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Large number of training examples with small number of attributes
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Fat Data
Small number of training examples with large number of attributes
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Currently we can handle only tall and slightly fat data.
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Learning with massive data sets

Huge data sets containing

millions of training examples (tall data)

with large number of attributes (fat data)

are relatively easy to gather.
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Learning with massive data sets

Huge data sets containing

millions of training examples (tall data)

with large number of attributes (fat data)

are relatively easy to gather.

Example

Genome sequencing, internet databases, experimental data from particle
physics, medical databases, financial records, weather reports, audio and
video data.

Learning is a principled method for inferring predictive models from the
data

Poggio, T. and Smale, S. 2003. The mathematics of learning: Dealing with data. Notices of the American Mathematical

Society 50, 5, 537–544..
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Two approaches to learning
Parametric approach

Assumes a known parametric form for the model to be learnt.

Training ⇔ Estimate the unknown parameters.
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Two approaches to learning
Parametric approach

Assumes a known parametric form for the model to be learnt.

Training ⇔ Estimate the unknown parameters.

Once the model has been trained, for future prediction the training
examples can be discarded.

The essence of the training examples have been captured in the
model parameters.

Leads to erroneous inference unless the model is known a priori.
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Two approaches to learning
Non-parametric approach

Do not make any assumptions on the form of the underlying function.

Letting the data speak for themselves.

Perform better than parametric methods.
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Two approaches to learning
Non-parametric approach

Do not make any assumptions on the form of the underlying function.

Letting the data speak for themselves.

Perform better than parametric methods.

However all the available data has to be retained while making the
inference.

The computational consequence of this can be quite significant.
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Computational curse of non-parametric methods
Let N be the number of training examples
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Computational curse of non-parametric methods
Let N be the number of training examples

Most state-of-the-art non-parametric methods in machine leaning and
computational statistics scale as either O(N3) or O(N2).

This has seriously restricted the use of massive data sets.

Current implementations can handle only a few thousands of training
examples.

Both the data set size and processor speed are growing according to
Moore’s law.
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Computational curse of non-parametric methods
Let N be the number of training examples

Most state-of-the-art non-parametric methods in machine leaning and
computational statistics scale as either O(N3) or O(N2).

This has seriously restricted the use of massive data sets.

Current implementations can handle only a few thousands of training
examples.

Both the data set size and processor speed are growing according to
Moore’s law.

Example

A simple kernel density estimation with 1 million points would take around
2 days.
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Goals of the proposed thesis

1 Identify the key computational primitives contributing to the O(N3)
or O(N2) complexity.

2 Speedup up these primitives by approximate algorithms that scale as
O(N) and provide high accuracy guarantees.
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Goals of the proposed thesis

1 Identify the key computational primitives contributing to the O(N3)
or O(N2) complexity.

2 Speedup up these primitives by approximate algorithms that scale as
O(N) and provide high accuracy guarantees.

3 Enable the use of massive datasets for different learning algorithms.
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Tools

We use ideas and techniques from

Computational physics 7→ fast multipole methods.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 11 / 90



Tools

We use ideas and techniques from

Computational physics 7→ fast multipole methods.

Scientific computing 7→ iterative methods, pre-conditioners.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 11 / 90



Tools

We use ideas and techniques from

Computational physics 7→ fast multipole methods.

Scientific computing 7→ iterative methods, pre-conditioners.

Computational geometry 7→ clustering, kd-trees.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 11 / 90



Tools

We use ideas and techniques from

Computational physics 7→ fast multipole methods.

Scientific computing 7→ iterative methods, pre-conditioners.

Computational geometry 7→ clustering, kd-trees.

and apply it to

Machine learning 7→ kernel machines, Gaussian processes.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 11 / 90



Tools

We use ideas and techniques from

Computational physics 7→ fast multipole methods.

Scientific computing 7→ iterative methods, pre-conditioners.

Computational geometry 7→ clustering, kd-trees.

and apply it to

Machine learning 7→ kernel machines, Gaussian processes.

Computational statistics 7→ kernel density estimation.
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Top ten algorithms of the century 1

1 Monte Carlo method.

2 Simplex method of linear programming.

3 Krylov Subspace Iteration method.

4 Householder matrix decomposition.

5 Fortran compiler.

6 QR algorithm for eigenvalue calculation.

7 Quicksort algorithm.

8 Fast Fourier Transform.

9 Integer Relation Detection Algorithm.

10 Fast Multipole methods.

1
Dongarra, J. and Sullivan, F. 2000. The top ten algorithms of the century. Computing in Science and Engineering.
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Key Computational tasks

Training Prediction Choosing
(N examples) (at N points) parameters

KDE O(N2) O(N2)

Kernel regression O(N2) O(N2) O(N2)

Gaussian processes O(N3) O(N2) O(N3)

SVM O(N3
sv ) O(NsvN)

Laplacian eigenmaps O(N3)

Kernel PCA O(N3)
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Key Computational tasks

Training Prediction Choosing
(N examples) (at N points) parameters

KDE O(N2) O(N2)

Kernel regression O(N2) O(N2) O(N2)

Gaussian processes O(N3) O(N2) O(N3)

SVM O(N3
sv ) O(NsvN)

Laplacian eigenmaps O(N3)

Kernel PCA O(N3)

Identify the key computational primitives contributing to the O(N2) or
O(N3) complexity.
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Canonical learning tasks

Training data

{xi ∈ Rd , yi ∈ M}N
i=1
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Canonical learning tasks

Training data

{xi ∈ Rd , yi ∈ M}N
i=1

Learning can be viewed as function estimation f : Rd → M

Regression M = R

Binary Classification M = {−1, +1}.
Density estimation

Three tasks

Training → Learning the function f from examples.

