of the moving object (person), and subsequently use the
structure for recognition; and the second theory states that motion
information is directly used to recognize a motion [7].

The dynamics of gait can be fully characterized via the kine-
matics of a handful of body landmarks such as limbs and joints
[18]. Indeed, one method of motion-based recognition is to first
explicitly extract the dynamics of points on a moving object (per-
son). Consider a point �� ��� � ������ ����� ����� on a moving
object as a function of time �. The dynamics of the point can be
represented by the phase plot ��� ���� � �� ���	��� 


�. Since we wish
to recognize different types of motions (viz. gaits), it is important
to know what can be determined from the projection � of �� ���
onto an image plane, ��� 
� � ���� �. Under orthographic projec-
tion, and if �� ��� is constrained to planar motion, the object dy-
namics are completely preserved up to a scalar factor. That is, the
phase space for the point constructed from ��� 
� is identical (up
to a scalar factor) to the phase space constructed from �� ���. How-
ever, if the motion is not constrained to a plane, then the dynamics
are not preserved. Under perspective projection, the dynamics of
planar and arbitrary motion are in general not preserved.

Fortunately, planar motion is an important class of motion, and
includes “biological motion” [16]. In addition, if the person is
sufficiently far from the camera, the camera projection becomes
approximately orthographic (with scaling). In this case, and as-
suming we can accurately track a point �� ��� in the image plane,
then we can completely reconstruct the phase space of the dynamic
system (up to a scalar factor). The phase space can then be used
directly to classify the object motion (e.g., [6]).

In general, point correspondence is not always possible in real-
istic image sequences (without the use of special markers), due to
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occlusion boundaries, lighting changes, insufficient texture, image
noise, etc. However, for classifying motions, we do not necessar-
ily have to extract the complete dynamics of the system; qualitative
measures may suffice to distinguish a class of motions from each
other. In this paper, we use a correspondence-free image feature
for motion-based gait recognition.

Our method maps a sequence of images of a walking person
to a similarity plot (SP), defined as the matrix of self-similarities
between each pair of images of the person in the sequence. We
contend that this 2D feature encodes a projection of the planar
dynamics of gait, and hence a signature of gait dynamics. The fea-
ture vectors used for classification consist of the contiguous square
blocks, termed Units of Self-Similarity (USS), in the SP of size one
gait period each. Our method treats a USS much the same way that
the Eigenfaces technique [28] treats a face image; it uses Princi-
pal Components Analysis (PCA) to reduce the dimensionality of
the feature space, then applies some supervised pattern classifica-
tion technique (k-nearest neighbor rule in our case) in the reduced
feature space for recognition, termed the Eigengait.

This method is invariant to background texture and lighting,
and clothing, and is robust to segmentation errors. It assumes that
people walk on a known plane with constant velocity for about 3-4
seconds (the time it takes to walk 5-8 steps at normal speed), the
frame rate is greater than twice the frequency of walking, and the
camera is static.

The rest of the paper is organized as follows. Section 2 reviews
recent vision literature related to gait recognition. In Section 3 we
describe the method in detail. Section 4 describes the experimental
methodology and results, and finally in Section 5 we conclude with
a brief summary and discussion of future work.

2 Related Work

We review vision methods used in detection, tracking and
recognition of human movement in general, as they are closely re-
lated to gait recognition ([7, 5, 13] are good surveys on this topic).
These methods can be divided into two main categories: methods
that recover high-level structure of the body and use this structure
for motion recognition, and those that directly model how the per-
son moves. We shall describe the latter in more detail as it is more
relevant to the gait recognition approach proposed in this paper.

Structure-free methods characterize its motion pattern, without
regard to its underlying structure. They can be further divided into
two main classes. The first class of methods consider the human
action or gait to be comprised of a sequence of poses of the moving
person, and recognize it by recognizing a sequence of static con-
figurations of the body in each pose [23, 17, 15]. The second class
of methods characterizes the spatiotemporal distribution generated
by the motion in its continuum, and hence analyze the spatial and
temporal dimensions simultaneously [24, 25, 10, 22, 21, 8].

