
Fast large scale Gaussian process regression using
approximate matrix-vector products

Vikas Chandrakant Raykar and Ramani Duraiswami
{vikas,ramani}@umiacs.umd.edu

Department of Computer Science
University of Maryland, CollegePark

March 21, 2007

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 1 / 39

Regression

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Training data D = {xi ∈ Rd , yi ∈ R}N
i=1.

Predict y∗ for a new x∗.

Learn f ∈ F : Rd → R such that y∗ = f (x∗).

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 2 / 39

Regression

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Training data D = {xi ∈ Rd , yi ∈ R}N
i=1.

Predict y∗ for a new x∗.

Learn f ∈ F : Rd → R such that y∗ = f (x∗).

Non-parametric – No parametric assumptions on f .

Bayesian – Predictive distribution for y∗

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 2 / 39

Gaussian process regression 1

A popular Bayesian non-linear non-parametric approach.

The regression function is represented by an ensemble of functions, on
which we place a Gaussian prior.

This prior is updated in the light of the training data.

As a result we obtain predictive distributions.

1
C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 3 / 39

Gaussian process model

Model

y = f (x) + ε

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 4 / 39

Gaussian process model

Model

y = f (x) + ε

ε is N (0, σ2).

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 4 / 39

Gaussian process model

Model

y = f (x) + ε

ε is N (0, σ2).

f is a zero-mean Gaussian process with covariance function K (x , x
′

).

Most common covariance function is the Gaussian.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 4 / 39

Gaussian process model

Model

y = f (x) + ε

ε is N (0, σ2).

f is a zero-mean Gaussian process with covariance function K (x , x
′

).

Most common covariance function is the Gaussian.

Training data

D = {xi ∈ Rd , yi ∈ R}N
i=1

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 4 / 39

Gaussian process model

Model

y = f (x) + ε

ε is N (0, σ2).

f is a zero-mean Gaussian process with covariance function K (x , x
′

).

Most common covariance function is the Gaussian.

Training data

D = {xi ∈ Rd , yi ∈ R}N
i=1

Infer the posterior

Given the training data D and a new input x∗ our task is to compute the
posterior p(f∗|x∗,D).

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 4 / 39

Solution

The posterior is a Gaussian.

The mean is used as the prediction.

The variance is the uncertainty associated with the prediction.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 5 / 39

Solution

The posterior is a Gaussian.

The mean is used as the prediction.

The variance is the uncertainty associated with the prediction.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

3σ
2σ

σ

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 5 / 39

Gaussian Process regression

Notation

Training data D = {xi ∈ Rd , yi ∈ R}N
i=1

K is N × N covariance matrix where [K]ij = K (xi , xj)

y = [y1, . . . , yN]T

k(x∗) = [K (x∗, x1), . . . ,K (x∗, xN)]T

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 6 / 39

Gaussian Process regression

Notation

Training data D = {xi ∈ Rd , yi ∈ R}N
i=1

K is N × N covariance matrix where [K]ij = K (xi , xj)

y = [y1, . . . , yN]T

k(x∗) = [K (x∗, x1), . . . ,K (x∗, xN)]T

The posterior p(f∗|x∗, D) is a Gaussian

Mean k(x∗)
T (K + σ2I)−1y

Variance K (x∗, x∗) − k(x∗)
T (K + σ2I)−1k(x∗)

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 6 / 39

Gaussian Process regression

Notation

Training data D = {xi ∈ Rd , yi ∈ R}N
i=1

K is N × N covariance matrix where [K]ij = K (xi , xj)

y = [y1, . . . , yN]T

k(x∗) = [K (x∗, x1), . . . ,K (x∗, xN)]T

The posterior p(f∗|x∗, D) is a Gaussian

Mean k(x∗)
T (K + σ2I)−1y

Variance K (x∗, x∗) − k(x∗)
T (K + σ2I)−1k(x∗)

Training ξ = (K + σ2I)−1y

Prediction k(x∗)
T ξ =

∑N
i=1 ξiK (x∗, xi)

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 6 / 39

Computational cost
Prediction

f (x∗) =
∑N

i=1 ξiK (x∗, xi)

O(N) cost to predict at a new point x∗.

