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Huge data sets containing millions of training examples with a large number of attributes (tall
fat data) are relatively easy to gather. However one of the bottlenecks for successful inference of
useful information from the data is the computational complexity of machine learning algorithms.
Most state-of-the-art nonparametric machine learning algorithms have a computational complexity
of either O(N2) or O(N3), where N is the number of training examples. This has seriously
restricted the use of massive data sets. The bottleneck computational primitive at the heart of
various algorithms is the multiplication of a structured matrix with a vector, which we refer to
as matrix-vector product (MVP) primitive. The goal of my thesis is to speedup up these MVP
primitives by fast approximate algorithms that scale as O(N) and also provide high accuracy
guarantees. I use ideas from computational physics, scientific computing, and computational
geometry to design these algorithms. Currently the proposed algorithms have been applied in
kernel density estimation, optimal bandwidth estimation, projection pursuit, Gaussian process
regression, implicit surface fitting, and ranking.
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1. COMPUTATIONAL CURSE OF NON-PARAMETRIC METHODS

During the past few decades is has become relatively easy to gather huge amount
of data, apprehensively called-massive data sets. A few such examples include
genome sequencing, astronomical databases, internet databases, medical databases,
financial records, weather reports, audio and video data. Learning is a principled
method for distilling predictive and therefore scientific theories from the data.

The parametric approach to learning assumes a functional form for the model to
be learnt, and then estimates the unknown parameters. Once the model has been
trained the training examples can be discarded. However, unless the form of the
function is known a priori, assuming a certain form very often leads to erroneous
inference. The nonparametric methods do not make any assumptions on the form
of the underlying function. A price to be paid is that all the available data has
to be retained while making the inference. Nonparametric does not mean the lack
of parameters, but rather that the underlying model of a learning problem cannot
be indexed with a finite number of parameters. The number of parameters usually
grows with the number of training data. These are also known as memory based
methods–the model is the entire training set.

One of the major bottlenecks for successful inference using nonparametric meth-
ods is their computational complexity. Most of the current stat-of-the-art nonpara-
metric machine learning algorithms have the computational complexity of either
O(N2) (for prediction) or O(N3) (for training). This has seriously restricted the
use of massive data sets. For example, a simple kernel density estimation with 1
million points would take around 2 days.

The art of getting good enough solutions as fast as possible.
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2. BRINGING COMPUTATIONAL TRACTABILITY TO MASSIVE DATASETS

I see broadly three different approaches to cope with this quadratic scaling.

(1) Subset of data These methods are based on using a small representative
subset of the training examples. Different schemes specify different strategies
to effectively choose the subset. These methods can be considered to provide
exact inference in an approximate model.

(2) Online learning This strategy uses sequential update methods which can find
good solutions in single passes through the data. This cuts down the need for
running very large scale batch optimizers.

(3) Fast matrix-vector product primitives At the heart of various algorithms
is the multiplication of a structured matrix with a vector, which we refer
to as matrix-vector product (MVP) primitive. This MVP is the bottleneck
contributing to the O(N2) quadratic complexity. In my thesis I use ideas
and techniques from computational physics (fast multipole methods), scien-
tific computing (Krylov subspace methods), and computational geometry (kd-
trees,clustering) to speed up approximate calculation of these primitives to
O(N) and also provide high accuracy guarantees. In analogy these methods
provide approximate inference in an exact model.

3. WEIGHTED SUPERPOSITION OF KERNELS

In most kernel based machine learning algorithms, Gaussian processes, and non-
parametric statistics. a key computationally intensive task is to compute a linear
combination of local kernel functions centered on the training data, i.e.,

f(x) =
N∑

i=1

qik(x, xi), (1)

where {xi ∈ Rd, i = 1, . . . , N} are the N training data points, {qi ∈ R, i = 1, . . . , N}
are the weights, k : Rd×Rd → R is the local kernel function, and x ∈ Rd is the test
point at which f(.) is to be computed 1. The computational complexity to evaluate
(1) at a given test point is O(N). Training these models scales as O(N3) since most
involve solving the linear system of equation (K+λI)ξ = y, where K is the N ×N
Gram matrix where [K]ij = k(xi, xj). Also many kernel methods in unsupervised
learning like kernel principal component analysis and Laplacian eigenmaps involve
computing the eigen values of the Gram matrix. Solutions to such problems can be
obtained using iterative methods, where the dominant computation is evaluation
of f(x). Recently, such nonparametric problems have been collectively referred
to as N -body problems in learning [Gray and Moore 2001], in analogy with the
coulombic, magnetostatic, and gravitational N -body potential problems occurring
in computational physics [Greengard 1994]. These problems require the calculation
of all pairwise interactions in a large ensemble of particles.