State-space methods represent human movement as a sequence
of static configurations. Each configuration is recognized by learn-
ing the appearance of the body (as a function of its color/texture,
shape or motion flow) in the corresponding pose. Murase and
Sakai [23] describe a template matching method which uses the
parametric eigenspace representation as applied in face recogni-
tion [28]. Huang et al. [17] use a similar technique, as they apply

PCA to map the binary silhouette of the moving figure to a low
dimensional feature space. The gait of an individual person is rep-
resented as a cluster in this space, and gait recognition is done by
determining if all the input silhouettes belong to this cluster. He
and Debrunner [15] recognize individual gaits via an HMM that
uses a quantized vector of Hu moments computed from the per-
son’s binary silhouette as input.

In spatiotemporal methods the action or motion is character-
ized via the entire 3D spatiotemporal (XYT) data volume spanned
by the moving person in the image. It could for example consist
of a sequence of grey-scale images, optical flow images, or binary
silhouettes of the person. Of particular interest is the work by Cut-
ler and Davis [8] which is closely related to our method. They use
similarity plots to characterize periodicity of human motion, and
thereby detect humans in video (and not for gait recognition).

3 Method

An overview diagram of the method is shown in Figure 1. An
input image sequence is first processed to segment the moving
person from the background and track it in each frame. The ob-
tained sequence of blobs are then properly aligned and scaled to
a uniform height, to account for detection/tracking errors and any
depth changes that occur in non-fronto-parallel walking. A self-
similarity plot (SP) of the person is computed by correlating each
pair of these blobs, and a set of normalized feature vectors, we call
Units of Self-Similarity, are then extracted from this SP and used
for gait recognition via standard statistical pattern classification
technique. In the following two sections, we explain our methods
for feature extraction/selection and classification in more detail.

Background Modeling and
Subtraction

Blob Correspondence and Tracking

Align and Scale Templates

Compute Self-Similarity Plot

Extract and Normalize Features

PCA
Project onto Eigengait

Space

Train Test

Sequence of person
templates

Eigengait
vectors

Classify

Reduced feature vector

New frame

Normalized feature vectors

Figure 1. Overview of Method.
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3.1 Feature Extraction

3.1.1 Self-similarity Plots

Given a sequence of images obtained from a static camera, we de-
tect and track the moving person, extract an image template corre-
sponding to the person’s motion blob in each frame, then compute
the self-similarity plot from the obtained sequence of templates.
For this, we use the method described in [8], except that we use
background subtraction for foreground detection since the camera
is assumed to be stationary [12].

Once a person has been tracked for � consecutive frames, the
corresponding sequence of � image templates are scaled to a uni-
form height, as their sizes may vary due to depth changes and seg-
mentation errors, and the self-similarity plot � is obtained by:

����� ��� � ���
���������

�

���������

������� ��� � � ������� ��� ���


where � � ��� �� � � , ��� is the bounding box of the person
blob in frame ��, � is a small search radius, and ��� � ��� � 

� ���

are the scaled templates. Note that these templates can be either
(1) foreground images or (2) binary silhouettes, as shown in Fig-
ure 2. There are clearly competing tradeoffs to using either type of
template in measuring image similarity: the latter is more robust to
clothing and lighting variations than the former, but is less robust
to segmentation errors. We shall later compare these two image
similarity measures empirically in the experiments (Section 4).

Figure 2. From left-to-right: original image, foreground
template and binary template, of a walking person.