O(MN) cost to predict at M such points.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 7 / 39

Computational cost
Training

ξ = (K + σ2I)−1y or solve for (K + σ2I)ξ = y

Direct computation of the linear system solution requires O(N3)
operations and O(N2) storage.

Impractical even for problems of moderate size (typically a few
thousands).

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 8 / 39

Computational cost
Training

ξ = (K + σ2I)−1y or solve for (K + σ2I)ξ = y

Direct computation of the linear system solution requires O(N3)
operations and O(N2) storage.

Impractical even for problems of moderate size (typically a few
thousands).

Example

1D regression with N = 25, 600 using Cholesky decomposition
Takes around 10 hours, assuming you have enough RAM.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 8 / 39

A First Step to Speed Up: Iterative methods 3

Conjugate gradient (CG)

(K + λI)ξ = y.

The iterative method generates a sequence of approximate solutions
ξk at each step which converge to the true solution ξ.

Can use the conjugate-gradient 2 method since (K + λI) is symmetric
and positive definite.

2
C. T. Kelley. Iterative Methods for Linear and Non-linear Equations. SIAM, 1995.

3
D. MacKay and M. N. Gibbs. Efficient implementation of Gaussian processes. unpublished, 1997.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 9 / 39

A First Step to Speed Up: Iterative methods 3

Conjugate gradient (CG)

(K + λI)ξ = y.

The iterative method generates a sequence of approximate solutions
ξk at each step which converge to the true solution ξ.

Can use the conjugate-gradient 2 method since (K + λI) is symmetric
and positive definite.

Given a tolerance 0 < η < 1 a practical CG scheme iterates till

‖y − (K + λI)ξk‖2 ≤ η‖y − (K + λI)ξ0‖2.

2
C. T. Kelley. Iterative Methods for Linear and Non-linear Equations. SIAM, 1995.

3
D. MacKay and M. N. Gibbs. Efficient implementation of Gaussian processes. unpublished, 1997.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 9 / 39

A First Step to Speed Up: Iterative methods 3

Conjugate gradient (CG)

(K + λI)ξ = y.

The iterative method generates a sequence of approximate solutions
ξk at each step which converge to the true solution ξ.

Can use the conjugate-gradient 2 method since (K + λI) is symmetric
and positive definite.

Given a tolerance 0 < η < 1 a practical CG scheme iterates till

‖y − (K + λI)ξk‖2 ≤ η‖y − (K + λI)ξ0‖2.

An estimate for the number of iterations required is

k ≥ ln

[
2
√

κ

η

]
/2 ln

[√
κ + 1√
κ − 1

]
.

where κ = λmax/λmin is the spectral condition number.
2
C. T. Kelley. Iterative Methods for Linear and Non-linear Equations. SIAM, 1995.

3
D. MacKay and M. N. Gibbs. Efficient implementation of Gaussian processes. unpublished, 1997.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 9 / 39

Computational cost of conjugate-gradient

Requires one matrix-vector multiplication and 5N flops per iteration.

Four vectors of length N are required for storage.

Hence computational cost now reduces to O(kN2).

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 10 / 39

Computational cost of conjugate-gradient

Requires one matrix-vector multiplication and 5N flops per iteration.

Four vectors of length N are required for storage.

Hence computational cost now reduces to O(kN2).

Example

1D regression with N = 25, 600 with CG(η = 10−3)
Takes around 17 minutes (compare to 10 hours).

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 10 / 39

CG+Fast matrix vector products

The core computational step in each conjugate-gradient iteration is
the multiplication of the matrix K with a vector, say q.

(Kq)j =
∑N

i=1 qik(xi , xj) – O(N2) cost.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 11 / 39

CG+Fast matrix vector products

The core computational step in each conjugate-gradient iteration is
the multiplication of the matrix K with a vector, say q.

