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Abstract

Most state-of-the-art nonparametric machine learning
algorithms have a computational complexity of either
O(N2) or O(N3), where N is the number of training
examples. This has seriously restricted the use of mas-
sive data sets. The bottleneck computational primitive
at the heart of various algorithms is the multiplication of
a structured matrix with a vector, which we refer to as
matrix-vector product (MVP) primitive. The goal of my
thesis is to speedup up these MVP primitives by fast ap-
proximate algorithms that scale as O(N) and also pro-
vide high accuracy guarantees. I use ideas from com-
putational physics, scientific computing, and computa-
tional geometry to design these algorithms. The pro-
posed algorithms have been applied to various machine
learning tasks.

Curse of non-parametric methods
During the past few decades is has become relatively easy to
gather huge amount of data, apprehensively called-massive
data sets. Learning is a principled method for distilling
predictive models from the data. The parametric approach
to learning assumes a functional form for the model to be
learnt, and then estimates the unknown parameters. Once
the model has been trained the training examples can be dis-
carded. However, unless the form of the function is known
a priori, assuming a certain form very often leads to erro-
neous inference. The nonparametric methods–also known
as memory based methods–do not make any assumptions on
the form of the underlying function. A price to be paid is
that all the available data has to be retained while making
the inference. Most of the current stat-of-the-art nonpara-
metric machine learning algorithms have the computational
complexity of either O(N2) (for prediction) or O(N3) (for
training). This has seriously restricted the use of massive
data sets. At the heart of various algorithms is the multipli-
cation of a structured matrix with a vector, which we refer
to as matrix-vector product (MVP) primitive. This MVP
is the bottleneck contributing to the O(N2) quadratic com-
plexity. In my thesis I use ideas and techniques from compu-
tational physics (fast multipole methods), scientific comput-
ing (Krylov subspace methods), and computational geome-
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try (kd-trees,clustering) to speed up approximate calculation
of these primitives to O(N) and also provide high accuracy
guarantees.

In most kernel based machine learning algorithms, Gaus-
sian processes, and non-parametric statistics a key computa-
tionally intensive task is to compute a linear combination of
local kernel functions centered on the training data, i.e.,

f(x) =
N∑

i=1

qik(x, xi), (1)

where {xi ∈ Rd, i = 1, . . . , N} are the N training data
points, {qi ∈ R, i = 1, . . . , N} are the weights, k : Rd ×
Rd → R is the local kernel function, and x ∈ Rd is the test
point at which f(.) is to be computed. For kernel machines
(e.g. regularized least squares, support vector machines, ker-
nel regression) f is the regression/classification function. In
case of Gaussian process regression f is the mean predic-
tion. For non-parametric density estimation it is the kernel
density estimate.. The computational complexity to evalu-
ate (1) at a given test point is O(N). Training these models
scales as O(N3) since most involve solving the linear sys-
tem of equation (K + λI)ξ = y, where K is the N × N
Gram matrix where [K]ij = k(xi, xj). Recently, such non-
parametric problems have been collectively referred to as
N -body problems in learning (Gray & Moore 2001), in
analogy with the gravitational N -body potential problems
occurring in computational physics (Greengard 1994).

Fast approximate matrix-vector product
In general we need to evaluate (1) at M points {yj ∈
Rd, j = 1, . . . ,M} leading to the quadratic O(MN) cost.
The sum can be thought of as a matrix-vector product f =
Kq, where K is a M × N matrix the entries of which
are of the form [K]ij = k(yj , xi) and q = [q1, . . . , qN ]T
is a N × 1 column vector. We develop fast ε-exact al-
gorithms that compute the sum approximately in linear
O(M + N) time. The algorithm is ε-exact, i.e., for any
given ε > 0, f̂ is an ε − exact approximation to f if
maxyj

[
|f̂(yj)− f(yj)|/Q

]
≤ ε where Q =

∑N
i=1 |qi|.

The constant in O(M + N), depends on the desired accu-
racy ε, which however can be arbitrary. The fast algorithm
is based on series expansion of the kernel and retaining only



Core MVP primitive and applications
Gaussian
G(yj) =

∑N
i=1 qie

−‖yj−xi‖2/h2

kernel density estimation, Gaussian process regression
implicit surface fitting
Hermite × Gaussian
G(yj) =

∑N
i=1 qiHr

(
yj−xi

h1

)
e−(yj−xi)

2/h2
2

optimal bandwidth estimation, projection pursuit
error function
G(yj) =

∑N
i=1 qi erfc(yj − xi)

ranking, collaborative filtering

Table 1: The fast summation algorithms designed and tasks to
which they were applied.

the first few terms contributing to the desired accuracy. The
algorithms are in the spirit of fast multipole methods used in
computational physics (Greengard 1994).

Current thesis contributions
The thesis consists of two core contributions–(1) design
of fast summation algorithms and (2) applying these fast
primitives to certain large scale machine learning problems.
Table 1 summarizes the current contributions. Below we
present a brief summary of the current progress.

• Fast computation of sums of Gaussians The most
commonly used kernel function is the Gaussian kernel
e−‖x−y‖2/h2

, where h is called the bandwidth of the
kernel. The fast Gauss transform proposed by (Green-
gard & Strain 1991) is a ε-exact approximation algo-
rithm that reduces the computational complexity of the
evaluation of the sum of N Gaussians at M points in
d dimensions from O(MN) to O(M + N). However,
the constant factor in O(M + N) grows exponentially
with increasing dimensionality d, which makes the algo-
rithm impractical for dimensions greater than three. We
present a new algorithm where the constant factor is re-
duced to asymptotically polynomial order. As an ex-
ample we show how the proposed method can be used
for very fast multivariate kernel density estimation and
fast Gaussian process regression. (Raykar et al. 2005;
Raykar & Duraiswami 2007b)

• Fast optimal bandwidth estimation We propose an ap-
proximation algorithm for the univariate Gaussian kernel
based density derivative estimation that reduces the com-
putational complexity from O(MN) to linear O(M +
N). We apply the density derivative evaluation proce-
dure to estimate the optimal bandwidth for kernel den-
sity estimation, a process that is often intractable for large
data sets. We also demonstrate that the proposed pro-
cedure can be extremely useful for speeding up projec-
tion pursuit techniques. (Raykar & Duraiswami 2005;
2006)

• Large scale preference learning Relying on an fast MVP
for the error-function, we reduce the computational com-
plexity of each iteration of a conjugate gradient algo-
rithm for learning ranking functions from O(m2), to

O(m). Experiments indicate that the proposed algo-
rithm is as accurate as the best available methods in
terms of ranking accuracy is several orders of magnitude
faster. The fast ranking procedure was applied to a col-
laborative filtering task. (Raykar & Duraiswami 2007a;
Raykar, Duraiswami, & Krishnapuram 2007)

Future work
The following problems are among those that I wish to for-
mulate well and solve in the course of this thesis.
• Core algorithms Development of these kind of fast ap-

proximate algorithms for more kernels–e.g., the Epanech-
nikov kernel for density estimation and the Matèrn class
of kernels used in Gaussian process regression.

• Convergence issues In many applications these fast MVP
primitives are embedded in a optimization routine–e.g., in
ranking problem we embedded it in a conjugate-gradient
procedure. A theoretical issue which we have barely
touched upon concerns the convergence of these opti-
mization routines when using approximate MVP primi-
tives.

• Applications I would like to further explore different ap-
plications where these fast primitives could be useful.

A more ambitious task would be to explore if there are any
deeper connections between structure in the data, compu-
tation, and inference. I am also planning on releasing the
source code for all the algorithms under the LGPL.
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