3.1.2 Properties of Self-similarity Plots

The self-similarity plot � of a walking person has some useful
properties[8]. For example, the intersections of its off-diagonals
and cross-diagonals, which are also its local minima, encode the
frequency and phase of walking. Specifically, each intersection
corresponds to a combination of the following four key poses of
gait: (i) when the two legs are furthest apart and the left leg is
leading, (ii) when the two legs are joined together and the right
leg is leading, (iii) when the two legs are furthest apart and the left
leg is leading, and (iv) when the two legs are joined together and
the left leg is leading, as illustrated by Figure 3. We shall denote
these poses as �, �, �, and �, respectively. Note that diagonals
corresponding to �� and �� only exist in the similarity plot of
near fronto-parallel walking. Intuitively, this is because poses �
and �, and poses � and � are very similar in appearance only if
the person is walking nearly fronto-parallel to the camera and the

person’s gait is almost bilaterally symmetrical (i.e. the right and
left leg are functionally indistinguishable which is not the case
when the person has a limp).

Thus the frequency and phase of gait can be simply computed
by finding the local minima of �. However, we can only resolve
the phase of gait up to half a period, hence poses � and � and
poses � and � are indistinguishable. We currently have no way
of determining whether the left or right leg is leading, which is
a difficult visual problem in itself (it can be achieved in principle
by first determining the direction of walking, then carefully seg-
menting the two legs to determine which leg occludes the other,
i.e. which leg is closer to the camera).

(a) (b)

Figure 3. Combinations of key poses of human gait cor-
respond with local minima of the self-similarity plot.

3.1.3 Units of Self-Similarity

Because gait consists of periodic contiguous steps, the similarity
plot can be tiled into contiguous rectangular (square for constant-
speed walking) blocks, termed Units of Self-Similarity (USS), each
of which consists of the person’s self-similarity over two periods
of gait (Figure 4). Clearly a different such tiling is obtained for
each starting phase of the periods.

In this paper, we propose to use the set of all USS’s starting at
key-pose � or � (respectively the blue and green tiles in Figure 4)
as our input feature vectors for gait recognition. We only use the
USS’s in the top half of the similarity plot (the solid tiles), since
they are symmetric to the USS’s in the bottom half (the broken-
line tiles). Hence, for a sequence containing � gait periods (� � 	
in the Figure 4), we can extract 
	�	���

�
� ��� � �� such USS’s.

Note, however, that since we can only resolve the phase of gait up
to half a period (as discussed in Section 3.1.2), the USS’s starting
at pose � are in fact indistinguishable from those starting at pose
�, which is why we extract both for recognition.
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Figure 4. Extracting units of self-similarity from the sim-
ilarity plot. Blue and green USS’s start at pose � and �,
respectively.

3.1.4 Normalization

In any pattern classifier, it is important to determine which sources
of variation in the input data are irrelevant to classification, and
normalize them prior to classification [11]. In our case, a USS
of the same walking person will vary with: (i) clothing, (ii) the
background scene, (iii) number of pixels on target, (iv) camera
viewpoint, and (v) walking speed.

By using background subtraction to obtain person templates,
we effectively normalize for background variations. A simple way
to normalize for variation due to clothing and lighting is by using
a color-invariant image similarity measure, such as absolute corre-
lation of binary silhouettes or chamfer matching of the edge maps.
However this will not normalize for the style of clothing (for ex-
ample pants vs. skirts), nor for detection/segmentation errors.

The number of pixels-on-target (POT) is a function of cam-
era depth and image resolution. Assuming the roles of these two
are interchangeable, the POT is normalized by scaling down each
template such that � � ��� is some fixed constant, where � is the
height of the person in the scaled image and ��� is the effective �
dimension of a pixel in the frame grabber [27].

Since the size of a USS (equal to one period gait) may vary
depending on the actual gait period (speed of walking), we scale
them to a uniform �x� square tile. This is equivalent to temporal-
warping. Note, however, that this does not normalize for the dif-
ferent walking speeds in any qualitative way. It only transforms all
USS’s to feature vectors of equal length (��-dimensional), to be
able to use them as input to the same statistical pattern classifier.
Since gait dynamics are at root not invariant to speed of walking,
there is no (direct) way to normalize for this variation qualitatively.