Prediction → Given a new x predict y ..

Model Selection → Choosing the hyperparameters.
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Kernel machines

Minimize the regularized empirical risk functional Rreg [f ].

min
f ∈H

Rreg [f ] =
1

N

N∑

i=1

L[f (xi ), yi ] + λ‖f ‖2
H, (1)

where H denotes a reproducing kernel Hilbert space (RKHS) 2.

2
Wabha, G. 1990. Spline Models for Observational data. SIAM.
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Kernel machines

Minimize the regularized empirical risk functional Rreg [f ].

min
f ∈H

Rreg [f ] =
1

N

N∑

i=1

L[f (xi ), yi ] + λ‖f ‖2
H, (1)

where H denotes a reproducing kernel Hilbert space (RKHS) 2.

Theorem (Representer Theorem)

If k : X × X 7→ Y is the kernel of the RKHS H then the minimizer of

Equation 1 is of the form

f (x) =

N∑

i=1

qik(x , xi ). (2)

2
Wabha, G. 1990. Spline Models for Observational data. SIAM.
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Examples

f (x) =
N∑

i=1

qik(x , xi ).

3
Poggio, T. and Smale, S. 2003. The mathematics of learning: Dealing with data. Notices of the American Mathematical

Society 50, 5, 537-544.
4
Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support Vector Machines (and other kernel-based learning

methods). Cambridge University Press.
5
Wand, M. P. and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall, London.

6
Rasmussen, C. E. and Williams, C. K. I. 2006. Gaussian Processes for Machine Learning. The MIT Press.
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Examples

f (x) =
N∑

i=1

qik(x , xi ).

Kernel machines (e.g. RLS 3, SVM 4) f is the
regression/classification function. [Representer theorem]

Density estimation f is the kernel density estimate 5.

Gaussian processes 6 f is the mean prediction.

3
Poggio, T. and Smale, S. 2003. The mathematics of learning: Dealing with data. Notices of the American Mathematical

Society 50, 5, 537-544.
4
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methods). Cambridge University Press.
5
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Prediction
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Prediction

Given N training examples {xi}N
i=1, the key computational task is to

compute a weighted linear combination of local kernel functions centered
on the training data, i.e.,

f (x) =
N∑

i=1

qik(x , xi ).
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Prediction

Given N training examples {xi}N
i=1, the key computational task is to

compute a weighted linear combination of local kernel functions centered
on the training data, i.e.,

f (x) =
N∑

i=1

qik(x , xi ).

The computation complexity to predict at M points given N training
examples scales as O(MN).
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Training

Training these models scales as O(N3) since most involve solving the
linear system of equation

(K + λI)ξ = y.
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Training

Training these models scales as O(N3) since most involve solving the
linear system of equation

(K + λI)ξ = y.

◮ K is the dense N × N Gram matrix where [K]ij = k(xi , xj).
◮ I is the identity matrix.
◮ λ is some regularization parameter or noise variance.

Direct inversion requires O(N3) operations and O(N2) storage.
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Unsupervised learning

Methods like
◮ kernel principal component analysis 7

◮ spectral clustering 8

◮ nonlinear dimensionality reduction (Laplacian eigenmaps 9)

involve computing the eigen vectors of the Gram/Laplacian matrix.

Computing eigenvectors of a dense matrix is O(N3)

7
Smola, A., Scholkopf, B., and Muller, K.-R. 1996. Nonlinear component analysis as a kernel eigenvalue problem. Tech.

Rep. 44, Max-Planck-Institut fr biologische Kybernetik, Tubingen.
8
Chung, F. 1997. Spectral Graph Theory. Amer. Math. Society Press.

9
M. Belkin and P. Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. Proceedings of

Advances in Neural Information Processing Systems. Vol. 14, 2002.
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Model selection

Most non-parametric methods require choosing some parameter (e.g.
bandwidth h of the kernel).
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Model selection

Most non-parametric methods require choosing some parameter (e.g.
bandwidth h of the kernel).

Two approaches.

◮ Cross-validation.
◮ Maximizing thee marginal likelihood.

Automatic procedures to choose these parameters are iterative with
each iteration costing O(N2) or O(N3).
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N-body problems in statistical learning

O(N2) because computations involve considering pair-wise elements.