(Kq)j =
∑N

i=1 qik(xi , xj) – O(N2) cost.

Think of it as a Matrix Vector Product (MVP)

k(x1, x1) k(x1, x2) . . . k(x1, xN)
k(x2, x1) k(x2, x2) . . . k(x2, xN)

...
...

. . .
...

k(xN , x1) k(xN , x2) . . . k(xN , xN)

︸ ︷︷ ︸
N×N

ξ1

ξ2
...

ξN

︸ ︷︷ ︸
N×1

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 11 / 39

CG+Fast matrix vector products

Fast approximate algorithms have been proposed which can compute
the same in O(N) or O(N log N) time.

◮ Fast Gauss Transform (FGT)
◮ Improved Fast Gauss Transform (IFGT)
◮ Dual-tree methods

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 12 / 39

CG+Fast matrix vector products

Fast approximate algorithms have been proposed which can compute
the same in O(N) or O(N log N) time.

◮ Fast Gauss Transform (FGT)
◮ Improved Fast Gauss Transform (IFGT)
◮ Dual-tree methods

These algorithms compute the sum to a user specified ǫ
precision–|computed value - actual value| ≤ ǫ.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 12 / 39

CG+Fast matrix vector products

Fast approximate algorithms have been proposed which can compute
the same in O(N) or O(N log N) time.

◮ Fast Gauss Transform (FGT)
◮ Improved Fast Gauss Transform (IFGT)
◮ Dual-tree methods

These algorithms compute the sum to a user specified ǫ
precision–|computed value - actual value| ≤ ǫ.

Example

1D regression with N = 25, 600 with CG(η = 10−3) and IFGT(ǫ = 1e−6)
Takes around 3 secs. (compare to 10 hours[direct] or 17 minutes[CG]).

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 12 / 39

Fast matrix vector product algorithms
Fast Gauss Transform

Fast Gauss Transform(FGT)

Gaussian kernel.

Based on Hermite and Taylor expansion of the Gaussian kernel.

Special case of the fast multipole methods used in computational
physics.

Suitable for d ≤ 3.

L. Greengard and J. Strain. The fast Gauss transform. SIAM Journal of Scientific and Statistical
Computing,12(1):79–94, 1991.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. of Comp. Physics, 73(2):325–348, 1987.

Fortran code for the FGT is available at http://math.berkeley.edu/~strain/Codes/index.html .

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 13 / 39

http://math.berkeley.edu/~strain/Codes/index.html

Fast matrix vector product algorithms
Improved Fast Gauss Transform

Improved Fast Gauss Transform(IFGT)

Gaussian kernel.

Based on a single Taylor series expansion.

Scales well with dimensions (d ≤ 10).

Fast Improved Gauss Transform with kd -tree(FIGTree)

New version which uses kd-trees for neighbor searching.

Works well for small and large bandwidths.

The Improved Fast Gauss Transform with applications to machine learning Vikas C. Raykar and Ramani Duraiswami, To
appear in Large Scale Kernel Machines L. Bottou, O. Chapelle, D. Decoste, and J. Weston (Eds), MIT Press 2006.

Fast computation of sums of Gaussians in high dimensions. Vikas C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov,
CS-TR-4767, Department of computer science, University of Maryland, CollegePark.

Efficient Kernel Machines Using the Improved Fast Gauss Transform. Changjiang Yang, Ramani Duraiswami, and Larry
Davis, In Advances in Neural Information Processing Systems, Volume 17, pages 1561-1568, 2005.

C++ source code with MATLAB bindings available under LGPL at
http://www.umiacs.umd.edu/~vikas/Software/software.html .

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 14 / 39

http://www.umiacs.umd.edu/~vikas/Software/software.html

Fast matrix vector product algorithms
Dual tree methods

Dual tree methods

Works for any kernel.

Based on kd-trees or ball trees.

Works well for small bandwidths.

A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In SIAM
International conference on Data Mining, 2003.

Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process regression using KD-trees. In Y. Weiss, B. Scholkopf, and J.
Platt, editors, Advances in Neural Information Processing Systems 18. MIT Press, Cambridge, MA, 2006

The C++ code with MATLAB bindings for the dual-tree algorithms can be downloaded from the website
http://www.cs.ubc.ca/~awll/nbody_methods.html .

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 15 / 39

http://www.cs.ubc.ca/~awll/nbody_methods.html

Comparison of fast methods
Dimension d and bandwidth h

Small dimensions Moderate dimensions Large dimensions
d ≤ 3 3 < d < 10 d ≥ 10

Small bandwidth FIGTree, Dual tree FIGTree, Dual tree FIGTree, Dual tree
h / 0.1

Moderate bandwidth

0.1 / h / 0.5
√

d FIGTree, FGT FIGTree Direct

Large bandwidth

h ' 0.5
√

d FIGTree, FGT FIGTree FIGTree

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 16 / 39

How to choose ǫ?

Two parameters
◮ For conjugate-gradient we specify the convergence tolerance η

(Typically η = 10−3).
◮ For the Fast matrix product we specify an accuracy parameter ǫ

(Typically ǫ = 10−6).

4
V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM

J. Sci. Comput., 25(2):454–477, 2004.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 17 / 39

How to choose ǫ?

Two parameters
◮ For conjugate-gradient we specify the convergence tolerance η

(Typically η = 10−3).
◮ For the Fast matrix product we specify an accuracy parameter ǫ

(Typically ǫ = 10−6).

Coarser the accuracy ǫ – Faster is the algorithm.

4
V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM

J. Sci. Comput., 25(2):454–477, 2004.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 17 / 39

How to choose ǫ?

Two parameters
◮ For conjugate-gradient we specify the convergence tolerance η

(Typically η = 10−3).
◮ For the Fast matrix product we specify an accuracy parameter ǫ

(Typically ǫ = 10−6).

Coarser the accuracy ǫ – Faster is the algorithm.

How does this affect the convergence of CG ?

4
V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM

J. Sci. Comput., 25(2):454–477, 2004.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 17 / 39

How to choose ǫ?

Two parameters
◮ For conjugate-gradient we specify the convergence tolerance η

(Typically η = 10−3).
◮ For the Fast matrix product we specify an accuracy parameter ǫ

(Typically ǫ = 10−6).

Coarser the accuracy ǫ – Faster is the algorithm.

How does this affect the convergence of CG ?

Can ǫ change at every iteration ?

4
V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM

J. Sci. Comput., 25(2):454–477, 2004.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 17 / 39

How to choose ǫ?

Two parameters
◮ For conjugate-gradient we specify the convergence tolerance η

(Typically η = 10−3).
◮ For the Fast matrix product we specify an accuracy parameter ǫ

(Typically ǫ = 10−6).

Coarser the accuracy ǫ – Faster is the algorithm.

How does this affect the convergence of CG ?

Can ǫ change at every iteration ?

Use some recent results in the theory of inexact Krylov subspace
methods 4.

4
V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM

J. Sci. Comput., 25(2):454–477, 2004.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 17 / 39

How to choose ǫ?

At the kth iteration of the CG the approximate MVP can be written
as (A + Ek)vk instead of Avk .

Ek is an error matrix.

Question: How large can ‖Ek‖ be to guarantee convergence?

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 18 / 39

How to choose ǫ?

At the kth iteration of the CG the approximate MVP can be written
as (A + Ek)vk instead of Avk .

Ek is an error matrix.

Question: How large can ‖Ek‖ be to guarantee convergence?

Let rk = ‖Axk − b‖ be the residual at the end of the kth iteration.

Let r̃k be the corresponding residual when an approximate
matrix-vector product is used.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 18 / 39

How to choose ǫ?

At the kth iteration of the CG the approximate MVP can be written
as (A + Ek)vk instead of Avk .

Ek is an error matrix.

Question: How large can ‖Ek‖ be to guarantee convergence?

