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Tall Data

Large number of training examples with small number of attributes
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Fat Data

Small number of training examples with large number of attributes
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Large number of training examples with large number of attributes
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Tall Fat Data

Large number of training examples with large number of attributes
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Currently we can handle only tall and slightly fat data. J
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Learning with massive data sets

Huge data sets containing
@ millions of training examples (tall data)
@ with large number of attributes (fat data)

are relatively easy to gather.
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@ with large number of attributes (fat data)
are relatively easy to gather.

Example

Genome sequencing, internet databases, experimental data from particle

physics, medical databases, financial records, weather reports, audio and
video data.
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Learning with massive data sets

Huge data sets containing
@ millions of training examples (tall data)
@ with large number of attributes (fat data)

are relatively easy to gather.

Example

Genome sequencing, internet databases, experimental data from particle
physics, medical databases, financial records, weather reports, audio and
video data.

Learning is a principled method for inferring predictive models from the
data

Poggio, T. and Smale, S. 2003. The mathematics of learning: Dealing with data. Notices of the American Mathematical

Society 50, 5, 537-544..
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Two approaches to learning

Parametric approach

@ Assumes a known parametric form for the model to be learnt.

@ Training < Estimate the unknown parameters.
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Two approaches to learning

Parametric approach

@ Assumes a known parametric form for the model to be learnt.

@ Training < Estimate the unknown parameters.

Once the model has been trained, for future prediction the training
examples can be discarded.

@ The essence of the training examples have been captured in the
model parameters.
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Two approaches to learning

Parametric approach

@ Assumes a known parametric form for the model to be learnt.

@ Training < Estimate the unknown parameters.

Once the model has been trained, for future prediction the training
examples can be discarded.
@ The essence of the training examples have been captured in the
model parameters.

Leads to erroneous inference unless the model is known a priori.
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Non-parametric approach

Two approaches to learning
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Two approaches to learning

Non-parametric approach

@ Do not make any assumptions on the form of the underlying function.
@ Letting the data speak for themselves.

@ Perform better than parametric methods.
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Two approaches to learning

Non-parametric approach

@ Do not make any assumptions on the form of the underlying function.

@ Letting the data speak for themselves.

@ Perform better than parametric methods.

However all the available data has to be retained while making the
inference.

The computational consequence of this can be quite significant.
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Computational curse of non-parametric methods
Let N be the number of training examples
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Computational curse of non-parametric methods

Let N be the number of training examples

Most state-of-the-art non-parametric methods in machine leaning and
computational statistics scale as either O(N3) or O(N?).
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Computational curse of non-parametric methods

Let N be the number of training examples

Most state-of-the-art non-parametric methods in machine leaning and
computational statistics scale as either O(N3) or O(N?).

@ This has seriously restricted the use of massive data sets.

@ Current implementations can handle only a few thousands of training
examples.

@ Both the data set size and processor speed are growing according to
Moore's law.
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Computational curse of non-parametric methods

Let N be the number of training examples

Most state-of-the-art non-parametric methods in machine leaning and
computational statistics scale as either O(N3) or O(N?).

@ This has seriously restricted the use of massive data sets.

@ Current implementations can handle only a few thousands of training
examples.

@ Both the data set size and processor speed are growing according to
Moore's law.

Example

A simple kernel density estimation with 1 million points would take around
2 days.
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Goals of the proposed thesis

© Identify the key computational primitives contributing to the O(N3)
or O(N?) complexity.

© Speedup up these primitives by approximate algorithms that scale as
O(N) and provide high accuracy guarantees.
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Goals of the proposed thesis

© Identify the key computational primitives contributing to the O(N3)
or O(N?) complexity.

© Speedup up these primitives by approximate algorithms that scale as
O(N) and provide high accuracy guarantees.

© Enable the use of massive datasets for different learning algorithms.
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Tools

We use ideas and techniques from

@ Computational physics — fast multipole methods.
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Tools

We use ideas and techniques from

@ Computational physics — fast multipole methods.
@ Scientific computing — iterative methods, pre-conditioners.

@ Computational geometry — clustering, kd-trees.

and apply it to

@ Machine learning — kernel machines, Gaussian processes.
o Computational statistics — kernel density estimation.
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Top ten algorithms of the century !

Monte Carlo method.

Simplex method of linear programming.
Krylov Subspace lteration method.
Householder matrix decomposition.
Fortran compiler.

QR algorithm for eigenvalue calculation.
Quicksort algorithm.

Fast Fourier Transform.

Integer Relation Detection Algorithm.

60000000CO0OCCOC

Fast Multipole methods.

1
Dongarra, J. and Sullivan, F. 2000. The top ten algorithms of the century. Computing ifv Science and Engineering.
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Outline of the proposal

© Key Computational tasks
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Key Computational tasks

Training Prediction Choosing
(N examples) | (at N points) | parameters
KDE O(N?) O(N?)
Kernel regression O(N?) O(N?) O(N?)
Gaussian processes O(N3) O(N?) O(N3)
SVM O(Ng,) O(Nsy N)
Laplacian eigenmaps O(N3)
Kernel PCA O(N3)
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Training Prediction Choosing
(N examples) | (at N points) | parameters
KDE O(N?) O(N?)
Kernel regression O(N?) O(N?) O(N?)
Gaussian processes O(N3) O(N?) O(N3)
SVM O(Ng,) O(Nsy N)
Laplacian eigenmaps O(N3)
Kernel PCA O(N3)

Identify the key computational primitives contributing to the O(N?) or

O(N3) complexity.

J
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Canonical learning tasks
Training data

{X,' S Rd,y,- S M}IIV—].
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Canonical learning tasks

Training data
{xi e R, y; e M}},

Learning can be viewed as function estimation f : R — M
@ Regression M =R

@ Binary Classification M = {—1,+1}.
@ Density estimation

[m] = =
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Canonical learning tasks

Training data
{xi e R, y; e M}},

Learning can be viewed as function estimation f : R — M
@ Regression M =R

@ Binary Classification M = {—1, +1}.
@ Density estimation

Three tasks

@ Training — Learning the function f from examples.

