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Huge data sets containing millions of training examples (tall data) with a large number of at-
tributes (fat data) are relatively easy to gather. However one of the bottlenecks for successful
inference of useful information from the data is the computational complexity of machine learning
algorithms. Most state-of-the-art nonparametric machine learning algorithms have a computa-
tional complexity of either O(N?) or O(N3), where N is the number of training examples. In my
thesis I propose to explore the scalability of machine learning algorithms both with respect to the
number of training examples and the number of attributes per training example and propose lin-
ear O(N) time e-exact approximation algorithms. The area lies at the interface of computational
statistics, machine learning, approximation theory, and computational geometry.
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1. THE EVILS OF LEARNING WITH MASSIVE DATA SETS

During the past few decades is has become relatively easy to gather huge amount
of data, apprehensively called-massive data sets. A few such examples include
genome sequencing, astronomical databases, internet databases, experimental data
from particle physics, medical databases, financial records, weather reports, audio
and video data. We would like to build systems which can automatically extract
useful information from the raw data. Learning is a principled method for distilling
predictive and therefore scientific theories from the data [Poggio and Smale 2003].

In a supervised learning scenario we are given a collection of say N training
examples along with the desired output based on which we learn a concept/model
to draw inferences for examples not in the training set. A few canonical supervised
learning tasks include regression, classification, and density estimation.

The parametric approach to learning assumes a functional form for the model
to be learnt, and then estimates the unknown parameters. Once the model has
been trained the training examples can be discarded. The essence of the training
examples have been captured in the model parameters, using which we can draw
further inferences. However, unless the form of the function is known a priori,
assuming a certain form very often leads to erroneous inference. The nonparametric
methods do not make any assumptions on the form of the underlying function. This
is sometimes referred to as letting the data speak for themselves’ [Wand and Jones
1995]. All the available data has to be retained while making the inference. It should
be noted that nonparametric does not mean the lack of parameters, but rather that
the underlying function/model of a learning problem cannot be indexed with a finite
number of parameters. The number of parameters usually grows with the number
of training data.

One of the major bottlenecks for successful inference using nonparametric meth-
ods is their computational complexity. Most of the current stat-of-the-art nonpara-
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metric machine learning algorithms have the computational complexity of either
O(N?) or O(N3). This has seriously restricted the use of massive data sets. Cur-
rent implementations can handle only a few thousands of training examples. During
the last decade, data set size has outgrown processor speed. This thesis investigates
computationally efficient ways to exploit such large data sets using nonparametric
machine learning algorithms. We use ideas from scientific computing and compu-
tational geometry literature to design novel algorithms that scale as O(N).

1.1 Tall fat data

Consider a data set D of N training examples where each training instance has d
attributes (for example D = {x; € R? y;}¥ ;). One of the other concerns of this
thesis is that our algorithms should also scale well with d. We refer to D as tall
data if N >> d and fat data if d >> N. While most of the available data sets are
tall, it is not uncommon to have tall fat data. A typical example for fat data would
be gene expression data.

2. WEIGHTED SUPERPOSITION OF KERNELS

In most kernel based machine learning algorithms [Shawe-Taylor and Cristianini
2004], Gaussian processes [Rasmussen and Williams 2006], and non-parametric
statistics [Izenman 1991] the key computationally intensive task is to compute a
linear combination of local kernel functions centered on the training data, i.e.,

N
flz) = Z%M%m% (1)

where

—{z; €RYi=1,...,N} are the N training data points,

—{¢i €R,i=1,..., N} are the weights,

—k:R% x RY — R is the local kernel function,

—and z € R is the test point at which f(.) is to be computed.

The computational complexity to evaluate Equation 1 at a given test point is O(N).

For kernel machines (e.g. regularized least squares [Poggio and Smale 2003], sup-
port vector machines [Cristianini and Shawe-Taylor 2000], kernel regression [Wand
and Jones 1995]) f is the regression/classification function. This is a consequence of
the well known classical representer theorem [Wabha 1990] which states that the so-
lutions of certain risk minimization problems involving an empirical risk term and a
quadratic regularizer can be written as expansions in terms of the kernels centered
on the training examples. In case of Gaussian process regression [Williams and
Rasmussen 1996] f is the mean prediction. For non-parametric density estimation
it is the kernel density estimate [Wand and Jones 1995].