Similarly, the USS’s corresponding to different camera view-
points are qualitatively different, since a different (planar) projec-
tion of gait dynamics is captured in the image plane from any one

camera viewpoint. We currently also have no way of normalizing
for this variation.

3.2 Gait Classifier

As mentioned in the previous section, the similarity plot is a
projection of the dynamics of the walking person that preserves
the frequency and phase of the gait. The question then arises
as to whether this projection preserves more detailed (higher-
dimensional) aspects of gait dynamics, that capture the unique way
an individual person walks.

We build a gait pattern classifier that takes USS’s as input fea-
ture vectors. Our classifier is very much analogous to the ‘Eigen-
face’ approach [28], in that we treat a USS much the same way
that a face image is treated in that method. Specifically, we apply
principal components analysis (PCA) to reduce the dimensionality
of the input feature vectors, and use a simple non-parametric pat-
tern classification technique to classify new feature vectors in the
subspace spanned by the first few principal components.

3.2.1 Training the Classifier

Let ��� ��� 

� �
 be a given training set of � labelled (i.e. each
corresponding to a known person) USS’s, of size �x� each, and
let �� be the vector of length �� corresponding to �� (obtained by
concatenating all its rows). Note, however, that strictly speaking
the feature vectors (i.e. the USS’s) extracted from the same walk-
ing sequence are not independent.

We then compute the principal components [20] of the space
spanned by ��� 

� �
 by computing the eigenvalue decomposi-
tion (also called Karhunen-Loeve expansion) of their covariance
matrix �� � �




�


���
��� � ������� � ����


 , where �� is the sim-
ple mean of all training vectors ��� 

� �
 . This can be effi-
ciently computed in���� time (instead of the brute force�����)
[28]. The subspace spanned by the �most significant eigenvectors,

�� 

� 
�, that account for (say) �
� of the variation in the training
vectors, is denoted the Eigengait.

3.2.2 Classification

Gait recognition now reduces to standard pattern classification in
a �-dimensional Eigengait space. Let ��� ��� 

� �� be the feature
vectors corresponding to the � USS’s extracted from a given se-
quence of an unknown walking person. To classify this sequence,
we project each of these vectors �� to a �-dimensional vector in
Eigengait space, and determine its class, denoted ��, based on the
k-nearest neighbor rule [3, 26]. We then decide the class � of the
sequence itself as the most frequent ��.

4 Experiments

We test our method on four different data sets in order to eval-
uate its performance across natural variability of individual walk-
ing, as well as its sensitivity when other factors are varied: cam-
era viewpoint, walking cadence, image similarity measure, and the
KNN parameter �. The classifier is trained and tested separately
for each combination of the above factors. The person templates
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are invariably scaled to a height of 50 pixels before computing the
SP, and the USS’s are each normalized to a size 32x32, hence span-
ning a 1024-dimensional feature space. We use the leave-one-out
cross-validation to estimate the classification error rate [26, 29].

Since the USS’s are not normalized for variation caused by dif-
ferent camera viewpoint and walking cadence, classification is in-
dexed by cadence and camera viewpoint. That is, a different gait
classifier is built for each camera viewpoints (for the Keck multi-
view dataset) and range of cadences (for the CMU MoBo dataset).

4.1 Fronto-parallel Datasets

The method is first tested on two different sets of fronto-
parallel sequences. The first dataset is the same used by Little
and Boyd in [21], and consists of 42 image sequences with six
different subjects (4 males and two females) and 7 sequences of
each, taken from a static camera. The second datatset contains
108 fronto-parallel sequences taken in an outdoor environment on
2 different days and with 44 different subjects (10 females and
34 males), hence 2 sequences per subject per day. The sequences
were captured at 20 fps and a full color resolution of 644x484.
Each subject walked a fixed straight path back and forth at their
natural pace, as shown in Figure 5.

Figure 5. An example of 4 outdoor walking sequences of
one person. The top and bottom two sequences were each
taken on two different days.

