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Abstract

In this paper we present a novel algorithm to automatically
determine the relative 3D positions of sensors and actuators
in an ad-hoc distributed network of heterogeneous general
purpose computing platforms such as laptops, PDAs and
tablets. A closed form approximate solution is derived us-
ing the technique of metric multidimensional scaling, which
is further refined by minimizing a non-linear error function.
Our formulation and solution accounts for the errors in lo-
calization, due to lack of temporal synchronization among
different platforms. The theoretical performance limit for
the sensor positions is derived via the Cramér-Rao bound
and analyzed with respect to the number of sensors and ac-
tuators as well as their geometry. Extensive simulation re-
sults are reported together with a discussion of the practical
issues in a real-time system.

1. Introduction and Motivation
Arrays of audio/video sensors and actuators (such as micro-
phones, cameras, loudspeakers and displays) along with ar-
ray processing algorithms offer a rich set of new features for
emerging E-Learning and collaboration applications. Un-
til now, array processing was mostly out of reach for con-
sumer applications perhaps due to significant cost of ded-
icated hardware and complexity of processing algorithms.
At the same time, recent advances in mobile computing and
communication technologies suggest a very attractive plat-
form for implementing these algorithms. Students in class-
rooms, co-workers at meetings are nowadays accompanied
by one or several mobile computing and communication de-
vices like laptops, PDAs, tablets, which have multiple au-
dio and video I/O devices onboard. Such an ad-hoc sen-
sor/actuator network can be used to capture/render different
audio-visual scenes in a distributed fashion leading to novel
emerging applications. A few such applications include
multi-stream audio/video rendering, image based rendering,
smart audio/video conference rooms, meeting recordings,

∗The author is with the Perceptual Interfaces and Reality Laboratory,
University of Maryland, College Park, MD, USA. The paper was written
while the author was an Intern at Intel Labs, Intel Corporation, Santa Clara,
CA, USA.

��

��

��������

��������

�������	

��

��������

��

�������


��

�������	�


Figure 1: Distributed computing platform consisting ofN
general-purpose computers along with their onboard audio
sensors, actuators and wireless communication capabilities.

automatic lecture summarization, hands-free voice commu-
nication, object localization, and speech enhancement. The
advantage of such an approach is that multiple GPCs along
with their sensors and actuators can be converted to a dis-
tributed network of sensors in an ad-hoc fashion by just
adding appropriate software layers. No dedicated infras-
tructure in terms of the sensors, actuators, multi-channel in-
terface cards and computing power is required. However,
there are several important technical and theoretical prob-
lems to be addressed before the idea of using those devices
for array DSP algorithms can materialize in real-life appli-
cations.

A prerequisite for using distributed audio-visual I/O ca-
pabilities is to put sensors and actuators into a common time
and space (coordinate system). In [1] we proposed a way to
provide a common time reference for multiple distributed
GPCs. In this paper we focus on providing a common
space (coordinate system) by means of actively estimating
the three dimensional positions of the sensors and actua-
tors. Many multi-microphone array processing algorithms
(like sound source localization or conventional beamform-
ing) need to know the positions of the microphones very
precisely. Current systems either place the microphones
in known locations or manually calibrate them. There are
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some approaches which do calibration using speakers in
known locations [2]. This paper offers a more general ap-
proach where no assumptions about the positions of the
speakers are made. Our solution explicitly accounts for the
errors in localization due to lack of temporal synchroniza-
tion among different platforms. Figure 1 shows a schematic
representation of ourdistributed computing platformcon-
sisting ofN GPCs. One of them is configured to be the
master. The master controls the distributed computing plat-
form and performs the location estimation. Each GPC
is equipped with audio sensors (microphones), actuators
(loudspeakers), and wireless communication capabilities.

The problem of self-localization for a network of nodes
generally involves two steps: ranging and multilateration.
The ranging technology can be either based on the Time
Of Flight (TOF) or the Received Signal Strength (RSS) of
acoustic, ultrasound or radio frequency (RF) signals. The
GPS system and long range wireless sensor networks use
RF technology for range estimation. Localization using
Global Positioning System (GPS) is not suitable for our
applications since GPS systems do not work indoors and
are very expensive. Also RSS based on RF is very un-
predictable [3] and the RF TOF is quite small to be used
indoors. [3] discusses systems based on ultrasound TOF
using specialized hardware (like motes) as the nodes. How-
ever, our goal is to use the already available sensors and
actuators on GPCs to estimate their positions. Our ranging
technology is based on acoustic TOF as in [2, 4, 5]. Once
we have the range estimates the Maximum Likelihood (ML)
estimate can be used to get the positions. To find the solu-
tion one can assume that the locations of a few sources are
known as in [2, 3] or make no such assumptions as in [4, 6].
The following are the novel contributions of this paper.