@ Prediction — Given a new x predict y..

@ Model Selection — Choosing the hyperparameters.
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Kernel machines

Minimize the regularized empirical risk functional Reg[f].

N
. 1
rfnelﬁ Rreg|f] = N;L[f(xi)a)/i] +)‘”f”%—t’ (1)

where H denotes a reproducing kernel Hilbert space (RKHS) 2.

2Wabha, G. 1990. Spline Models for Observational data. SIAM.
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Kernel machines

Minimize the regularized empirical risk functional Ryeg[f].

N
. 1 2
min Rreg f] = N;L[f(x,),yl] + Allfll3 (1)

where H denotes a reproducing kernel Hilbert space (RKHS) 2.

Theorem (REPRESENTER THEOREM )

If k: X x X+— Y is the kernel of the RKHS H then the minimizer of
Equation 1 is of the form

N
F(x) = qik(x, xi)- (2)
i=1

2Wabha, G. 1990. Spline Models for Observational data. SIAM.
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Examples

N
F(x) = aik(x, x).
i=1

3Poggio, T. and Smale, S. 2003. The mathematics of learning: Dealing with data. Notices of the American Mathematical
Society 50, 5, 537-544.

Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support Vector Machines (and other kernel-based learning
methods). Cambridge University Press.

5Wand, M. P. and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall, London.
6Rasmussen, C. E. and Williams, C. K. I. 2006. Gaussian Processes for Machine Learning: The MIT Press:
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Examples

N
F(x) = aik(x, x).
i=1

o Kernel machines (e.g. RLS 3, SVM #) f is the
regression /classification function. [Representer theorem]

3Poggio, T. and Smale, S. 2003. The mathematics of learning: Dealing with data. Notices of the American Mathematical
Society 50, 5, 537-544.

Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support Vector Machines (and other kernel-based learning
methods). Cambridge University Press.

5Wand, M. P. and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall, London.
6Rasmussen, C. E. and Williams, C. K. I. 2006. Gaussian Processes for Machine Learning: The MIT Press:
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Examples

N
f(x) = Z gik(x, x;).
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Examples

N
f(x) = Z gik(x, x;).

o Kernel machines (e.g. RLS 3, SVM 4) f is the
regression /classification function. [Representer theorem]

o Density estimation f is the kernel density estimate °.

@ Gaussian processes © f is the mean prediction.

3Poggio, T. and Smale, S. 2003. The mathematics of learning: Dealing with data. Notices of the American Mathematical
Society 50, 5, 537-544.

Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support Vector Machines (and other kernel-based learning
methods). Cambridge University Press.

5Wand, M. P. and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall, London.
6Rasmussen, C. E. and Williams, C. K. |. 2006. Gaussian Processes for Machine Learning:’ The MIT Press:
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Prediction

Given N training examples {x;}"_,, the key computational task is to

compute a weighted linear combination of local kernel functions centered
on the training data, i.e.,

N

F(x) = aik(x, xi)-

i=1
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Prediction

Given N training examples {x;}"_,, the key computational task is to
compute a weighted linear combination of local kernel functions centered
on the training data, i.e.,

N

F(x) = aik(x, xi)-

i=1

The computation complexity to predict at M points given N training
examples scales as O(MN).
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Training

@ Training these models scales as O(N3) since most involve solving the
linear system of equation

(K+ )¢ =y.
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Training

@ Training these models scales as O(N3) since most involve solving the
linear system of equation

(K+ )¢ =y.

» K is the dense N x N Gram matrix where [K]; = k(x;, X;).
> | is the identity matrix.
> )\ is some regularization parameter or noise variance.
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Training

@ Training these models scales as O(N3) since most involve solving the
linear system of equation

(K+ )¢ =y.

» K is the dense N x N Gram matrix where [K]; = k(x;, X;).
> | is the identity matrix.
> )\ is some regularization parameter or noise variance.

Direct inversion requires O(N3) operations and O(N?) storage. J
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Unsupervised learning

@ Methods like

> kernel principal component analysis ”
» spectral clustering &
> nonlinear dimensionality reduction (Laplacian eigenmaps °)

involve computing the eigen vectors of the Gram/Laplacian matrix.

@ Computing eigenvectors of a dense matrix is O(N3)

7Smc)la, A., Scholkopf, B., and Muller, K.-R. 1996. Nonlinear component analysis as a kernel eigenvalue problem. Tech.
Rep. 44, Max-Planck-Institut fr biologische Kybernetik, Tubingen.

8Chung, F. 1997. Spectral Graph Theory. Amer. Math. Society Press.

M. Belkin and P. Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. Proceedings of
Advances in Neural Information Processing Systems. Vol. 14, 2002.
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Model selection

@ Most non-parametric methods require choosing some parameter (e.g.
bandwidth h of the kernel).
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@ Two approaches.

» Cross-validation.
» Maximizing thee marginal likelihood.
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Model selection

@ Most non-parametric methods require choosing some parameter (e.g.
bandwidth h of the kernel).

@ Two approaches.

» Cross-validation.
» Maximizing thee marginal likelihood.

@ Automatic procedures to choose these parameters are iterative with
each iteration costing O(N?) or O(N3).
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N-body problems in statistical learning

O(N?) because computations involve considering pair-wise elements.

1 . . .
0A. Gray and A. Moore. N-body problems in statistical learning. In Advances in Neural Information Processing Systems,
pages 521-527, 2001.

Greengard, L. 1994. Fast algorithms for classical physics. Science 265, 5174, 909-914
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N-body problems in statistical learning

O(N?) because computations involve considering pair-wise elements.
N-body problems in statistical learning!®
in analogy with the

Coulombic N-body problems ™ occurring in computational physics.

@ These are potential based problems involving forces or charges.

@ In our case the potential corresponds to the kernel function.