10
A. Gray and A. Moore. N-body problems in statistical learning. In Advances in Neural Information Processing Systems,

pages 521-527, 2001.
11

Greengard, L. 1994. Fast algorithms for classical physics. Science 265, 5174, 909-914
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N-body problems in statistical learning

O(N2) because computations involve considering pair-wise elements.
N-body problems in statistical learning10

in analogy with the
Coulombic N-body problems 11 occurring in computational physics.

These are potential based problems involving forces or charges.

In our case the potential corresponds to the kernel function.

10
A. Gray and A. Moore. N-body problems in statistical learning. In Advances in Neural Information Processing Systems,

pages 521-527, 2001.
11

Greengard, L. 1994. Fast algorithms for classical physics. Science 265, 5174, 909-914
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Primitive 1–Iterative methods
Reduce training time from O(N3) to O(kN2)

We need to solve the linear system of equation

(K + λI)ξ = y.

K is the N × N Gram matrix where [K]ij = k(xi , xj).
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We will use iterative methods like conjugate-gradient to bring it down
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Primitive 1–Iterative methods
Reduce training time from O(N3) to O(kN2)

We need to solve the linear system of equation

(K + λI)ξ = y.

K is the N × N Gram matrix where [K]ij = k(xi , xj).

Direct inversion is O(N3).

We will use iterative methods like conjugate-gradient to bring it down
to O(kN2)–k is the number of iterations.

The quadratic complexity is due to the matrix-vector product Kq for
some q.
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Primitive 2-Fast Matrix Vector Multiplication

We need a fast algorithm to compute

f (yj) =
N∑

i=1

qik(yj , xi ) j = 1, . . . ,M.
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Primitive 2-Fast Matrix Vector Multiplication

We need a fast algorithm to compute

f (yj) =
N∑

i=1

qik(yj , xi ) j = 1, . . . ,M.

Matrix Vector Multiplication f = Kq




f (y1)
f (y2)

...
f (yM)


 =




k(y1, x1) k(y1, x2) . . . k(y1, xN)
k(y2, x1) k(y2, x2) . . . k(y2, xN)

...
...

. . .
...

k(yM , x1) k(yM , x2) . . . k(yM , xN)







q1

q2
...

qN
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Direct computation is O(MN).
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Primitive 2-Fast Matrix Vector Multiplication

We need a fast algorithm to compute

f (yj) =
N∑
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...
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k(yM , x1) k(yM , x2) . . . k(yM , xN)







q1

q2
...

qN




Direct computation is O(MN).

Reduce from O(MN) to O(M + N)
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Why should O(M + N) be possible?
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Exploit the structure in the matrix.

Structured matrix

A dense matrix of order M × N is called a structured matrix if its entries
depend only on O(M + N) parameters.

K is a structured matrix.

[K]ij = k(xi , yj)= e−‖xi−yj‖
2/h2

(Gaussian kernel)
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Motivating toy example

Consider

G (yj) =
N∑

i=1

qi (xi − yj)
2 for j = 1, . . . ,M.

Direct summation is O(MN).
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Factorize and regroup
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Factorize and regroup

G (yj) =
N∑

i=1

qi (xi − yj)
2

=
N∑

i=1

qi (x
2
i − 2xiyj + y2

j )

=

[
N∑

i=1

qix
2
i

]
− 2yj

[
N∑

i=1

qixi

]
+ y2

j

[
N∑

i=1

qi

]

= M2 − 2yjM1 + y2
j M0

The moments M2, M1, and M0 can be pre-computed in O(N).
Hence the computational complexity is O(M + N).
Encapsulating information in terms of the moments.
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Direct vs Fast
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In general
For any kernel K (x , y) we can expand as

K (x , y) =

p∑

k=1

Φk(x)Ψk(y) + error .
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The fast summation is of the form

G (yj) =
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k=1

AkΨk(y) + error ,

where the moments Ak can be pre-computed as
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In general
For any kernel K (x , y) we can expand as

K (x , y) =

p∑

k=1

Φk(x)Ψk(y) + error .

The fast summation is of the form

G (yj) =

p∑

k=1

AkΨk(y) + error ,

where the moments Ak can be pre-computed as

Ak =

N∑

i=1

qiΦk(xi ).

Organize using data-structures to use this effectively.

Give accuracy guarantees.
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Two aspects of the problem

1 Approximation theory → series expansions and error bounds.

2 Computational geometry → effective data-structures.
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Gaussian kernel

The most commonly used kernel function in machine learning is the
Gaussian kernel

K (x , y) = e−‖x−y‖2/h2
,

where h is called the bandwidth of the kernel.
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Gaussian kernel

The most commonly used kernel function in machine learning is the
Gaussian kernel

K (x , y) = e−‖x−y‖2/h2
,

where h is called the bandwidth of the kernel.
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Notion of ǫ-exact approximation

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 32 / 90



Notion of ǫ-exact approximation

Direct computation is O(MN).

We will compute f (yj) approximately so as to reduce the
computational complexity to O(N + M).