• We propose a novel setup for array processing algo-
rithms using a network of multiple sensors and actu-
ators, which can be created using ad-hoc connected
general purpose devices such as laptops, PDAs, and
tablets.

• The position estimation problem has been derived as a
maximum likelihood in several papers [4, 6, 2]. The
solution turns out to be the minimum of a nonlinear
cost function. Iterative nonlinear least square opti-
mization procedures require a very close initial guess
to converge to a global maximum. We propose the
technique of metric Multidimensional Scaling [7] in
order to get an initial guess for the nonlinear mini-
mization problem. Using this technique, we get the
approximate positions of GPCs.

• Most of the previous work on position calibration (ex-
cept [5] which describes a setup based on Compaq
iPAQs and motes) are formulated assuming time syn-
chronized platforms. However in an ad-hoc distributed
computing platform consisting of heterogeneous GPCs

we need to explicitly account for errors due to lack
of temporal synchronization. We perform an analy-
sis of the localization errors due to lack of synchro-
nization among multiple platforms and propose ways
to account for the unknown emission start times and
capture start times.

• We derive the Cram̀er-Rao bound and analyze the lo-
calization accuracy with respect to the number of sen-
sors and sensor geometry.

2. Problem Formulation
Given a set ofM acoustic sensors (microphones) andS
acoustic actuators (speakers) in unknown locations, our
goal is to estimate their three dimensional coordinates. Each
of the acoustic actuators is excited using a known calibra-
tion signal such as maximum length sequences or chirp sig-
nals, and the Time of Flight (TOF) is estimated for each
of the acoustic sensors. The TOF for a given pair of micro-
phone and speaker is defined as the time taken by the acous-
tic signal to travel form the speaker to the microphone.

Let mi for i ∈ [1,M ] andsj for j ∈ [1, S] be the three
dimensional vectors representing the spatial coordinates of
theith microphone andjth speaker, respectively. We excite
one of theS speakers at a time and measure the TOF at
each of theM microphones. LetTOF actual

ij be the actual
TOF for theith microphone due to thejth source. Based
on geometry the actual TOF can be written as (assuming a
direct path),

TOF actual
ij =

‖ mi − sj ‖
c

(1)

where c the speed of sound in the acoustical medium1

and ‖‖ is the euclidean norm. The TOF which we esti-
mate based on the signal captured confirms to this model
only when all the sensors start capturing at the same instant
and we know when the calibration signal was sent from
the speaker. This is generally the case when we use multi-
channel sound cards to interface multiple microphones and
speakers2.

However in a typical distributed setup as shown in Fig-
ure 1, the master starts the audio capture and playback on
each of the GPCs one by one. As a result the capture starts
at different instants on each GPC and also the time at which
the calibration signal was emitted from each loud speaker
is not known. So the TOF which we measure from the sig-
nal captured includes both the speaker emission start time

1The speed of sound in a given acoustical medium is assumed to be
constant. In air it is given byc = (331 + 0.6T )m/s, whereT is the
temperature of the medium in Celsius degrees.

2For multichannel sound cards all the channels are nearly synchronized
and the time when the calibration signal was sent can be got by doing a
loopback from the output to the input. This loopback signal can be used as
a reference to estimate the TOF.
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Figure 2: Schematic indicating the errors due to unknown
speaker emission and microphone capture start time.

and the microphone capture start time (See Figure 2 where
ˆTOF ij is what we measure andTOFij is what we require).

The speaker emission start time is defined as the time at
which the sound is actually emitted from the speaker. This
includes the time when the play back command was issued
(with reference to some time origin), the network delay in-
volved in starting the playback on a different machine (if the
speaker is on a different GPC), the delay in setting up the
audio buffers and also the time required for the speaker di-
aphragm to start vibrating3. The microphone capture start
time is defined as the time instant at which capture is started.
This includes the time when the capture command was is-
sued, the network delay involved in starting the capture on a
different machine and the delay in transferring the captured
sample from the sound card to the buffers.