A. Gray and A. Moore. N-body problems in statistical learning. In Advances in Neural Information Processing Systems,
pages 521-527, 2001.

Greengard, L. 1994. Fast algorithms for classical physics. Science 265, 5174, 909-914
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Primitive 1-lterative methods
Reduce training time from O(N?) to O(kN?)

We need to solve the linear system of equation
(K+AD¢ =y.

K is the N x N Gram matrix where [K]; = k(x;, x;).
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K is the N x N Gram matrix where [K]; = k(x;, x;).
@ Direct inversion is O(N3).
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Primitive 1-lterative methods
Reduce training time from O(N?) to O(kN?)

We need to solve the linear system of equation
(K+AD¢ =y.

K is the N x N Gram matrix where [K]; = k(x;, x;).
@ Direct inversion is O(N3).

@ We will use iterative methods like conjugate-gradient to bring it down
to O(kN?)-k is the number of iterations.
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Primitive 1-Iterative methods
Reduce training time from O(N?) to O(kN?)

We need to solve the linear system of equation
(K+AD¢ =y.

K is the N x N Gram matrix where [K]; = k(x;, x;).
@ Direct inversion is O(N3).

@ We will use iterative methods like conjugate-gradient to bring it down
to O(kN?)-k is the number of iterations.

@ The quadratic complexity is due to the matrix-vector product Kq for
some q.
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Primitive 2-Fast Matrix Vector Multiplication
We need a fast algorithm to compute

N

Fly) = aik(y,xi) j=1,...,M.
=1

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 24 / 90



Primitive 2-Fast Matrix Vector Multiplication

We need a fast algorithm to compute

N
Fly) = aik(y,xi) j=1,...,M.
=1

Matrix Vector Multiplication f = Kg

f(y1) k(yi,x1)  k(yi,x) ... k(yi,xn) q
f(y2) _ k(y2,x1)  k(y2,x2) ... k(y2,xn) 92
Flym) Komsx) kmxe) - kOmxw) )\ aw
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Primitive 2-Fast Matrix Vector Multiplication

We need a fast algorithm to compute

N
Fly) = aik(y,xi) j=1,...,M.
=1

Matrix Vector Multiplication f = Kg

f(y1) k(yi,x1)  k(yi,x) ... k(yi,xn) q
f(y2) _ k(y2,x1)  k(y2,x2) ... k(y2,xn) 92
Flym) Komsx) kmxe) - kOmxw) )\ aw

@ Direct computation is O(MN).
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Primitive 2-Fast Matrix Vector Multiplication

We need a fast algorithm to compute

N
fyj) = Zqik(yj,xi) j=1,...,M.
i=1

Matrix Vector Multiplication f = Kg

f(y1) k(yi,x1)  k(yi,x) ... k(yi,xn) q
f(y2) _ k(y2,x1)  k(y2,x2) ... k(y2,xn) 92
Flym) Komsx) kmxe) - kOmxw) )\ aw

@ Direct computation is O(MN).
@ Reduce from O(MN) to O(M + N)

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 24 / 90



Why should O(M + N) be possible?
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Why should O(M + N) be possible?

Exploit the structure in the matrix.

Structured matrix
A dense matrix of order M x N is called a structured matrix if its entries
depend only on O(M + N) parameters.
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Why should O(M + N) be possible?

Exploit the structure in the matrix.

Structured matrix

A dense matrix of order M x N is called a structured matrix if its entries
depend only on O(M + N) parameters.

K is a structured matrix.
[Klj = k(xi,yj)
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Why should O(M + N) be possible?

Exploit the structure in the matrix.

Structured matrix
A dense matrix of order M x N is called a structured matrix if its entries
depend only on O(M + N) parameters.

K is a structured matrix.

[Klij = k(xi,yj)= e~ Ii=yl*/P* (Gaussian kernel)
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Motivating toy example

Consider

Zq,

Direct summation is O(MN)
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Factorize and regroup

N
Gly) = > ailxi—y)
i=1

Vikas C. Raykar (Univ. of Maryland)

PhD Dissertation proposal



Factorize and regroup

N
Gly) = > ailxi—y)
i=1

N
= Z ai(x7 — 2xiyj + y7)
i=1
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Factorize and regroup

N
Gly) = > ailxi—y)
i=1
N
= Z ai(x7 — 2xiyj + y7)
i=1

N N
= [Z QIX,?] — 2y Z qiX;
=1

i=1

-l-yj2

)

i=1
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Factorize and regroup

N
Gly) = > ailxi—y)
i=1
N
= Z ai(x7 — 2xiyj + y7)
i=1

N N
= [Z QIX,?] —2y; ZQIXi +y7
i=1 i=1

= My, — 2yjl\/71 + yJQ/\/IO

i=1

)
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Factorize and regroup

N
Gly) = > ailxi—y)
i=1
N
= Z ai(x7 — 2xiyj + y7)
i=1

N N
= [Z CIiX;2] —2y; Z qiXi
i=1

i=1
= My, — 2)/_,'/\/’1 + yJQ/\/IO

-l-yj2

£

i=1

The moments M,, M;, and My can be pre-computed in O(N).
Hence the computational complexity is O(M + N).
Encapsulating information in terms of the moments.
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Direct vs Fast
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In general
For any kernel K(x,y) we can expand as

K(x,y) =

k=1

Z S (x)Vi(y) + error.
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In general
For any kernel K(x,y) we can expand as

K(x,y) = Zfbk(x)\l/k y) + error.

The fast summation is of the form
P
G(yj) =D _ AVil(y) + error,

where the moments Ay can be pre-computed as

N
A= qidu(x).
i=1
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In general
For any kernel K(x,y) we can expand as

K(x,y) = Zd)k(x VW, (y) + error.