Speedup at the expense of reduced precision.
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Notion of ǫ-exact approximation

Direct computation is O(MN).

We will compute f (yj) approximately so as to reduce the
computational complexity to O(N + M).

Speedup at the expense of reduced precision.

User provides a accuracy parameter ǫ.

The algorithm computes f̂ (yj) such that |f̂ (yj) − f (yj)| < ǫ.

The constant in O(N + M) depends on the accuracy ǫ.

Smaller the accuracy → Larger the speedup.

ǫ can be arbitrarily small.

For machine level precision no difference between the direct and the
fast methods.
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Discrete Gauss Transform

G (yj) =
N∑

i=1

qie
−‖yj−xi‖

2/h2
.

{qi ∈ R}i=1,...,N are the N source weights.

{xi ∈ Rd}i=1,...,N are the N source points.

{yj ∈ Rd}j=1,...,M are the M target points.

h ∈ R+ is the source scale or bandwidth.

Sources
Targets
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Outline of the proposal

1 Motivation

2 Key Computational tasks

3 Related work

4 Problems successfully addressed
Improved fast Gauss transform
Fast optimal bandwidth estimation

5 Work in progress
Fast Gaussian process regression
Inexact conjugate-gradient
Variable bandwidth kernel machines
Implicit surface fitting via Gaussian process regression

6 Future work
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Fast Fourier Transform (FFT)

If the sources and targets are on a uniform grid we can use FFT.
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Fast Fourier Transform (FFT)

If the sources and targets are on a uniform grid we can use FFT.

Computational complexity is reduced to O(N log N).

For irregularly spaced points can use gridded approximations.

However no accuracy guarantees.
B. W. Silverman. Algorithm AS 176: Kernel density estimation using the fast Fourier transform. Journal of Royal Statistical
society Series C: Applied statistics, 31(1):93–99, 1982.
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Sparse data-set methods and low rank representation

Select a subset of the data.
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Sparse data-set methods and low rank representation

Select a subset of the data.

Use low rank approximations to the Gram matrix.

Different strategies for selection.

However no accuracy guarantees.
Williams, C. K. I. and Seeger, M. 2001. Using the Nyström method to speed up kernel machines. In Advances in Neural
Information Processing Systems. MIT Press, 682-688.
Smola, A. and Bartlett, B. 2001. Sparse greedy gaussian process regression. In Advances in Neural Information Processing
Systems. MIT Press, 619-625.
Fine, S. and Scheinberg, K. 2001. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning
Research 2, 243-264.
Lee, Y.-J. and Mangasarian, O. 2001. Rsvm: Reduced support vector machines. In First SIAM International Conference on Data
Mining, Chicago.
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Dual-tree methods

Organize both the source and target data using a kd-tree.

Expand the cross product of the trees.

Spend time only where it is essential.

Gives accuracy guarantees.
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Gives accuracy guarantees.
◮ However as ǫ goes to zero the algorithm does not scale well.
◮ No series expansions.
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Dual-tree methods

Organize both the source and target data using a kd-tree.

Expand the cross product of the trees.

Spend time only where it is essential.

Gives accuracy guarantees.
◮ However as ǫ goes to zero the algorithm does not scale well.
◮ No series expansions.

Postulated to be O(N) (no proof).

Single tree version is O(N log N)
A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In SIAM International
conference on Data Mining, 2003.
Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process regression using KD-trees. In Y. Weiss, B. Scholkopf, and J. Platt,
editors, Advances in Neural Information Processing Systems 18. MIT Press, Cambridge, MA, 2006
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Fast Gauss Transform (FGT)

ǫ − exact approximation algorithm.

Computational complexity is O(M + N).

Proposed by Greengard and Strain and applied successfully to a few
lower dimensional applications in mathematics and physics.

However the algorithm has not been widely used much in statistics,
pattern recognition, and machine learning applications where higher
dimensions occur commonly.

L. Greengard and J. Strain. The fast Gauss transform. SIAM Journal of Scientific and Statistical Computing, 12(1):79-94, 1991
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Constants are important

FGT ∼ O(pd(M + N)).

We propose a method Improved FGT (IFGT) which scales as ∼
O(dp(M + N)).
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Outline of the proposal

1 Motivation

2 Key Computational tasks

3 Related work

4 Problems successfully addressed
Improved fast Gauss transform
Fast optimal bandwidth estimation

5 Work in progress
Fast Gaussian process regression
Inexact conjugate-gradient
Variable bandwidth kernel machines
Implicit surface fitting via Gaussian process regression

6 Future work
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Improved Fast Gauss Transform (IFGT)

1 The number of the terms grows exponentially with dimensionality d .
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Improved Fast Gauss Transform (IFGT)

1 The number of the terms grows exponentially with dimensionality d .
◮ Different series expansion–reduces the number of the expansion terms

to the polynomial order.

2 The space subdivision scheme is a uniform box subdivision scheme
which is inefficient in higher dimensions.

◮ k-center algorithm is applied to subdivide the space which is more
efficient.