Let tsj be the emission start time for thejth source and
tmi be the capture start time for theith microphone (see
Figure 2). Incorporating these two the actual TOF now be-
comes,

ˆTOF
actual

ij =
‖ mi − sj ‖

c
+ tsj − tmi (2)

The origin can be arbitrary since ˆTOF
actual

ij depends on
the difference oftsj andtmi. We start the audio capture on
each GPC one by one. We define the microphone on which
the audio capture was started first as our first microphone.
In practice, we settm1 = 0 i.e. the time at which the first
microphone started capturing is our origin. We define all
other times with respect to this origin. We can jointly esti-
mate the unknown source emission and capture start times
along with microphone and source coordinates.

In this paper we propose to use the Time Difference Of
Arrival (TDOA) instead of the TOF. The TDOA for a given

3The emission start time is generally unknown and depends on the par-
ticular sound card, speaker and the system state such as the processor work-
load, interrupts, and the processes scheduled at the given instant.

pair of microphones and a speaker is defined as the time dif-
ference between the signal received by the two microphones
4. LetTDOAestimated

ikj be the estimated TDOA between the
ith and thekth microphone when thejth source is excited.
Let TDOAactual

ikj be the actual TDOA. It is given by

TDOAactual
ikj =

‖ mi − sj ‖ − ‖ mk − sj ‖
c

(3)

Including the source emission and capture start times, it be-
comes

ˆTDOA
actual

ikj =
‖ mi − sj ‖ − ‖ mk − sj ‖

c
+ tmk− tmi

(4)
In the case of TDOA the source emission time is the same
for both microphones and thus gets cancelled out. There-
fore, by using TDOA measurements instead of TOF we can
reduce the number of parameters to be estimated.

2.1 Maximum Likelihood (ML) Estimate

Assuming a Gaussian noise model for the TDOA observa-
tions we can derive the ML estimate as follows. LetΘ,
be a vector of lengthP × 1, representing all the unknown
non-random parameters to be estimated (microphone and
speaker coordinates and microphone capture start times).
LetΓ, be a vector of lengthN×1, representing noisy TDOA
measurements. LetT (Θ), be a vector of lengthN × 1,
representing the actual value of the observations. Then our
model for the observations isΓ = T (Θ) + η whereη is the
zero-mean additive white Gaussian noise vector of length
N × 1 where each element has the varianceσ2

j . Also let us
defineΣ to be theN × N covariance matrix of the noise
vectorN . The likelihood function ofΓ in vector form can
be written as:

p(Γ/Θ) = (2π)−
N
2 | Σ |− 1

2 exp−1
2
(Γ− T )T Σ−1(Γ− T )

(5)
The ML estimate ofΘ is the one which maximizes the log
likelihood ratio and is given by

Θ̂ML = argΘ maxF (Θ, Γ)

F (Θ, Γ) = −1
2
[Γ− T (Θ)]T Σ−1[Γ− T (Θ)] (6)

Assuming that each of the TDOAs are independently
corrupted by zero-mean additive white Gaussian noise5 of

4GivenM microphones andS speakers we can haveMS(M − 1)/2
TDOA measurements as opposed toMS TOF measurements. Of these
MS(M − 1)/2 TDOA measurements only(M − 1)S are linearly inde-
pendent.

5We estimate the TDOA or TOF using Generalized Cross Correlation
(GCC)[9]. The estimated TDOA or TOF is corrupted due to ambient noise
and room reverberation. For high SNR the delays estimated by the GCC
can be shown to be normally distributed with zero mean [9].

3



varianceσ2
ikj the ML estimate turns out to be a nonlinear

least squares problem (in this caseΣ is a diagonal matrix),
i.e.

Θ̂ML = argΘ min[F̃ML(Θ, Γ)]

F̃ML(Θ,Γ) =
S∑

j=1

M∑

i=1

M∑

k=i+1

(TDOAestimated
ikj − ˆTDOA

actual

ikj )2

σ2
ikj

(7)

Since the solution depends only on pairwise distances,
any translation, rotation and reflection of the global min-
imum found will also be a global minimum. In order to
make the solution invariant to rotation and translation we
select three arbitrary nodes to lie in a plane such that the
first is at(0, 0, 0), the second at(x1, 0, 0), and the third at
(x2, y2, 0). In two dimensions we select two nodes to lie in
a line, the first at(0, 0) and the second at(x1, 0). To elim-
inate the ambiguity due to reflection along Z-axis(3D) or
Y-axis(2D) we specify one more node to lie in the positive
Z-axis(in 3D) or positive Y-axis(in 2D). Also the reflections
along X-axis and Y-axis(for 3D) can be eliminated by as-
suming the nodes which we fix to lie on the positive side
of the respective axes i.ex1 > 0 andy2 > 0. Similar to
fixing a reference coordinate system in space we introduce
a reference time line by settingtm1 = 0.