The fast summation is of the form
P
G(yj) =D _ AVil(y) + error,

where the moments Ay can be pre-computed as

N
A= qidu(x).
i=1

@ Organize using data-structures to use this effectively.
@ Give accuracy guarantees.
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Two aspects of the problem

© Approximation theory — series expansions and error bounds.
© Computational geometry — effective data-structures.
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Gaussian kernel

The most commonly used kernel function in machine learning is the
Gaussian kernel

K(x,y) = e lIx—yIP/m
where h is called the bandwidth of the kernel.
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Gaussian kernel

The most commonly used kernel function in machine learning is the
Gaussian kernel ,
—Nw—wvll2
K(x,y) = e IkvIF/P

vyhere h is called the bandwidth of the kernel.
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Notion of e-exact approximation
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Notion of e-exact approximation

@ Direct computation is O(MN).

@ We will compute f(y;) approximately so as to reduce the
computational complexity to O(N + M).

@ Speedup at the expense of reduced precision.
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Notion of e-exact approximation

Direct computation is O(MN).

We will compute f(y;) approximately so as to reduce the
computational complexity to O(N + M).

©

Speedup at the expense of reduced precision.

User provides a accuracy parameter e.

The algorithm computes (y;) such that |7 (y;) — f(y;)| < e.
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Notion of e-exact approximation

(]

Direct computation is O(MN).

We will compute f(y;) approximately so as to reduce the
computational complexity to O(N + M).

©

©

Speedup at the expense of reduced precision.

©

User provides a accuracy parameter e.
The algorithm computes (y;) such that |7 (y;) — f(y;)| < e.

©

The constant in O(N + M) depends on the accuracy e.
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Notion of e-exact approximation

(]

Direct computation is O(MN).

We will compute f(y;) approximately so as to reduce the
computational complexity to O(N + M).

©

©

Speedup at the expense of reduced precision.

©

User provides a accuracy parameter e.

©

The algorithm computes (y;) such that |7 (y;) — f(y;)| < e.

@ The constant in O(N + M) depends on the accuracy e.
@ Smaller the accuracy — Larger the speedup.
@ € can be arbitrarily small.

@ For machine level precision no difference between the direct and the
fast methods.
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Discrete Gauss Transform

N

6(5) = 3" g8
i=1

{qi € R}j=1,...n are the N source weights.
{x; € Rd},-:17.,,,N are the N source points.
{yj € Rd}j:l,...,M are the M target points.

e © e e

h € RT is the source scale or bandwidth.

- Sources |,
+ Targets |~ :
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Outline of the proposal

© Related work
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Fast Fourier Transform (FFT)

@ If the sources and targets are on a uniform grid we can use FFT.
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Fast Fourier Transform (FFT)

@ If the sources and targets are on a uniform grid we can use FFT.

@ Computational complexity is reduced to O(N log N).
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@ For irregularly spaced points can use gridded approximations.
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Fast Fourier Transform (FFT)

@ If the sources and targets are on a uniform grid we can use FFT.
@ Computational complexity is reduced to O(N log N).
@ For irregularly spaced points can use gridded approximations.

@ However no accuracy guarantees.

B. W. Silverman. Algorithm AS 176: Kernel density estimation using the fast Fourier transform. Journal of Royal Statistical
society Series C: Applied statistics, 31(1):93-99, 1982.
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Sparse data-set methods and low rank representation

@ Select a subset of the data.
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Sparse data-set methods and low rank representation

@ Select a subset of the data.

@ Use low rank approximations to the Gram matrix.
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Sparse data-set methods and low rank representation

@ Select a subset of the data.
@ Use low rank approximations to the Gram matrix.
@ Different strategies for selection.

@ However no accuracy guarantees.

Williams, C. K. I. and Seeger, M. 2001. Using the Nystrom method to speed up kernel machines. In Advances in Neural
Information Processing Systems. MIT Press, 682-688.

Smola, A. and Bartlett, B. 2001. Sparse greedy gaussian process regression. In Advances in Neural Information Processing
Systems. MIT Press, 619-625.

Fine, S. and Scheinberg, K. 2001. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning
Research 2, 243-264.

Lee, Y.-J. and Mangasarian, O. 2001. Rsvm: Reduced support vector machines. In First SIAM International Conference on Data
Mining, Chicago.
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Dual-tree methods

@ Organize both the source and target data using a kd-tree.
@ Expand the cross product of the trees.

@ Spend time only where it is essential.

@ Gives accuracy guarantees.
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Dual-tree methods
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@ Expand the cross product of the trees.
@ Spend time only where it is essential.

@ Gives accuracy guarantees.

» However as € goes to zero the algorithm does not scale well.
» No series expansions.
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Dual-tree methods

Organize both the source and target data using a kd-tree.
Expand the cross product of the trees.
Spend time only where it is essential.

Gives accuracy guarantees.

» However as € goes to zero the algorithm does not scale well.
> No series expansions.

Postulated to be O(N) (no proof).
Single tree version is O(N log N)

©

©

A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In SIAM International
conference on Data Mining, 2003.

Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process regression using KD-trees. In Y. Weiss, B. Scholkopf, and J. Platt,
editors, Advances in Neural Information Processing Systems 18. MIT Press, Cambridge, MA, 2006
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Fast Gauss Transform (FGT)

@ ¢ — exact approximation algorithm.
o Computational complexity is O(M + N).

@ Proposed by Greengard and Strain and applied successfully to a few
lower dimensional applications in mathematics and physics.

@ However the algorithm has not been widely used much in statistics,
pattern recognition, and machine learning applications where higher
dimensions occur commonly.

L. Greengard and J. Strain. The fast Gauss transform. SIAM Journal of Scientific and Statistical Computing, 12(1):79-94, 1991
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Constants are important

o FGT ~ O(p?(M + N)).