Training these models scales as O(N3) since most involve solving the linear sys-
tem of equation

(K + D¢ = y. (2)

K is the N x N Gram matrix where [K]” = k(x;,x;). Also many kernel methods in
unsupervised learning like kernel principal component analysis [Smola et al. 1996],
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spectral clustering [Chung 1997], and Laplacian eigenmaps involve computing the
eigen values of the Gram matrix. Solutions to such problems can be obtained using
iterative methods, where the dominant computation is evaluation of f(x).

Recently, such nonparametric problems have been collectively referred to as V-
body problems in learning [Gray and Moore 2001], in analogy with the coulombic,
magnetostatic, and gravitational N-body potential problems occurring in compu-
tational physics [Greengard 1994]. These problems require the calculation of all
pairwise interactions in a large ensemble of particles.

3. eEXACT APPROXIMATION

In general we need to evaluate Equation 1 at M points {y; € R j=1,...,M},
ie.,

N
f(yj):ZQik(yj’mi)j:L""Ma (3)
=1

leading to the quadratic complexity of O(MN). We will develop fast e-exact al-
gorithms that compute the sum 3 approximately in linear O(M + N) time. The
algorithm is e-exact in the sense made precise below.

DEerFINITION 3.1. For any given ¢ > 0, f is an € — exact approximation to f
if the maximum absolute error relative to the total weight Q = > .", |q;| is upper
bounded by €, i.e.,

max
Yi

(4)
Q
The constant in O(M + N), depends on the desired accuracy €, which however can
be arbitrary. In fact for machine precision accuracy there is no difference between
the direct and the fast methods.

l|f(yj) - f(yj)I] <.

3.1 Matrix vector multiplication

The sum in equation 3 can be thought of as a matriz-vector multiplication

[ =Kaq, (5)

where K is a M x N matrix the entries of which are of the form [KJ;; = k(y;, x;)
and ¢ = [q1,...,qn]" is a N x 1 column vector.

DEFINITION 3.2. A dense matriz of order M x N is called a structured matrix
if its entries depend only on O(M + N) parameters.

The reason we will be able to get O(M + N) algorithms to compute the matrix-
vector multiplication is that the matrix K is a structured matrix, since all the entries
of the matrix are determined by the set of M + N points {x;}¥ , and {y;}M,. If
the entries of the of the matrix K are completely random than we cannot do any
better than O(MN) L.

1This statement should be considered in a deterministic sense. It may be possible to derive e-exact
approximation algorithms in a probabilistic sense
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4. GAUSSIAN KERNEL

The most commonly used kernel function is the Gaussian kernel
k(z,y) = e lle—vll*/h?, (6)

where h is called the bandwidth of the kernel. The bandwidth h controls the degree
of smoothing, of noise tolerance, and of generalization. The Gaussian kernel is a
local kernel in the sense that lim,_y|— k(z,y) = 0.

The sum of multivariate Gaussian kernels is known as the discrete Gauss trans-
form in the scientific computing literature. More formally, for each target point
{y; € Rd}j:Lm,M the discrete Gauss transform is defined as,

N
Clyy) = 3 que I/, 7
i=1

where {¢; € R},=1 _ n are the source weights, {z; € Rd}izl,“.,N are the source
points, i.e., the center of the Gaussians, and h € R™ is the source scale or bandwidth.
In other words G(y;) is the total contribution at y; of N Gaussians centered at x;
each with bandwidth h. Each Gaussian is weighted by the term g;.

The computational complexity to evaluate the discrete Gauss transform (Equa-
tion 7) at M target points is O(MN). This makes the computation for large
scale problems prohibitively expensive. In many machine learning tasks data-sets
containing more than 10* points are already common and larger problems are of
interest.