3. Problem Solution

The ML estimate for the node coordinates of the micro-
phones and loudspeakers is implicitly defined as the min-
imum of a non-linear function. The solution is same as a
nonlinear weighted least squares problem. The Levenberg-
Marquardt method is a popular method for solving non-
linear least squares problems. For more details on non-
linear minimization refer to [10]. Least squares optimiza-
tion requires that the total number of observations is greater
than or equal to the total number of parameters to be esti-
mated. This imposes a minimum number of microphones
and speakers required for the position estimation method to
work. AssumingM=S=K, Table 1 lists the minimumK
required for the algorithm.

Table 1: Minimum value of Microphone Speaker Pairs (K)
required for different estimation procedures (D-Dimension)

K ≥ D = 2 D = 3

TDOA Position Estimation 5 6

TDOA Joint Estimation 6 7

One problem with minimization is that it can often get
stuck in a local minima. In order to avoid this we need a

good starting guess. We use the technique of metric multi-
dimensional scaling (MDS) [7] to get a closed form approx-
imation for the microphone and speaker positions, which is
used as a starting point for the minimization routine. MDS
is a popular method in psychology and denotes a set of data-
analysis techniques for the analysis of proximity data on a
set of stimuli for revealing the hidden structure underlying
the data.

Given a set ofN GPCs, letX be aN × 3 matrix where
each row represents the 3D coordinates of each GPC. Then
the N × N matrix B = XXT is called the dot product
matrix. By definition,B is a symmetric positive definite
matrix, so the rank ofB (i.e the number of positive eigen
values) is equal to the dimension of the datapoints i.e. 3 in
this case. Also based on the rank ofB we can find whether
the GPCs are on a plane (2D) or distributed in 3D. Starting
with a matrixB (possibly corrupted by noise), it is possible
to factor it to get the matrix of coordinatesX. One method
to factorB is to use singular value decomposition (SVD)
[11], i.e.,B = UΣUT whereΣ is aN ×N diagonal matrix
of singular values. The diagonal elements are arranged as
s1 ≥ s2 ≥ sr > sr+1 = ..... = sN = 0, wherer is the rank
of the matrixB. The columns ofU are the corresponding
singular vectors. We can writeX

′
= UΣ1/2. FromX

′
we

can take the first three columns to getX. If the elements
of B are exact (i.e., they are not corrupted by noise), then
all the other columns are zero. It can be shown that SVD
factorization minimizes the matrix norm‖ B −XXT ‖.

In practice we can estimate the distance matrixD where
the ijth element is the Euclidean distance between theith

and thejth GPC. We have to convert this distance matrix
D into a dot product matrixB. In order to form the dot
product matrix we need to choose some point as the origin
of our coordinate system. Any point can be selected as the
origin, but Togerson [7] recommends the centroid of all the
points. If the distances have random errors then choosing
the centroid as the origin will minimize the errors as they
tend to cancel each other. We obtain the dot product matrix
B using the cosine law which relates the distance between
two vectors to their lengths and the cosine of the angle be-
tween them. Refer to Appendix I for a detailed derivation
of how to convert the distance matrix to the scalar product
matrix.

In the case ofM microphones andS speakers we cannot
use MDS directly because we cannot measure all the pair-
wise distances. We can measure the distance between each
speaker and all the microphones. However, we cannot mea-
sure the distance between two microphones or two speakers.
In order to apply MDS, we cluster microphones and speak-
ers, which are close together. In practice, it is justified by
the fact that the microphones and the speakers on the same
GPC are close together. Assuming that all GPCs have at
least one microphone and one speaker, we can measure the
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Figure 3: Results of Multidimensional Scaling for a net-
work consisting of 10 GPCs each having one microphone
and one speaker.