@ We propose a method Improved FGT (IFGT) which scales as ~
O(dP(M + N)).
p=5

1025
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Outline of the proposal

@ Problems successfully addressed
@ Improved fast Gauss transform
@ Fast optimal bandwidth estimation
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Improved Fast Gauss Transform (IFGT)

© The number of the terms grows exponentially with dimensionality d.
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to the polynomial order.
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» Different series expansion—reduces the number of the expansion terms
to the polynomial order.
© The space subdivision scheme is a uniform box subdivision scheme
which is inefficient in higher dimensions.
> k-center algorithm is applied to subdivide the space which is more
efficient.

© The constant term due to the translation of the far-field Hermite
series to the local Taylor series grows exponentially fast with
dimension.
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Improved Fast Gauss Transform (IFGT)

© The number of the terms grows exponentially with dimensionality d.

» Different series expansion—reduces the number of the expansion terms
to the polynomial order.
© The space subdivision scheme is a uniform box subdivision scheme
which is inefficient in higher dimensions.
> k-center algorithm is applied to subdivide the space which is more
efficient.

© The constant term due to the translation of the far-field Hermite
series to the local Taylor series grows exponentially fast with
dimension.

» No translation — Our expansion can act both as a far-field and local
expansion.
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Brief idea of IFGT 12

C Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in
Neural Information Processing Systems, pages 15611568, 2005. =} = = = = Qe
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Brief idea of IFGT 12

@ Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

12C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in
Neural Information Processing Systems, pages 15611568, 2005.
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Brief idea of IFGT 12

@ Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

@ Step 1 Subdivide the d-dimensional space using a k-center clustering
based geometric data structure (O(N log K)).

o

12C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in
Neural Information Processing Systems, pages 15611568, 2005.
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Brief idea of IFGT 12

@ Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

@ Step 1 Subdivide the d-dimensional space using a k-center clustering
based geometric data structure (O(N log K)).

@ Step 2 Build a p truncated representation of kernels inside each
cluster using a set of decaying basis functions (O(NdP)).

12C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in
Neural Information Processing Systems, pages 15611568, 2005.
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Brief idea of IFGT 12

@ Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

@ Step 1 Subdivide the d-dimensional space using a k-center clustering
based geometric data structure (O(N log K)).

@ Step 2 Build a p truncated representation of kernels inside each
cluster using a set of decaying basis functions (O(NdP)).

@ Step 3 Collect the influence of all the the data in a neighborhood
using coefficients at cluster center and evaluate (O(MdP)).

12C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in
Neural Information Processing Systems, pages 15611568, 2005.
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Sample result

For example in three dimensions and 1 million training and test points
[h=0.4]

@ IFGT — 6 minutes.

@ Direct — 34 hours.

with an error of 108,
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Separate out i and j

For any point x, € RY

N
“MNy:—x:112 /K2
Gly) = > ge i/
i=1
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Separate out i and j

For any point x, € R?

N
“MNy:—x:112 /K2
Gly) = > ge i/
i=1

|
M=

ql.e*||()G*X*)*(Xi*X*)‘|2/h27
i=1
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Separate out i and j

For any point x, € R?

N

“MNy:—x:112 /K2

G(y) = E:qie lyj—=xill*/h
i=1

N
- z:ql.ef||(yj*X*)*(XffX*)H2/h27
i=1
N
- Zqie—IIXf—X*||2/h2e*||yj*><*|\2/h2e2(yJ‘—X*)'(Xf—X*)/h2_

i=1
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Separate out i and j

For any point x, € R?

N

My —x:I12/h2

Gly) = > ge i/
i=1

N
- z:ql.ef||(yj*X*)*(><,'*><*)H2/h27
i=1
N
— Zql.e*HXi*X*”2/’7267”}’]7)(*HZ/hZe2(yj_x*)'(xi_x*)/h2_

i=1

Crux of the algorithm

Separate this entanglement via the Taylor's series expansion of the
exponentials.
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Factorization via multivariate Taylor's series

p—1
eZ(yj—x*).(x,-—x*)/h2 — Z

(75
n! h
n=0

X xi—x\ 1"
*> ( ! p *)] + errory,.
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Factorization via multivariate Taylor's series

eZ(yj—x*).(x,'—x*)/h2 _ pz_l z Vi — X . Xi = % ’ + error,
~ ol h h P

n=

The truncation number p is chosen based on the prescribed error .
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Factorization via multivariate Taylor's series

eZ(yj—x*).(x,'—x*)/h2 _ pz_l z Vi — X . Xi = % ’ + error,
~ ol h h P

n=

The truncation number p is chosen based on the prescribed error .
Using multi-index notation this can be written as

2¢ j T Xx “ i T Rx “

lo|<p—1
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Let us ignore the error and regroup

G ~lxi=xe 2/ gLy —xe |2/ 2 2% [y = x\ " [ xi = x
G(y;) qu - Zla!< h h

i=1 || <p—
(03
S (MX
h
|| <p—1

Moments are precomputed in O(N)

o
2 [ Xi — Xy
C, a.qu i/ ( )
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Let us ignore the error and regroup

.

—llxi—sx 2/ g = llyj=x. |/ 02 2% [y =%\ (X — %
G(x) qu Yi~ Zla!< ;

i=1 la|<p— h
o
SR <VJ—X>
|| <p—1 h

Moments are precomputed in O(N)

o
2 [ Xi — Xy
C, a|2qe i/ ( ) _

Evaluation of C(yj) at M points is O(M).
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Let us ignore the error and regroup

N «
~ —xi—x |12 /B2 —Ilyi—xa |2/ h? 2% Yj — X Xi — X«
Blp) = 3 g xR eyt | g a!< ; ) ( .

i=1 lo]<p—1
o
S <VJ—X
h
lo|<p—1

Moments are precomputed in O(N)

o
2 [ Xi — Xy
o a|2qe Il ( ) .

Evaluation of C(yj) at M points is O(M).
Hence the computational complexity has reduced from the quadratic
O(NM) to the linear O(N + M).
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Space subdivision

@ We expanded around a point x,.
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Space subdivision
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@ Same x, for all the points may require very high truncation numbers.
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Space subdivision

@ We expanded around a point x,.
@ Same x, for all the points may require very high truncation numbers.
@ Divide the N sources into K clusters.