The Fast Gauss Transform (FGT) is an € — exact approximation algorithm that
reduces the computational complexity to O(M + N), at the expense of reduced
precision, which however can be arbitrary. The constant depends on the desired
precision, dimensionality of the problem, and the bandwidth. Given any e > 0, it
computes an approximation G (y;) to G(y;) such that the maximum absolute error

relative to the total weight Q = Zfil |gi| is upper bounded by e, i.e.,

1G(y;) — G(y;)
Q

5. PROBLEMS SUCCESSFULLY ADDRESSED

As of now the following milestones have been achieved. Brief summaries of the
problems are given below. The detailed reports are attached along with this pro-
posal.

max
Yi

<e (8)

5.1 Fast computation of sums of Gaussians

[Raykar et al. 2005][Raykar and Duraiswami 2005a]

For the FGT the constant factor in O(M + N) grows exponentially with increasing
dimensionality d, which makes the algorithm impractical for dimensions greater
than three. The FGT was first proposed by [Greengard and Strain 1991] and
applied successfully to a few lower dimensional applications in mathematics and
physics. However the algorithm has not been widely used much in statistics, pat-
tern recognition, and machine learning applications where higher dimensions occur
commonly. An important reason for the lack of use of the algorithm in these areas is
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that the performance of the proposed FGT degrades exponentially with increasing
dimensionality, which makes it impractical for the statistics, machine learning, and
pattern recognition applications.

We propose a linear time € — exact approximation algorithm for the Gaussian
kernel which scales well with dimensionality. The constant factor is reduced to
asymptotically polynomial order. The reduction is based on a new multivariate
Taylor’s series expansion (which can act both as a local as well as a far field ex-
pansion) scheme combined with the efficient space subdivision using the k-center
algorithm. The proposed method differs from the original fast Gauss transform
in terms of a different factorization, efficient space subdivision, and the use of
point-wise error bounds. Algorithm details, error bounds, procedure to choose the
parameters and numerical experiments are presented.

5.2 Multivariate kernel density estimation

[Raykar et al. 2005]

As an example we show how the IFGT can be used for very fast e-exact multivariate
kernel density estimation. We also show the effect of e-exact approximation on the
performance of the estimator.

5.3 Optimal bandwidth estimation for KDE

[Raykar and Duraiswami 2005b][Raykar and Duraiswami 2006]

Efficient use of KDE requires the optimal selection of the smoothing parameter
called the bandwidth A of the kernel. For a practical implementation of KDE the
choice of the bandwidth h is very important. Small i leads to an estimator with
small bias and large variance. Large h leads to a small variance at the expense of
increase in bias. The bandwidth A has to be chosen optimally.

Most state-of-the-art automatic bandwidth selection procedures require estima-
tion of quantities involving the density derivatives. The computational complexity
of evaluating the density derivative at M evaluation points given N sample points
from the density scales as O(M N). We propose a computationally efficient e —exact
approximation algorithm for the univariate Gaussian kernel based density deriva-
tive estimation that reduces the computational complexity from O(MN) to linear
O(M + N).

We apply the density derivative evaluation procedure to estimate the optimal
bandwidth for kernel density estimation, a process that is often intractable for large
data sets. We demonstrate the speedup achieved on the bandwidth selection using
the solve-the-equation plug-in method. We also demonstrate that the proposed
procedure can be extremely useful for speeding up exploratory projection pursuit
techniques.

6. WORK IN PROGRESS
6.1 Fast large scale Gaussian process regression

Gaussian processes allow treatment of non-linear non-parametric regression prob-
lems in a Bayesian framework. However the computational cost of training such
a model with N examples scales as O(N?3). Iterative methods can bring this cost
down to O(N?), which is still prohibitive for large datasets. In this paper we use

Dissertation proposal



6 . Vikas Chandrakant Raykar

an e-exact approximation technique, the improved fast Gauss transform to reduce
the computational complexity to O(N), for the squared exponential covariance
function. Using the theory of inexact Krylov subspace methods we show how to
adaptively increase € as the iteration progresses. For prediction at M points the
computational complexity is reduced from O(NM) to O(M + N). We demonstrate
the speedup achieved on large synthetic and real datasets. We also show how the
hyperparameters can be chosen in O(N) time. Unlike methods which rely on se-
lecting a subset of the data set we use all the available data and still get substantial
speedups.