3 The constant term due to the translation of the far-field Hermite
series to the local Taylor series grows exponentially fast with
dimension.

◮ No translation – Our expansion can act both as a far-field and local
expansion.
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Brief idea of IFGT 12
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12
C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in

Neural Information Processing Systems, pages 15611568, 2005.
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Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

12
C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in

Neural Information Processing Systems, pages 15611568, 2005.
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Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

Step 1 Subdivide the d-dimensional space using a k-center clustering
based geometric data structure (O(N log K )).

12
C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in

Neural Information Processing Systems, pages 15611568, 2005.
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Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

Step 1 Subdivide the d-dimensional space using a k-center clustering
based geometric data structure (O(N log K )).

Step 2 Build a p truncated representation of kernels inside each
cluster using a set of decaying basis functions (O(Ndp)).

12
C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in

Neural Information Processing Systems, pages 15611568, 2005.
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Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

Step 1 Subdivide the d-dimensional space using a k-center clustering
based geometric data structure (O(N log K )).

Step 2 Build a p truncated representation of kernels inside each
cluster using a set of decaying basis functions (O(Ndp)).

Step 3 Collect the influence of all the the data in a neighborhood
using coefficients at cluster center and evaluate (O(Mdp)).

12
C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in

Neural Information Processing Systems, pages 15611568, 2005.
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Sample result

For example in three dimensions and 1 million training and test points
[h=0.4]

IFGT – 6 minutes.

Direct – 34 hours.

with an error of 10−8.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 43 / 90



Separate out i and j

For any point x∗ ∈ Rd

G (yj) =
N∑

i=1

qie
−‖yj−xi‖

2/h2
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N∑
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qie
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=
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i=1

qie
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e2(yj−x∗)·(xi−x∗)/h2
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Separate out i and j

For any point x∗ ∈ Rd

G (yj) =
N∑

i=1

qie
−‖yj−xi‖

2/h2

=
N∑

i=1

qie
−‖(yj−x∗)−(xi−x∗)‖2/h2

,

=
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2
e2(yj−x∗)·(xi−x∗)/h2

.

Crux of the algorithm

Separate this entanglement via the Taylor’s series expansion of the
exponentials.
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Factorization via multivariate Taylor’s series

e2(yj−x∗)·(xi−x∗)/h2
=

p−1∑

n=0

2n

n!

[(
yj − x∗

h

)
·
(

xi − x∗

h

)]n

+ errorp.
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The truncation number p is chosen based on the prescribed error ǫ.
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Factorization via multivariate Taylor’s series

e2(yj−x∗)·(xi−x∗)/h2
=

p−1∑

n=0

2n

n!

[(
yj − x∗

h

)
·
(

xi − x∗

h

)]n

+ errorp.

The truncation number p is chosen based on the prescribed error ǫ.
Using multi-index notation this can be written as

e2(yj−x∗)·(xi−x∗)/h2
=

∑

|α|≤p−1

2α

α!

(
yj − x∗

h

)α(
xi − x∗

h

)α

+ errorp.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 45 / 90



Let us ignore the error and regroup

Ĝ (yj) =
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2




∑

|α|≤p−1

2α

α!

(
yj − x∗

h

)α(
xi − x∗

h

=
∑

|α|≤p−1

Cαe−‖yj−x∗‖2/h2

(
yj − x∗

h

)α

.

Moments are precomputed in O(N)

Cα =
2α

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α

.
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Evaluation of Ĝ (yj) at M points is O(M).
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(
yj − x∗
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)α(
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=
∑

|α|≤p−1

Cαe−‖yj−x∗‖2/h2

(
yj − x∗

h

)α

.

Moments are precomputed in O(N)

Cα =
2α

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α

.

Evaluation of Ĝ (yj) at M points is O(M).
Hence the computational complexity has reduced from the quadratic
O(NM) to the linear O(N + M).
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Space subdivision

We expanded around a point x∗.
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k-center clustering example
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Rapid decay of the Gaussian

Since the Gaussian decays rapidly consider only influential clusters.
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IFGT

Step 0 Choose the parameters.

Step 1 Subdivide the source points into K clusters.

Step 2 Compute the cluster coefficients at the center of each cluster.

Step 3 For each target point sum the contribution from influential
clusters.
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IFGT Illustration
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Complexity

Computational complexity

O
(
N log K + Nr(p−1)d + Mnr(p−1)d

)
.
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)
.

r(p−1)d =
(
p+d−1

d

)
is the total number of d-variate monomials of

degree less than or equal to p − 1.

The d-variate monomials can be efficiently evaluated using the
Horner’s rule.

n is the maximum number of influential clusters.
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Computational complexity

O
(
N log K + Nr(p−1)d + Mnr(p−1)d

)
.

r(p−1)d =
(
p+d−1

d

)
is the total number of d-variate monomials of

degree less than or equal to p − 1.

The d-variate monomials can be efficiently evaluated using the
Horner’s rule.

n is the maximum number of influential clusters.