@ We use k-center clustering algorithm.
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k-center clustering example
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Rapid decay of the Gaussian

Since the Gaussian decays rapidly consider only influential clusters.

1
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IFGT

@ Step 0 Choose the parameters.
@ Step 1 Subdivide the source points into K clusters.
@ Step 2 Compute the cluster coefficients at the center of each cluster.

@ Step 3 For each target point sum the contribution from influential
clusters.
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IFGT Illustration
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Complexity

Computational complexity

@) (N log K + Nrip_1)d + Mnr(p_l)d).
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Complexity

Computational complexity
@ (N |0g K+ Nr(p_l)d + I\/lnr(p_l)d). J

@ rp—1)d = (p+g—1) is the total number of d-variate monomials of
degree less than or equal to p — 1.

@ The d-variate monomials can be efficiently evaluated using the
Horner's rule.

@ n is the maximum number of influential clusters.
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Complexity

Computational complexity
@ (N |0g K+ Nr(p_l)d + I\/lnr(p_l)d). J

@ rp—1)d = (p+g—1) is the total number of d-variate monomials of

degree less than or equal to p — 1.

@ The d-variate monomials can be efficiently evaluated using the
Horner's rule.

@ n is the maximum number of influential clusters.

Storage complexity
O(Kr(p_l)d + N+ M) J
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Choosing the parameters

Given any € > 0, we want to choose the following parameters
@ K (the number of clusters),
@ p (the truncation number),
@ and the cut off radius

such that for any target point y; we can guarantee that

G — Gl .
5 <e

where Q = ZlNzl lqil.
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Automatic parameter selection

@ The error bound proposed in the original paper was incorrect and not
tight to be useful in practice.

@ No strategy for choosing the parameters to achieve the desired bound.

@ We propose automatic choice of the algorithm parameters 3 .

3V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast computation of sums of Gaussians in high dimensions.
CS-TR-4767, Department of Computer Science, University of Maryland, CollegePark, 2005.
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Automatic parameter selection

@ The error bound proposed in the original paper was incorrect and not
tight to be useful in practice.

@ No strategy for choosing the parameters to achieve the desired bound.
@ We propose automatic choice of the algorithm parameters 3 .
Strategy

@ Derive tight bounds for the error.

@ Choose the parameters such that the bound is less than e.

3V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast computation of sums of Gaussians in high dimensions.
CS-TR-4767, Department of Computer Science, University of Maryland, CollegePark, 2005.
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Point-wise truncation numbers
@ A tighter point-wise error bound.

@ Truncation number for each source is different.

Vikas C. Raykar (Univ. of Maryland)

PhD Dissertation proposal



Fast multipole methods

@ The FGT belongs to a more general class of methods called fast
multipole methods 4.

@ The general fast multipole methods use two kinds of factorization

@ Far-field expansion and Local expansion.

R, T

14Greengard, L. and Rokhlin, V. 1987. A fast algorithm for particle simulations. J.iof Comp. Physics 73, 2;-325-348.
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Comparison with FGT expansions

Far-field Hermite expansion
S N et AN P Pt
ot =3 () ] ()

Local Taylor expansion

—ly—x;:112/h2 1 I Xx _*ﬁ
v (5555

Compare this with the

Single IFGT expansion

o o o
—lly—xlP /R _ 2% 2/ (X X = 2/p? (Vi T X
e =2 [a!e ( h e h

| >0

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 57 / 90



IFGT expansion is both local as well as far-field

Hence we avoid the expensive translation operation.
p=5

5

10

Absolute Error

- - FGT Hermite
- - FGT Taylor
5| — IFGT Taylor X,
10 . X
-5 0 5
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FGT vs IFGT complexity

FGT IFGT

d || # of boxes | p | # of terms | n | Constant || K | p | # of terms
(Ngge) (p9) term (rp-1)d)

113 9 |9 2| 7.0+002 |5 |9 |9

2109 10 | 100 2| 1.5e+005 || 7 | 15| 120

3| 27 10 | 1000 2 | 1.9e+007 || 15 | 16 | 816

4 | 81 11 | 14641 2 | 3.6e+009 || 29 | 17 | 4845

5 || 243 11 | 161051 2 | 4.3e+011 || 31 | 20 | 42504

6 || 729 12 | 2985984 2 | 9.0e+013 || 62 | 20 | 177100

7 || 2187 14 | 105413504 | 2 | 3.7e+016 || 67 | 22 | 1184040
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FGT vs IFGT complexity

FGT IFGT

d || # of boxes | p | # of terms | n | Constant || K | p | # of terms
(Ngge) (p9) term (rp-1)d)

113 9 |9 2| 7.0+002 |5 |9 |9

2109 10 | 100 2| 1.5e+005 || 7 | 15| 120

3| 27 10 | 1000 2 | 1.9e+007 || 15 | 16 | 816

4 | 81 11 | 14641 2 | 3.6e+009 || 29 | 17 | 4845

5 || 243 11 | 161051 2 | 4.3e+011 || 31 | 20 | 42504

6 || 729 12 | 2985984 2 | 9.0e+013 || 62 | 20 | 177100

7 || 2187 14 | 105413504 | 2 | 3.7e+016 || 67 | 22 | 1184040

Also IFGT simple to code.
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Speedup as a function of N [d =3 and h = 1.0]
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Speedup as a function of N and d
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Speedup as a function of d [h = 2.0]

FGT cannot be run for d > 3
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Speedup as a function of d [h = /d]

IFGT scales well with d.
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Speedup as a function of €

Better speedup for lower precision.