Little and Boyd UMD2 Dataset
�� BC Rate FC Rate BC Rate FC Rate
1 .93 .90 .75 .77
3 .90 .90 .72 .72
5 .93 .87 .73 .70

Table 1. Classification rates for the two fronto-parallel
datasets with two different measures of image similarity,
Foreground (FC) and Binary (BC), and three different val-
ues of � for the KNN classifier, � � �� �� 
.

Table 1 gives the recognition rates when using the different im-
age similarity measures and values of the KNN parameter �. Note

that correlation of binary silhouettes (denoted BC) gave slightly
better results than FC for the first dataset, and almost the reverse
is true for the second dataset. Also, the performance slightly de-
grades for higher values of �, which maybe because the training
points of any one person form multiple clusters in Eigengait space.

4.2 Keck Lab Multiview Dataset

Here we test the method on a database consisting of 7 people (3
females and 4 males) walking on a treadmill, taken on 7 different
days and captured simultaneously from 8 different cameras. An
average of 56 sequences is provided for each subject. The mul-
tiple viewpoints correspond to different pan angles of the camera
that are at 15 degree intervals and span a range of about 120 de-
grees of the camera field of regard. Figure 6 illustrates the eight
camera viewpoints used in this experiment. The data sequences
were captured in the Keck multi-perspective lab at a frame of 60
fps and using greyscale 644x488 images [4].

The treadmill speed was set to match the natural walking pace
for each subject, which typically varied between 2.5 and 3.5 miles
per hour. The results are shown in Figure 7. Note that performance
is significantly better at nearly fronto-parallel views (95 and 115
���) and that the best performance of 78% is obtained at a 95 ���
with � � � and binary correlation.

Figure 6. Eight camera viewpoints of the sequences in
second test data set.
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Figure 7. Classification rates for Dataset 3 for the 8 view-
points with � � �� �� 
 and using (a) Absolute correlation
of binary silhouettes (BC). (b) Normalized cross-correlation
of foreground images (FC).
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4.3 CMU MoBo Dataset

To investigate the effect of variation in walking speed, we used
an existing dataset [14] of 50 sequences and 25 people walking on
a treadmill at a slow (2.06 miles/hr) and moderate (2.82 miles/hr)
pace. A recognition rate of 12% was obtained when training on
slow-speed sequences and testing on moderate-speed sequences,
or vice versa. However, when we both train and test on slow se-
quences, we obtain a recognition rate of 72%, and 76% for fast
sequences. This seems to confirm the expectation that our gait
recognition method is sensitive to large changes in walking-speed.

5 Conclusions and future work

In this paper, we have used a correspondence-free motion-
based method to recognize the gaits of small populations of peo-
ple. The method is view dependent, and performs best when
fronto-parallel images are used. Clothing, lighting, and other vari-
ations may degrade the performance of the classifier

When tested with fronto-parallel sequences, the method
achieved a recognition rate of 93% on a small dataset of 6 people
and 7 sequences each taken on the same day, and 77% on a dataset
of 44 subjects and 4 sequences each taken on two different days.
The method was also tested on multi-view sequences of 7 people
captured from 8 different viewpoints and taken on different days.
The best recognition result (78%) was achieved using correlation
on binary silhouettes from a near-fronto-parallel viewpoint.

The classification rate has significantly improved compared
to the previous version of this method [2], in which we used a
(slightly) different feature vector, that consisted of the similarity
plot computed over some fixed number of gait periods (typically
3) and starting at some fixed phase. This method achieved a classi-
fication rate of at most 28% for the fronto-parallel outdoor datatset
(compared to 77% with the new method), and at most 65% for the
Keck dataset (compared to 78% with the new method).

We plan to study the sensitivity of this method to changes in
camera viewpoint and walking cadence, as well as investigate
ways to compensate for this dependence via interpolation tech-
niques in Eigengait space. We are also working to combine Eigen-
gait features obtained from this method with other parametric gait
features that can be robustly computed from video, such as ca-
dence, stride length and stature.
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