Storage complexity

O(Kr(p−1)d + N + M)
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Choosing the parameters

Given any ǫ > 0, we want to choose the following parameters

K (the number of clusters),

p (the truncation number),

and the cut off radius

such that for any target point yj we can guarantee that

|Ĝ (yj) − G (yj)|
Q

≤ ǫ,

where Q =
∑N

i=1 |qi |.
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Automatic parameter selection

The error bound proposed in the original paper was incorrect and not
tight to be useful in practice.

No strategy for choosing the parameters to achieve the desired bound.

We propose automatic choice of the algorithm parameters 13 .

13
V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast computation of sums of Gaussians in high dimensions.

CS-TR-4767, Department of Computer Science, University of Maryland, CollegePark, 2005.
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Automatic parameter selection

The error bound proposed in the original paper was incorrect and not
tight to be useful in practice.

No strategy for choosing the parameters to achieve the desired bound.

We propose automatic choice of the algorithm parameters 13 .

Strategy

Derive tight bounds for the error.

Choose the parameters such that the bound is less than ǫ.

13
V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast computation of sums of Gaussians in high dimensions.

CS-TR-4767, Department of Computer Science, University of Maryland, CollegePark, 2005.
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Point-wise truncation numbers

A tighter point-wise error bound.

Truncation number for each source is different.
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Fast multipole methods

The FGT belongs to a more general class of methods called fast
multipole methods 14.

The general fast multipole methods use two kinds of factorization

Far-field expansion and Local expansion.

x∗

xi

y

R∗

x∗

xi

y
r∗

14
Greengard, L. and Rokhlin, V. 1987. A fast algorithm for particle simulations. J. of Comp. Physics 73, 2, 325-348.
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Comparison with FGT expansions

Far-field Hermite expansion

e−‖y−xi‖
2/h2

=
∑

α≥0

[
1

α!

(
xi − x∗

h

)α]
hα

(
y − x∗

h

)

Local Taylor expansion

e−‖y−xi‖
2/h2

=
∑

β≥0

[
1

β!
hβ

(
xi − x∗

h

)](
y − x∗

h

)β

Compare this with the

Single IFGT expansion

e−‖y−xi‖
2/h2

=
∑

|α|≥0

[
2α

α!
e−‖xi−x∗‖2/h2

(
xi − x∗

h

)α]
e−‖yj−x∗‖2/h2

(
yj − x∗

h

)α
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IFGT expansion is both local as well as far-field

Hence we avoid the expensive translation operation.
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FGT vs IFGT complexity

FGT IFGT

d # of boxes p # of terms n Constant K p # of terms
(Nd

side) (pd) term (r(p−1)d)

1 3 9 9 2 7.0+002 5 9 9
2 9 10 100 2 1.5e+005 7 15 120
3 27 10 1000 2 1.9e+007 15 16 816
4 81 11 14641 2 3.6e+009 29 17 4845
5 243 11 161051 2 4.3e+011 31 20 42504
6 729 12 2985984 2 9.0e+013 62 20 177100
7 2187 14 105413504 2 3.7e+016 67 22 1184040
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FGT IFGT

d # of boxes p # of terms n Constant K p # of terms
(Nd

side) (pd) term (r(p−1)d)

1 3 9 9 2 7.0+002 5 9 9
2 9 10 100 2 1.5e+005 7 15 120
3 27 10 1000 2 1.9e+007 15 16 816
4 81 11 14641 2 3.6e+009 29 17 4845
5 243 11 161051 2 4.3e+011 31 20 42504
6 729 12 2985984 2 9.0e+013 62 20 177100
7 2187 14 105413504 2 3.7e+016 67 22 1184040

Also IFGT simple to code.
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Speedup as a function of N [d = 3 and h = 1.0]
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Speedup as a function of N and d
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Speedup as a function of d [h = 2.0]
FGT cannot be run for d > 3
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Speedup as a function of d [h =
√

d ]
IFGT scales well with d .
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Speedup as a function of ǫ

Better speedup for lower precision.
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Speedup as a function of h
Better speedup at larger bandwidths.
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Hyperparameter selection for kernel methods

The IFGT can be used in any kernel machine where we encounter
sums of Gaussians.
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Hyperparameter selection for kernel methods

The IFGT can be used in any kernel machine where we encounter
sums of Gaussians.

Most kernel methods require choosing some hyperparameters (e.g.
bandwidth h of the kernel).

Optimal procedures to choose these parameters are O(N2).

Most of these procedures involve solving some optimization which
involves taking the derivatives of kernel sums.

The derivatives of Gaussian sums involve sums of products of Hermite
polynomials and Gaussians.

Gr (yj) =
∑N

i=1 qiHr

(
yj−xi

h

)
e−(yj−xi )

2/2h2
j = 1, . . . ,M.
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Hyperparameter selection for kernel methods

The IFGT can be used in any kernel machine where we encounter
sums of Gaussians.

Most kernel methods require choosing some hyperparameters (e.g.
bandwidth h of the kernel).

Optimal procedures to choose these parameters are O(N2).