10 ; ; ‘ 10° ‘ ‘ :
—+ Direct
-6 IFGT i
10° -4 FGT
-5
2 &
310 g
]
£ AN g
Fot A N £
d=4{ 107"
0
10 - - - Target error
- - IFGT
” d=4 o -4 FGT
10 = - — = 10 - — - i
10° 10° 108“ 107 10 10" 10° 10 107 10’

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 64 / 90



Speedup as a function of h
Better speedup at larger bandwidths.
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Hyperparameter selection for kernel methods

@ The IFGT can be used in any kernel machine where we encounter
sums of Gaussians.
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Hyperparameter selection for kernel methods

@ The IFGT can be used in any kernel machine where we encounter
sums of Gaussians.

@ Most kernel methods require choosing some hyperparameters (e.g.
bandwidth h of the kernel).

@ Optimal procedures to choose these parameters are O(N?).

@ Most of these procedures involve solving some optimization which
involves taking the derivatives of kernel sums.

@ The derivatives of Gaussian sums involve sums of products of Hermite
polynomials and Gaussians.

j—Xi —(yvi—x:)? .
o Gily) = Ly ity (457) e/ o1 M.
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Hyperparameter selection for kernel methods

@ The IFGT can be used in any kernel machine where we encounter
sums of Gaussians.

@ Most kernel methods require choosing some hyperparameters (e.g.
bandwidth h of the kernel).

@ Optimal procedures to choose these parameters are O(N?).

@ Most of these procedures involve solving some optimization which
involves taking the derivatives of kernel sums.

@ The derivatives of Gaussian sums involve sums of products of Hermite
polynomials and Gaussians.

j—Xi (yi—x:)? .
o Gily) = Ly ity (457) e/ o1 M.

@ Fast algorithms have been developed for such sums.
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Kernel density estimation

@ The most popular method for density estimation is the kernel density
estimator (KDE).
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1 N 1 X — X;
”(X):N;ZK( h )

@ IFGT can be directly used to accelerate KDE.
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Kernel density estimation

@ The most popular method for density estimation is the kernel density
estimator (KDE).

1 N 1 X — X;
”(X):N;ZK( h )

@ IFGT can be directly used to accelerate KDE.

o Efficient use of KDE requires choosing h optimally.
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The bandwidth h is a very crucial parameter

@ As h decreases towards 0, the number of modes increases to the
number of data points and the KDE is very noisy.

@ As h increases towards oo, the number of modes drops to 1, so that
any interesting structure has been smeared away and the KDE just
displays a unimodal pattern.

Small bandwidth h=0.01 Large bandwidth h=0.2
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Fast optimal bandwidth selection

@ The state-of-the-art method for optimal bandwidth selection for
kernel density estimation scales as O(N?).

5Fast optimal bandwidth selection for kernel density estimation. Vikas C. Raykar and Ramani Duraiswami, In Proceedings
of the sixth SIAM International Conference on Data Mining, Bethesda, April 2006, pp:1524-528.
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@ The core part is a fast € — exact algorithm for kernel density
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from O(N?) to O(N).
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Fast optimal bandwidth selection

@ The state-of-the-art method for optimal bandwidth selection for
kernel density estimation scales as O(N?).

@ We present a fast computational technique that scales as O(N) 15.

@ The core part is a fast € — exact algorithm for kernel density
derivative estimation which reduces the computational complexity
from O(N?) to O(N).

@ For example for N = 409,600 points.

» Direct evaluation — 12.76 hours.
» Fast evaluation — 65 seconds with an error of around 10712

5Fast optimal bandwidth selection for kernel density estimation. Vikas C. Raykar and Ramani Duraiswami, In Proceedings
of the sixth SIAM International Conference on Data Mining, Bethesda, April 2006, pp:1524-528.
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Marron Wand normal mixtures
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Speedup for Marron Wand normal mixtures

|| hdiect | hast | Tdirect (sec) | Tast (sec) | Speedup | Rel. Err
1 ] 0.122213 | 0.122215 4182.29 64.28 65.06 1.37e-00!
2 | 0.082591 | 0.082592 5061.42 77.30 65.48 1.38e-00!
3 | 0.020543 | 0.020543 8523.26 101.62 83.87 1.53e-00
4 1 0.020621 | 0.020621 7825.72 105.88 73.91 1.81e-00¢
5 1 0.012881 | 0.012881 6543.52 91.11 71.82 5.34e-00
6 | 0.098301 | 0.098303 5023.06 76.18 65.93 1.62e-00!
7 | 0.092240 | 0.092240 59018.19 88.61 66.79 6.34e-00
8 | 0.074698 | 0.074699 5912.97 90.74 65.16 1.40e-00!
9 | 0.081301 | 0.081302 6440.66 89.91 71.63 1.17e-00!
10 | 0.024326 | 0.024326 7186.07 106.17 67.69 1.84e-001
11 | 0.086831 | 0.086832 5912.23 90.45 65.36 1.71e-00!
12 | 0.032492 | 0.032493 8310.90 119.02 69.83 3.83e-00
13 | 0.045797 | 0.045797 6824.59 104.79 65.13 4.41e-00
14 | 0.027573 | 0.027573 10485.48 111.54 94.01 1.18e-00¢
15 | 0.023096 | 0.023096 11797.34 112.57 104.80 | 7.05e-00
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Speedup for projection pursuit

(@)

(©) (d
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Speedup for projection pursuit

(@)

(©) (d

Image segmentation via PP with optimal KDE took 15 minutes while that
using the direct method takes around 7.5 hours.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 72 / 90



Outline of the proposal

© Work in progress
@ Fast Gaussian process regression
@ Inexact conjugate-gradient
@ Variable bandwidth kernel machines
@ Implicit surface fitting via Gaussian process regression
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Gaussian processes for regression
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Gaussian processes for regression

@ Gaussian processes handle nonparametric regression in a Bayesian
framework.
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Gaussian processes for regression

@ Gaussian processes handle nonparametric regression in a Bayesian
framework.

@ The regression function is represented by an ensemble of functions, on
which we place a Gaussian prior.

@ This prior is updated in the light of the training data.