1For kernel machines (e.g. regularized least squares, support vector machines, kernel regression)
f is the regression/classification function. In case of Gaussian process regression f is the mean
prediction. For non-parametric density estimation it is the kernel density estimate.
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4. FAST APPROXIMATE MATRIX-VECTOR PRODUCT

In general we need to evaluate (1) at M points {yj ∈ Rd, j = 1, . . . ,M}, i.e.,

f(yj) =
N∑

i=1

qik(yj , xi) j = 1, . . . ,M, (2)

leading to the quadratic O(MN) cost. The sum can be thought of as a matrix-
vector product f = Kq, where K is a M × N matrix the entries of which are of
the form [K]ij = k(yj , xi) and q = [q1, . . . , qN ]T is a N × 1 column vector. We
develop fast ε-exact algorithms that compute the sum 2 approximately in linear
O(M + N) time. The algorithm is ε-exact, i.e., for any given ε > 0, f̂ is an
ε − exact approximation to f if the maximum absolute error relative to the total
weight Q =

∑N
i=1 |qi| is upper bounded by ε, i.e., maxyj

[
|f̂(yj)− f(yj)|/Q

]
≤ ε.

The constant in O(M + N), depends on the desired accuracy ε, which however can
be arbitrary. In fact for machine precision accuracy there is no difference between
the direct and the fast methods.

The fast algorithm is based on series expansion of the kernel and retaining only
the first few terms contributing to the desired accuracy. Philosophically, the reason
we will be able to achieve O(M + N) algorithms to compute the matrix-vector
multiplication is that the matrix K is a structured matrix, since all the entries of
the matrix are determined by the set of M + N points {xi}N

i=1 and {yj}M
i=1. The

algorithms are in the spirit of fast multipole methods used in computational physics.
The fast multipole method (FMM) has been called one of the ten most significant
algorithms [Dongarra and Sullivan 2000] in scientific computation discovered in
the 20th century. Originally this method was developed for the fast summation of
the potential fields generated by a large number of sources (charges), such as those
arising in gravitational or electrostatic potential problems [Greengard and Rokhlin
1987]. Since then FMM has also found application in many other problems and
can be viewed as a fast matrix-vector product algorithm for particular structured
matrices.

5. CURRENT THESIS CONTRIBUTIONS

The thesis consists of two core contributions–(1) design of fast summation algo-
rithms and (2) applying these fast primitives to certain large scale machine learning
problems. Table I summarizes the contributions of this thesis. The source code for
all the fast summation algorithms are released under the Lesser GPL. Below we
present a brief summary of the key contributions.

5.1 Fast computation of sums of Gaussians

The most commonly used kernel function is the Gaussian kernel e−‖x−y‖2/h2
, where

h is called the bandwidth of the kernel. The computational cost of the direct evalu-
ation of sums of multivariate Gaussian kernels scales as the product of the number
of kernel functions and the evaluation points. The fast Gauss transform proposed
by [Greengard and Strain 1991] is a ε-exact approximation algorithm that reduces
the computational complexity of the evaluation of the sum of N Gaussians at M
points in d dimensions from O(MN) to O(M + N). However, the constant factor
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Kernel Core MVP primitive Applications

Gaussian G(yj) =
∑N

i=1 qie
−‖yj−xi‖2/h2

kernel density estimation
Gaussian process regression
implicit surface fitting

Hermite× G(yj) =
∑N

i=1 qiHr

(
yj−xi

h1

)
e−(yj−xi)

2/h2
2 optimal bandwidth estimation

Gaussian projection pursuit

error G(yj) =
∑N

i=1 qi erfc(yj − xi) ranking
function collaborative filtering

Table I. Summary of the thesis. The fast summation algorithms designed and tasks to which they
were applied. Computation of each of these primitives at M points requires O(MN) time. The
fast algorithms we design computes the same to a specified ε accuracy in O(M + N) time.

in O(M + N) grows exponentially with increasing dimensionality d, which makes
the algorithm impractical for dimensions greater than three. We present a new
algorithm where the constant factor is reduced to asymptotically polynomial or-
der. The reduction is based on a new multivariate Taylor series expansion scheme
combined with the efficient space subdivision using the k-center algorithm. Our
experimental results indicate that the proposed algorithm gives good speedups in
dimensions as high as tens for moderate bandwidths and as high as hundreds for
large and small bandwidths. As an example we show how the proposed method
can be used for very fast ε-exact multivariate kernel density estimation and fast
Gaussian process regression. [Raykar et al. 2005; Raykar and Duraiswami 2007c;
Raykar et al. 2007; Raykar and Duraiswami 2005a]