Most of these procedures involve solving some optimization which
involves taking the derivatives of kernel sums.

The derivatives of Gaussian sums involve sums of products of Hermite
polynomials and Gaussians.

Gr (yj) =
∑N

i=1 qiHr

(
yj−xi

h

)
e−(yj−xi )

2/2h2
j = 1, . . . ,M.

Fast algorithms have been developed for such sums.
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Kernel density estimation

The most popular method for density estimation is the kernel density
estimator (KDE).

p̂(x) =
1

N

N∑

i=1

1

h
K

(
x − xi

h

)
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IFGT can be directly used to accelerate KDE.
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Kernel density estimation

The most popular method for density estimation is the kernel density
estimator (KDE).

p̂(x) =
1

N

N∑

i=1

1

h
K

(
x − xi

h

)

IFGT can be directly used to accelerate KDE.

Efficient use of KDE requires choosing h optimally.
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The bandwidth h is a very crucial parameter

As h decreases towards 0, the number of modes increases to the
number of data points and the KDE is very noisy.

As h increases towards ∞, the number of modes drops to 1, so that
any interesting structure has been smeared away and the KDE just
displays a unimodal pattern.

Small bandwidth h=0.01 Large bandwidth h=0.2
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Fast optimal bandwidth selection

The state-of-the-art method for optimal bandwidth selection for
kernel density estimation scales as O(N2).

15
Fast optimal bandwidth selection for kernel density estimation. Vikas C. Raykar and Ramani Duraiswami, In Proceedings

of the sixth SIAM International Conference on Data Mining, Bethesda, April 2006, pp. 524-528.
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Fast optimal bandwidth selection

The state-of-the-art method for optimal bandwidth selection for
kernel density estimation scales as O(N2).

We present a fast computational technique that scales as O(N) 15.

The core part is a fast ǫ − exact algorithm for kernel density
derivative estimation which reduces the computational complexity
from O(N2) to O(N).

For example for N = 409, 600 points.
◮ Direct evaluation → 12.76 hours.
◮ Fast evaluation → 65 seconds with an error of around 10−12.

15
Fast optimal bandwidth selection for kernel density estimation. Vikas C. Raykar and Ramani Duraiswami, In Proceedings

of the sixth SIAM International Conference on Data Mining, Bethesda, April 2006, pp. 524-528.
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Marron Wand normal mixtures
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Speedup for Marron Wand normal mixtures

hdirect hfast Tdirect (sec) Tfast (sec) Speedup Rel. Err.

1 0.122213 0.122215 4182.29 64.28 65.06 1.37e-005
2 0.082591 0.082592 5061.42 77.30 65.48 1.38e-005
3 0.020543 0.020543 8523.26 101.62 83.87 1.53e-006
4 0.020621 0.020621 7825.72 105.88 73.91 1.81e-006
5 0.012881 0.012881 6543.52 91.11 71.82 5.34e-006
6 0.098301 0.098303 5023.06 76.18 65.93 1.62e-005
7 0.092240 0.092240 5918.19 88.61 66.79 6.34e-006
8 0.074698 0.074699 5912.97 90.74 65.16 1.40e-005
9 0.081301 0.081302 6440.66 89.91 71.63 1.17e-005
10 0.024326 0.024326 7186.07 106.17 67.69 1.84e-006
11 0.086831 0.086832 5912.23 90.45 65.36 1.71e-005
12 0.032492 0.032493 8310.90 119.02 69.83 3.83e-006
13 0.045797 0.045797 6824.59 104.79 65.13 4.41e-006
14 0.027573 0.027573 10485.48 111.54 94.01 1.18e-006
15 0.023096 0.023096 11797.34 112.57 104.80 7.05e-007
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Speedup for projection pursuit
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Speedup for projection pursuit
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Image segmentation via PP with optimal KDE took 15 minutes while that
using the direct method takes around 7.5 hours.
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Outline of the proposal

1 Motivation

2 Key Computational tasks

3 Related work

4 Problems successfully addressed
Improved fast Gauss transform
Fast optimal bandwidth estimation

5 Work in progress
Fast Gaussian process regression
Inexact conjugate-gradient
Variable bandwidth kernel machines
Implicit surface fitting via Gaussian process regression

6 Future work
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Gaussian processes for regression
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Gaussian processes for regression

Gaussian processes handle nonparametric regression in a Bayesian
framework.

The regression function is represented by an ensemble of functions, on
which we place a Gaussian prior.

This prior is updated in the light of the training data.

As a result we obtain predictions together with valid estimates of
uncertainty.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 74 / 90



Gaussian process regression
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Gaussian process regression

Regression problem

Training data T = {xi ∈ R
d , yi ∈ R}N

i=1

Predict y for a new x .
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Gaussian process model

Model

y = f (x) + ε
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f (x) is a zero-mean Gaussian process with covariance function
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Gaussian process model

Model

y = f (x) + ε

ε is N (0, σ2).

f (x) is a zero-mean Gaussian process with covariance function
K (x , x

′

).