distance between the speakers on one GPC and the micro-
phones on the other and vice versa. Taking the average we
get an approximate distance between the two GPCs. The
position estimate obtained using MDS has the centroid as
the origin and an arbitrary orientation. Therefore, the solu-
tion obtained using MDS is translated, rotated and reflected
to the reference coordinate system discussed earlier. Fig-
ure 3 shows an example with 10 laptops each having one
microphone and one speaker. The actual locations of the
sensors and actuators are shown as ’x’. The ’*’s are the ap-
proximate GPC locations resulting from MDS. As can be
seen the MDS result is very close to the true microphone
and speaker locations. Each GPC location got using MDS
is randomly perturbed to be used as a initial guess for the
microphones and speakers on that GPC. The ’o’ are the re-
sults from the ML estimation procedure using the perturbed
MDS locations as the initial guess. The algorithm can be
summarized as follows:

ALGORITHM

Say we haveM microphones andS speakers

• STEP 0: Form a Coordinate system by selecting three
nodes: The first one as the origin, the second to de-
fine the x-axis and the third to form the xy-plane. Also
select a fourth node to represent the positive z-axis.

• STEP 1: Compute theM × S Time Of Flight (TOF)
matrix.

• STEP 2:

– Convert the TOF matrix into an approximate dis-
tance matrix by appropriately clustering the clos-
est microphones and speakers.

– Get the approximate positions of the clustered

entities using metric Multidimensional Scaling.
– Translate, rotate and mirror the coordinates to

the coordinate system specified in STEP 0.

• STEP 3:

– Slightly perturb the coordinates from STEP 2 to
get approximate initial guess for the microphone
and speaker coordinates.

– Set an approximate initial guess for the micro-
phone capture start time

– Minimize the TDOA based error function using
the Levenberg-Marquardat method to get the fi-
nal positions of the microphones and speakers.

4. Cramér-Rao bound
The Craḿer-Rao bound gives a lower bound on the vari-
ance ofanyunbiased estimate [12]. It does not depend on
the particular estimation method used. In this section, we
derive the Craḿer-Rao bound (CRB) assuming our estima-
tor is unbiased. The variance of any unbiased estimatorΘ̂
of Θ is bounded as [12]

E
[
(Θ̂−Θ)(Θ̂−Θ)T

]
≥ F−1(Θ) (8)

whereF (Θ) is called the Fischer’s Information matrix and
is given by

F (Θ) = E
{

[∇Θ ln p(Γ/Θ)] [∇Θ ln p(Γ/Θ)]T
}

(9)

The derivative of the log-likelihood function can be
found using the generalized chain rule and is given by

∇Θ ln p(Γ/Θ) = JT Σ−1(Γ− T ) (10)

whereJ is aN × P matrix of partial derivatives ofT (Θ)
called theJacobianof T (Θ).

[J ]ij =
∂ti(Θ)

∂θj
(11)

Substituting this in Equation 9 and taking the expectation
the Fishers Information matrix is,

F = JT Σ−1J (12)

CovΘ̂ ≥ [JT Σ−1J ]−1 (13)

If we assume that all the microphone and source locations
are unknown, the Fisher Information matrixJT Σ−1J is
rank deficient and hence not invertible. This is because the
solution to the ML estimation problem as formulated is not
invariant to rotation, translation and reflection. In order to
make the Fisher Information matrix invertible we remove
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Figure 4: 95% uncertainty ellipses for a regular 2 dimensional array of (a) 9 speakers and 9 microphones, (b)and (c) 25
speakers and 25 microphones. Noise variance for all cases isσ2 = 10−9. The microphones are represented as crosses (×)
and the speakers as dots (.). The position of one microphone and thex coordinate of one speaker is assumed to be known
(shown in bold). In (c) the known nodes are close to each other and in (a) and (b) they are spread out one at each corner of
the grid. (d) schematic to explain the shape of the uncertainty ellipses.

the rows and columns corresponding to the known parame-
ters. The diagonal terms of[JT Σ−1J ]−1 represent the error
variance for estimating each of the parameters inΘ.

As the number of nodes increases in the network, the
CRB on the covariance matrix decreases. The more micro-
phones and speakers in the network, the smaller the error in
estimating their positions as can be seen from Figure 4(a)
and 4(b) which shows the95% uncertainty ellipses for dif-
ferent number of sensors and actuators. Intuitively this can
be explained as follows: Let there be a total ofn nodes
in the network whose coordinates are unknown. Then we
have to estimate a total of3n parameters. The total number
of TOF measurements available is howevern2/4 (assum-
ing that there aren/2 microphones andn/2 speakers). So
if the number of unknown parameters increases asO(n), the
number of available measurements increases asO(n2). So
the linear increase in the number of unknown parameters,
is compensated by the quadratic increase in the available
measurements.