Let rk = ‖Axk − b‖ be the residual at the end of the kth iteration.

Let r̃k be the corresponding residual when an approximate
matrix-vector product is used.

If at every iteration

‖Ek‖ ≤ lm
1

‖r̃k−1‖
δ,

then after k iterations ‖r̃k − rk‖ ≤ δ.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 18 / 39

How to choose ǫ?

At the kth iteration of the CG the approximate MVP can be written
as (A + Ek)vk instead of Avk .

Ek is an error matrix.

Question: How large can ‖Ek‖ be to guarantee convergence?

Let rk = ‖Axk − b‖ be the residual at the end of the kth iteration.

Let r̃k be the corresponding residual when an approximate
matrix-vector product is used.

If at every iteration

‖Ek‖ ≤ lm
1

‖r̃k−1‖
δ,

then after k iterations ‖r̃k − rk‖ ≤ δ.

Matrix-vector product may be performed in an increasingly inexact manner
as the iteration progresses and still allow convergence to the solution.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 18 / 39

Strategy to choose ǫ?

Given η and δ

ǫk ≤ δ

N

‖y − K̃ξ0‖
‖r̃k−1‖

.

This guarantees that

‖y − K̃ξk‖2

‖y − K̃ξ0‖2

≤ η + δ.

0 2 4 6 8 10 12 14
10

−7

10
−6

10
−5

Iteration

ε

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 19 / 39

Experiments

Datasets

robotarm N = 10, 000 and d = 2.

abalone N = 4, 177 and d = 7.

Evaluation procedure

10-fold cross validation.

standardized mean squared error (SMSE).

Squared exponential covariance function.

K (x , x
′

) = σ2
f exp

(
−

d∑

k=1

(xk − x
′

k)2

h2
k

)
.

Hyperparameters ([h1, . . . , hd , σf , σ]) were selected by optimizing the
marginal likelihood on the subset using the direct method.

Same hyperparmeters used for all methods.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 20 / 39

Experiments

Previous approaches consider a subset of size m chosen from N training
examples.

Methods compared–Training time

Subset of datapoints (SD)–O(m3).

Subset of regressors/projected process (SR and PP)–O(m2N).

Conjugate gradient + IFGT algorithm–O(km).

Conjugate gradient + dual-tree algorithm–O(km).

See Chapter 8 of C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press, 2006.

Code can be downloaded from
http://www.gaussianprocess.org/gpml/code/matlab/doc/.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 21 / 39

http://www.gaussianprocess.org/gpml/code/matlab/doc/

Prediction time
robotarm N = 10, 000 and d = 2.

256 512 1024 2048 4096 8192

10
−2

10
−1

10
0

m

Te
st

in
g

tim
e

(s
ec

s)
robotarm

SD
SR and PP
CG+IFGT
CG+kd−tree

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 22 / 39

Prediction time
abalone N = 4, 177 and d = 7.

256 512 1024 2048 3759

10
−3

10
−2

10
−1

m

Te
st

in
g

tim
e

(s
ec

s)
abalone

SD
SR and PP
CG+IFGT
CG+kd−tree

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 23 / 39

Training time
robotarm N = 10, 000 and d = 2.

256 512 1024 2048 4096 8192

10
−1

10
0

10
1

m

Tr
ai

ni
ng

 ti
m

e
(s

ec
s)

robotarm

SD
SR and PP
CG+IFGT
CG+kd−tree

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 24 / 39

Training time
abalone N = 4, 177 and d = 7.

256 512 1024 2048 3759

10
−1

10
0

10
1

10
2

m

Tr
ai

ni
ng

 ti
m

e
(s

ec
s)

abalone

SD
SR and PP
CG+IFGT
CG+kd−tree

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 25 / 39

SMSE
robotarm N = 10, 000 and d = 2.

256 512 1024 2048 4096 8192
0.13

0.135

0.14

0.145

0.15

0.155

0.16

m

S
M

S
E

robotarm

SD
SR and PP
CG+IFGT
CG+kd−tree

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 26 / 39

SMSE
abalone N = 4, 177 and d = 7.