5.2 Fast optimal bandwidth estimation

Efficient use of kernel density estimation (KDE) requires the optimal selection of
the smoothing parameter called the bandwidth h of the kernel. Small h leads to an
estimator with small bias and large variance. Large h leads to a small variance at
the expense of increase in bias. Most state-of-the-art automatic bandwidth selec-
tion procedures require estimation of quantities involving the density derivatives.
The computational complexity of evaluating the density derivative at M evalua-
tion points given N sample points from the density scales as O(MN). We propose
a computationally efficient ε − exact approximation algorithm for the univariate
Gaussian kernel based density derivative estimation that reduces the computational
complexity from O(MN) to linear O(M +N). We apply the density derivative eval-
uation procedure to estimate the optimal bandwidth for kernel density estimation,
a process that is often intractable for large data sets. We demonstrate the speedup
achieved on the bandwidth selection using the solve-the-equation plug-in method.
We also demonstrate that the proposed procedure can be extremely useful for speed-
ing up exploratory projection pursuit techniques. [Raykar and Duraiswami 2005b;
Raykar and Duraiswami 2006]
Research summary
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5.3 Large scale preference learning

We consider the problem of learning the ranking function that maximizes a gen-
eralization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying
on an ε-exact approximation for the error-function, we reduce the computational
complexity of each iteration of a conjugate gradient algorithm for learning ranking
functions from O(m2), to O(m). Experiments on public benchmarks for ordinal
regression and collaborative filtering indicate that the proposed algorithm is as
accurate as the best available methods in terms of ranking accuracy, when the al-
gorithms are trained on the same data. However, since it is several orders of magni-
tude faster than the current state-of-the-art approaches, it is able to leverage much
larger training datasets containing tens to hundreds of thousands of samples (com-
mon in real-life applications such as book/movie recommender systems). [Raykar
and Duraiswami 2007b; Raykar et al. 2007a; Raykar et al. 2007b]

5.4 Fast large scale Gaussian process regression

Gaussian processes allow the treatment of non-linear non-parametric regression
problems in a Bayesian framework. However the computational cost of training
such a model with N examples scales as O(N3). Iterative methods for the solution
of linear systems can bring this cost down to O(N2), which is still prohibitive for
large data sets. We consider the use of ε-exact matrix-vector product algorithms
to reduce the computational complexity to O(N). Using the theory of inexact
Krylov subspace methods we show how to choose ε to guarantee the convergence
of the iterative methods. We demonstrate the speedup achieved on large data sets.
For prediction of the mean the computational complexity is reduced from O(N)
to O(1). Our experiments indicated that for low dimensional data (d ≤ 8) the
proposed method gives substantial speedups. [Raykar and Duraiswami 2007a]

6. FUTURE WORK

The following problems are among those that I wish to formulate well and solve in
the course of this thesis, and in the future.

—Core algorithms Development of these kind of fast approximate algorithms for
more kernels–e.g., the Epanechnikov kernel for kernel density estimation and the
Matèrn class of kernels used in Gaussian process regression.

—Convergence issues In many applications these fast MVP primitives are em-
bedded in a optimization routine–e.g., in ranking problem we embedded it in a
conjugate-gradient procedure. A theoretical issue which we have barely touched
upon concerns the convergence of these optimization routines when using ap-
proximate MVP primitives.

—Applications A few applications which I would like to further explore include–
hyperparameter selection for Gaussian processes, implicit surface fitting via Gaus-
sian processes, Nadarya-Watson kernel regression, and inexact eigenvalue meth-
ods for unsupervised learning.

7. OPEN PROBLEMS

Following are a few open problems which may require much time and thought.
Research summary



6 · Vikas Chandrakant Raykar

—The curse of dimensionality. For the Gaussian kernel our experimental
results indicate that it easy to get good speedups at very large or very small
bandwidths. For moderate bandwidths and moderate dimensions (d ≤ 10) our
proposed algorithm is capable of giving good speedups. However getting good
speedups for moderate bandwidths and large dimensions remains an important
open research problem.

—The paradox of the curse of dimensionality. For most machine learning
tasks even though the data is very high dimensional, the true intrinsic dimen-
sionality is typically very small. I intend to explore if dimensionality reduction
approaches like PCA and manifold learning methods can be directly incorporated
into our fast algorithms.

—Structure, Inference, and Computation A more ambitious task would be
to explore if there are any deeper connections between structure in the data,
computation, and inference.
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