In our formulation we assumed that we know the posi-
tions of a certain number of nodes, i.e we fix three of the
nodes to lie in the x-y plane. The CRB depends on which
of the sensor nodes are assumed to have known positions.
In Figure 4(c) the two known nodes are at one corner of
the grid. It can be seen that the uncertainty ellipse becomes
wider as you move away form the known nodes. The un-
certainty in the direction tangential to the line joining the
sensor node and the center of the known nodes is much
larger than along the line. The reason for this can be ex-
plained for a simple case where we know the locations of
two speakers (see Figure 4(d). A circular band centered at
each speaker represents the uncertainty in the distance esti-
mation. The intersection of the two bands corresponding to
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Figure 5: The total variance in the microphone coordinates
with increasing noise standard deviationσ. The sensor net-
work consisted of 16 microphones and 16 speakers. The
Craḿer Rao bound is also plotted.

the two speakers gives the uncertainty region for the posi-
tion of the sensor. For nodes far away from the two speakers
the region widens because of the decrease in the curvature.
It is beneficial if the known nodes are on the edges of the
network and as faraway from each other as possible. In Fig-
ure 4(b) the known sensor nodes are on the edges of the
network. As can be seen there is a substantial reduction in
the dimensions of the uncertainty ellipses. In order to min-
imize the error due to Gaussian noise we should choose the
three reference nodes (in 3D) as far as possible.

We also performed a series of simulations in order to
compare the experimental performance with the theoretical
bound. 16 microphones and 16 speakers were randomly se-
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Figure 6: (a) The loopback reference chirp signal (b) the
chirp signal received by one of the microphones

lected to lie in a room of dimensions4.0m× 4.0m× 4.0m.
Based on the geometry of the setup and a known micro-
phone capture start time, the actual TDOA between each
speaker and a pair microphones was calculated and then
corrupted with zero mean additive white Gaussian noise of
varianceσ2 in order to model the room ambient noise and
reverberation. The Levenberg-Marqurdat method was used
as the minimization routine. For each noise varianceσ2, the
results were averaged over 2000 trials. Figure 5(a) shows
the total variance of all the unknown microphone coordi-
nates plotted against the noise standard deviationσ. The
Craḿer Rao bound for TDOA based Joint Estimation pro-
cedure is also shown. The estimator was unbiased for low
noise variances.

5. Experimental Details and Results
We implemented a prototype system consisting of 6 micro-
phones and 6 speakers. The real-time setup has been tested
in a synchronized as well as a distributed setup using lap-
tops. The ground truth was measured manually to validate
the results from the position calibration methods. In order to
measure the TOF accurately the calibration signal has to be
appropriately selected and the parameters properly tuned.
Chirp signals and ML sequences are the two most popular
sequences used. A linear chirp signal is a short pulse in
which the frequency of the signal varies linearly between
two preset frequencies. In our system, we used the chirp
signal of 512 samples at 44.1kHz (11.61 ms) as our cali-
bration signal. The instantaneous frequency varied linearly
from 5 kHz to 8 kHz. The initial and the final frequency
was chosen to lie in the common pass band of the micro-
phone and the speaker frequency response. The chirp sig-
nal send by the speaker is convolved with the room impulse
response resulting in the spreading of the chirp signal. Fig-
ure 6(a) shows the chirp signal as sent out by the soundcard
to the speaker. This signal is recorded by looping the out-
put channels directly back to an input channel. Figure 6(b)
shows the corresponding chirp signal received by the micro-
phone. The chirp signal is delayed by a certain amount due
to the propagation path. The distortion and the spreadout is
due to the speaker, microphone and room response. One of
the problems in accurately estimating the TOF is due to the

multipath propagation caused by room reflections. This can
be seen in the received chirp signal where the initial part
corresponds to the direct signal and the rest are the room
reflections. The time-delay may be found by locating the
peak in the cross-correlation of the signals received over
the two microphones. However this method is not robust to
noise and reverberations. Knapp and Carter [9] developed
the Generalized Cross Correlation (GCC) method. In this
method, the delay estimate is the time lag which maximizes
the cross-correlation between filtered versions of the re-
ceived signals [9]. The cross-correlation of the filtered ver-
sions of the signals is called as the Generalized Cross Corre-
lation (GCC) function. The GCC functionRx1x2(τ) is com-
puted as [9]Rx1x2(τ) =