256 512 1024 2048 3759
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

S
M

S
E

abalone

SD
SR and PP
CG+IFGT
CG+kd−tree

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 27 / 39

Application: Implicit surface fitting

Given a point cloud data find a implicit surface representation.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 28 / 39

Implicit surface fitting
As a regression problem

Point cloud data: A set of N points {xi ∈ R
d}N

i=1 (d = 2, 3).

Find f : R
d → R such that f (xi) = 0, for i = 1, . . . ,N.

Avoid the trivial solution f (x) = 0 – add additional constraints i.e.,
points where the function f is not zero.

Off-surface points f (xi) = di 6= 0, for i = N + 1,

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 29 / 39

2D Example
Off-surface points

negative
off−surface points

positive
off−surface points

on−surface points

surface normals

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 30 / 39

2D Example
Fitted function via Gaussian Process Rregression

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 31 / 39

2D Example
Zero level set of the implicit surface

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 32 / 39

2D Example
two sigma uncertainty surfaces

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 33 / 39

Implicit surface fitting
As Gaussian process regression

One of the major bottlenecks for most implicit surface methods is
their prohibitive computational complexity.

Most approaches scales as O(N3) during training.

Using the proposed approach we can handle point clouds containing
millions of points.

Our training times are comparable with the fastest method a.

a
J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. Reconstruction

and representation of 3d objects with radial basis functions. In ACM SIGGRAPH 2001, pages 67–76, Los Angeles, CA, 2001.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 34 / 39

3D example

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 35 / 39

3D example

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 36 / 39

Variance at the mesh
Variance is more where there are few data points

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 37 / 39

Conclusions

Fast GPR using the conjugate-gradient method coupled with IFGT.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 38 / 39

Conclusions

Fast GPR using the conjugate-gradient method coupled with IFGT.

Accuracy parameter ǫ can increase as iteration progresses.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 38 / 39

Conclusions

Fast GPR using the conjugate-gradient method coupled with IFGT.

Accuracy parameter ǫ can increase as iteration progresses.

Practical for small dimensional datasets (d ≤ 10).

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 38 / 39

Conclusions

Fast GPR using the conjugate-gradient method coupled with IFGT.

Accuracy parameter ǫ can increase as iteration progresses.

Practical for small dimensional datasets (d ≤ 10).

Unlike methods which rely on choosing a subset of the dataset we use
all the available points and still achieve O(N) complexity.

◮ Other approaches – Exact inference in an approximate model.
◮ Our approach – Approximate inference in an exact model.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 38 / 39

Conclusions

Fast GPR using the conjugate-gradient method coupled with IFGT.

Accuracy parameter ǫ can increase as iteration progresses.

Practical for small dimensional datasets (d ≤ 10).

Unlike methods which rely on choosing a subset of the dataset we use
all the available points and still achieve O(N) complexity.

◮ Other approaches – Exact inference in an approximate model.
◮ Our approach – Approximate inference in an exact model.

Applied to implicit surface fitting.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 38 / 39

Conclusions

Fast GPR using the conjugate-gradient method coupled with IFGT.

Accuracy parameter ǫ can increase as iteration progresses.

Practical for small dimensional datasets (d ≤ 10).

Unlike methods which rely on choosing a subset of the dataset we use
all the available points and still achieve O(N) complexity.

◮ Other approaches – Exact inference in an approximate model.
◮ Our approach – Approximate inference in an exact model.

Applied to implicit surface fitting.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 38 / 39

Source code for the IFGT available under LGPL.
http://www.umiacs.umd.edu/~vikas/Software/software.html

Check out our other paper at AISTATS.
A fast algorithm for learning large scale preference relations.

Graduating this semester and am looking for a job.

Vikas C. Raykar (Univ. of Maryland) Learning workshop 2007 March 21, 2007 39 / 39

http://www.umiacs.umd.edu/~vikas/Software/software.html