6.2 Implicit surface fitting via Gaussian processes

We use Gaussian process regression, an extremely powerful technique from machine
learning, for surface reconstruction from point cloud data. The surface is defined
implicity as the zero level set of a suitable function. This function is learnt from the
given point cloud data. Rather than estimating the value of a function at a point,
this method gives the entire predictive distribution in a Bayesian framework. As a
result we obtain surface representations together with valid estimates of uncertainty.
The computed uncertainty not only reflects the noise in the point cloud data but
also the effect of irregular sampling of the surface during the scanning process. This
fact is shown to be very useful for sparse representation of surface, mesh saliency
representation, mesh simplification, and real-time re-scanning the surface based on
the computed uncertainties. One of the major bottlenecks for most implicit surface
methods is that their prohibitive computational complexity. This is no different
for Gaussian process regression, the computational complexity of which scales as
O(N?). In this paper we use two different e-exact approximation techniques, the
improved fast Gauss transform and the dual-tree methods both of which reduce
the computational complexity to O(N). Thus we are able to handle data-sets
containing millions of points.

7. FUTURE WORK

The following problems are among those that I wish to formulate well and solve in
the course of this thesis, and in the future.

(1) Dual-tree methods Another class of methods recently proposed for the same
problems are the dual-tree methods [Gray and Moore 2003]. These methods rely
only on data structures like kd-trees and ball tress and not on series expansions.
The dual-tree methods give good speedup for small bandwidths while the series
based methods such as IFGT give good speedup for large bandwidths. I would
like to explore whether these two different techniques can be combined together
to give good speedups both for large and small bandwidths.

(2) Inexact eigenvalue methods Many kernel methods in unsupervised learning
like kernel principal component analysis [Smola et al. 1996], spectral cluster-
ing [Chung 1997], and Laplacian eigenmaps involve computing the eigen values
of the Gram matrix. Solutions to such problems can be obtained using iterative
methods [Saad 1992]. The dominant computation is the matrix-vector multipli-
cation for which we use the IFGT. We need to explore how the approximations
affect the convergence of the iterative methods.
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(3) Preconditioners for the Gram matriz The larger the condition number
(the more ill-conditioned the matrix) slower is the rate of convergence. An
important way around this difficulty is to pre-condition the matrix, so that we
work with a matrix with a small condition number. More specifically we find a
positive-definite symmetric matrix M and solve the system M- K¢ =My,
If the condition number of MK is less than that of K, then the convergence
is faster. We will explore O(N) preconditioners for the Gram matrix.

(4) Fast large scale linear SVMs Linear SVMs are quite powerful for solving
large-scale data-mining tasks such as those arising in the textual domain. There
has been a lot of interest in directly training the SVM in the primal [Keerthi
and DeCoste 2005]. T intend to combine a factorization technique with SVM
primal training to obtain substantial speedups for linear SVMs. An advantage
for the linear case would be that the computation would be exact and no
approximations would be involved, unlike the Gaussian kernel.

(5) The paradoz of the curse of dimensionality. For most machine learn-
ing tasks even though the data is very high dimensional, the true intrinsic
dimensionality is typically very small. We will explore if we can integrate the
dimensionality reduction approaches like PCA and manifold learning methods
into our algorithm. We need to be a bit careful as to not go above our budget.

(6) Epanechnikov kernel For kernel density estimation the Epanechnikov kernel
is the optimal kernel, in the sense that it minimizes the MISE [Wand and Jones
1995]. For the Epanechnikov kernel it is possible to devise a fast method with
zero error. It is a little bit trickier than the IFGT because the kernel has a
compact support. As a result the kernel is discontinuous at the boundary. We
need to use multiresolution trees.

(7) Structure, Inference, and Computation A more ambitious task would be
to explore if there are any deeper connections between structure in the data,
computation, and inference.
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