Most common covariance function is the Gaussian.

Infer the posterior

Given the training data T and a new input x∗ our task is to compute the
posterior p(f∗|x∗, T).
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Solution

The posterior is a Gaussian.

The mean is used as the prediction.

The variance is the uncertainty associated with the prediction.
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Direct Training

ξ = (K + σ2I)−1y

Direct computation of the inverse of a matrix requires O(N3)
operations and O(N2) storage.

Impractical even for problems of moderate size (typically a few
thousands).

For example N=25,600 takes around 10 hours, assuming you have
enough RAM.
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Iterative methods

An effective way is to solve the following large scale linear system using
iterative methods.
(K + λI)ξ = y.

The iterative method generates a sequence of approximate solutions
ξk at each step which converge to the true solution ξ.

Since K + σ2I is symmetric and positive definite we can use the
conjugate-gradient method.

Given a tolerance parameter 0 < η < 1 a practical conjugate gradient
scheme iterates till it computes a vector ξk such that
‖y − K̃ξk‖2 ≤ η‖y − K̃ξ0‖2.
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Computational cost of conjugate-gradient

Requires one matrix-vector multiplication and 5N flops per iteration.

Four vectors of length N are required for storage.

Hence computational cost now reduces to O(kN2).

For example N=25,600 takes around 17 minutes (compare to 10
hours).
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CG+IFGT

The core computational step in each conjugate-gradient iteration is
the multiplication of the matrix K with a vector, say q.

Coupled with the CG the IFGT reduces the computational cost of GP
regression to O(N).

For example N=25,600 takes around 3 secs. (compare to 10
hours[direct] or 17 minutes[CG]).
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Computational cost

Direct Conjugate Conjugate

Inversion gradient gradient

K̃ = K + σ2I +IFGT

Time Space Time Space Time Space

Training phase

ξ = K̃−1y O(N3) O(N2) O(N2) O(N) O(N) O(N)

Mean prediction
y = k(x)T ξ O(N2) O(N) O(N2) O(N) O(N) O(N)

Uncertainty
k(x , x) O(N3) O(N) O(N3) O(N) O(N2) O(N)

−k(x)T K̃−1k(x)
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How to choose ǫ for inexact CG?

Use the theory of inexact Krylov subspace methods16

Matrix-vector product may be performed in an increasingly inexact manner
as the iteration progresses and still allow convergence to the solution.

0 2 4 6 8 10 12 14
10

−7

10
−6

10
−5

Iteration

ε

10
2

10
3

10
4

0

5

10

15

20

25

δ = 10−3

δ = 10−6

N

N
u

m
b

e
r 

o
f 

ite
ra

tio
n

s

CG
CG+IFGT

η = 10−3

16
V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM

J. Sci. Comput., 25(2):454–477, 2004.
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IFGT with variable scales

G (yj) =
N∑

i=1

qie
−‖yj−xi‖

2/h2
i .

Approach: Build a composite factorization that builds a Taylor series for hi

as well.
Resulting IFGT runs at about the same speed.
For example for N = M = 1,024,000 while the direct evaluation takes
around 2.6 days the fast evaluation requires only 4.65 minutes with an
error of around 10−5.
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Variable bandwidth density estimation

(a) h=0.05 (b) h=0.70 

(c) h=0.36 (d) Variable h

TV=0.239

TV=0.092

TV=0.128

TV=0.062

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 85 / 90



Segmentation using adaptive mean shift

1.34 hours vs 2.1 minutes
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Implicit surface fitting as a regression problem

GPR slides.pdf
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Point cloud data



Surface normals off surface points



Fitted implicit surface via GPR



Zero level set of the implicit surface



2 sigma uncertanity surfaces



3D Point cloud data



Fitted isosurface



Variance at mesh [sampling effect]

Note variance is 
more at places 
which have few 
datapoints



Outline of the proposal

1 Motivation

2 Key Computational tasks

3 Related work

4 Problems successfully addressed
Improved fast Gauss transform
Fast optimal bandwidth estimation

5 Work in progress
Fast Gaussian process regression
Inexact conjugate-gradient
Variable bandwidth kernel machines
Implicit surface fitting via Gaussian process regression

6 Future work
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Future work

1 Combine with dual-tree methods.

2 Inexact eigenvalue methods.

3 Preconditioners for the Gram matrix.

4 Support Vector Machines in the primal.

5 Fast large scale linear SVMs.

6 Hyperparameter selection for different methods.

7 The paradox of the curse of dimensionality.

8 Structure, Inference, and Computation.
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Conclusions

Identified the key computationally intensive primitives in machine
learning.
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Conclusions

Identified the key computationally intensive primitives in machine
learning.

We presented linear time algorithms.

We gave high accuracy guarantees.

Unlike methods which rely on choosing a subset of the dataset we use
all the available points and still achieve O(N) complexity.

Applied it to a few machine learning tasks.

Open Issue: Handling fat data (Possibly thousands of attributes).

Can we do better than naive?
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