@ As a result we obtain predictions together with valid estimates of
uncertainty.
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Gaussian process regression

Vikas C. Raykar (Univ. of Maryland)

PhD Dissertation proposal



Gaussian process regression

Regression problem

o Training data T = {x; € R?,y; e R}V,

@ Predict y for a new x.

15

1t

05 .
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Gaussian process model

Model

y="1Ff(x)+e¢
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Gaussian process model

Model
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e cis N(0,02).
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Gaussian process model

Model
y="Ff(x)+e
e cis N(0,02).

@ f(x) is a zero-mean Gaussian process with covariance function
’
K(x,x ).

@ Most common covariance function is the Gaussian.
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Gaussian process model

Model
y="Ff(x)+e
o cis N(0,0?).
@ f(x) is a zero-mean Gaussian process with covariance function
K(x,x).

@ Most common covariance function is the Gaussian.

Infer the posterior

Given the training data ¥ and a new input x, our task is to compute the
posterior p(fi|x., T).
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Solution

@ The posterior is a Gaussian.
@ The mean is used as the prediction.

@ The variance is the uncertainty associated with the prediction.

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 77 / 90



Solution

@ The posterior is a Gaussian.
@ The mean is used as the prediction.

@ The variance is the uncertainty associated with the prediction.
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Direct Training

§=(K+ao’)ly )

@ Direct computation of the inverse of a matrix requires O(N3)
operations and O(N?) storage.

@ Impractical even for problems of moderate size (typically a few
thousands).

@ For example N=25,600 takes around 10 hours, assuming you have
enough RAM.
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[terative methods

An effective way is to solve the following large scale linear system using
iterative methods.

(K+ )¢ =y.
@ The iterative method generates a sequence of approximate solutions
&y at each step which converge to the true solution &.

@ Since K 4 02l is symmetric and positive definite we can use the
conjugate-gradient method.

@ Given a tolerance parameter 0 < 7 < 1 a practical conjugate gradient
scheme iterates till it computes a vector &, such that

ly — Kéxll2 < nlly — Kéollo-
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Computational cost of conjugate-gradient

Requires one matrix-vector multiplication and 5N flops per iteration.
Four vectors of length N are required for storage.
Hence computational cost now reduces to O(kN?).

For example N=25,600 takes around 17 minutes (compare to 10
hours).

Vikas C. Raykar (Univ. of Maryland) PhD Dissertation proposal May 4, 2006 80 / 90



CGH+IFGT

@ The core computational step in each conjugate-gradient iteration is
the multiplication of the matrix K with a vector, say q.

@ Coupled with the CG the IFGT reduces the computational cost of GP
regression to O(N).

@ For example N=25,600 takes around 3 secs. (compare to 10
hours[direct] or 17 minutes[CG]).
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Computational cost

Direct Conjugate Conjugate
Inversion gradient gradient
K=K-+a2l +IFGT
Time \ Space | Time \Space Time \Space
Training phase
=Ky O(N?) | O(N?) | O(N?) | O(N) | O(N) | O(N)
Mean prediction
y =k(x)"¢ O(N?) | O(N) | O(N?) | O(N) | O(N) | O(N)
Uncertainty
k(x, x) O(N3) | O(N) | O(N3) | O(N) | O(N?) | O(N)
—k(x)TK 1k(x)
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How to choose € for inexact CG?

Use the theory of inexact Krylov subspace methods!®
Matrix-vector product may be performed in an increasingly inexact manner

as the iteration progresses and still allow convergence to the solution.
25 : :
10° ; ; ; ‘ ‘ ‘ o CG
-6~ CGHIFGT

20

15 5=10"°

Number of iterations

10 o i
el n= 10_§
5,
_7 0 . .
L L L L L L 2 3 4
1o 0 2 Sieratio 10 12 14 10 10 10
teration N
16

V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM
J. Sci. Comput., 25(2):454-477, 2004.
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IFGT with variable scales

N
My —sx: 112/ h2
G(y) = Zq"e llyj=xill*/h7 .
i=1

Approach: Build a composite factorization that builds a Taylor series for h;
as well.

Resulting IFGT runs at about the same speed.

For example for N = M = 1,024,000 while the direct evaluation takes
around 2.6 days the fast evaluation requires only 4.65 minutes with an
error of around 107>.
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Variable bandwidth density estimation

(@) h=0.05 (b) h=0.70

(c) h=0.36 (d) Variable h
‘
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Segmentation using adaptive mean shift

1.34 hours vs 2.1 minutes
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Implicit surface fitting as a regression problem

GPR_slides.pdf
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GPR_slides.pdf

Point cloud data
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Fitted implicit surface via GPR
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Zero level set of the implicit surface




2 sigma uncertanity surfaces
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3D Point cloud data




Fitted Isosurface




Variance at mesh [sampling effect]

Note variance is
more at places
which have few
datapoints




Outline of the proposal

© Future work
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Future work

@ Combine with dual-tree methods.
@ Inexact eigenvalue methods.

© Preconditioners for the Gram matrix.
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Future work

Combine with dual-tree methods.

Inexact eigenvalue methods.

Preconditioners for the Gram matrix.

Support Vector Machines in the primal.

Fast large scale linear SVMs.

Hyperparameter selection for different methods.

The paradox of the curse of dimensionality.

©000000O0CO

Structure, Inference, and Computation.
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Conclusions

Identified the key computationally intensive primitives in machine
learning.

©

We presented linear time algorithms.

(]

(]

We gave high accuracy guarantees.

@ Unlike methods which rely on choosing a subset of the dataset we use
all the available points and still achieve O(N) complexity.

Applied it to a few machine learning tasks.
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Conclusions

©

Identified the key computationally intensive primitives in machine
learning.

We presented linear time algorithms.

(]

(]

We gave high accuracy guarantees.

@ Unlike methods which rely on choosing a subset of the dataset we use
all the available points and still achieve O(N) complexity.

Applied it to a few machine learning tasks.
Open Issue: Handling fat data (Possibly thousands of attributes).

(]

Can we do better than naive?

(]
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