∫∞
−∞W (ω)X1(ω)X∗

2 (ω)ejωτdω
whereX1(ω), X2(ω) are the Fourier transforms of the mi-
crophone signalsx1(t), x2(t), respectively andW (ω) is the
weighting function. The two most commonly using weight-
ing functions are the ML and the PHAT weighting. The
ML weighting function performs well for low room rever-
beration. As the room reverberation increases this method
shows severe performance degradations. Since the spectral
characteristics of the received signal are modified by the
multipath propagation in a room, the GCC function is made
more robust by deemphasizing the frequency dependent
weightings. The Phase Transform is one extreme where the
magnitude spectrum is flattened. The PHAT weighting is
given byWPHAT (ω) = 1/|X1(ω)X∗

2 (ω)|. By flattening
out the magnitude spectrum the resulting peak in the GCC
function corresponds to the dominant delay. However, the
disadvantage of the PHAT weighting is that it places equal
emphasizes on both the low and high SNR regions, and
hence it works well only when the noise level is low. In
practice, the sensors’ and actuators’ three dimensional lo-
cations could be estimated with an average bias of 0.08 cm
and average standard deviation of 3 cm (results averaged
over 100 trials). Our algorithm assumed that the sampling
rate is known for each laptop and the clock does not drift.
However in practice the sampling rate is not as specified and
the clock can also drift. Hence our real time setup integrates
the distributed synchronization scheme using ML sequence
as proposed in [1] to resample and align the different audio
streams. As regards to CPU utilization the TOA estima-
tion consumes negligible resources. If we use a good initial
guess via the Multidimensional Scaling technique then the
minimization routine converges within 8 to 10 iterations.

6. Summary and Conclusions

In this paper we described the problem of localization of
sound sensors and actuators in a network of distributed
general-purpose computing platforms. Our approach allows
putting laptops, PDAs and tablets into a common 3D coor-
dinate system. Together with time synchronization this cre-
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ates arrays of audio sensors and actuators and enables a rich
set of new multi stream A/V applications on platforms that
are available virtually anywhere. We also derived important
bounds on performance of spatial localization algorithms,
proposed optimization techniques to implement them and
extensively validated the algorithms on simulated and real
data.

Appendix I

Converting the Distance matrix to a dot product matrix
Let us say we choose thekth GPC as the origin of our coor-
dinate system. Letdij andbij be the distance and dotprod-
uct respectively, between theith and thejth GPC. Referring
to Figure 7, using the cosine law,

d2
ij = d2

ki + d2
kj − 2dkidkjcos(α) (14)

The dot productbij is defined as

bij = dkidkjcos(α) (15)

Combining the above two equations,

bij =
1
2
(d2

ki + d2
kj − d2

ij) (16)

However this is with respect to thekth GPC as the origin
of the coordinate system. We need to get the dot product
matrix with the centroid as the origin. LetB be the dot
product matrix with respect to thekth GPC as the origin
and letB∗ be the dot product matrix with the centroid of the
data points as the origin. LetX∗ be to matrix of coordinates
with the origin shifted to the centroid.

X∗ = X − 1
N

1N×NX (17)

where1N×N is anN ×N matrix who’s all elements are 1.
So nowB∗ can be written in terms ofB as follows:

B∗ = X∗X∗T

= B − 1
N

B1N×N − 1
N

1N×NB +
1

N2
1N×NB1N×N

Hence theijth element inB∗ is given by

b∗ij = bij− 1
N

N∑

l=1

bil− 1
N

N∑
m=1

bmj+
1

N2

N∑
o=1

N∑
p=1

bop (18)

Substituting Equation 16 we get

b∗ij = −1
2

[
d2

ij −
1
N

N∑

l=1

d2
il −

1
N

N∑
m=1

d2
mj +

1
N2

N∑
o=1

N∑
p=1

d2
op

]

This operation is also known as double centering i.e. sub-
tract the row and the column means from its elements and
add the grand mean and then multiply by− 1

2 .

k

i

j

ijd

kjd

kid

α

Figure 7: Law of cosines
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