
Fast large scale Gaussian process regression using approximate
matrix-vector products

Vikas C. Raykar and Ramani Duraiswami
Department of Computer Science and Institute for advanced computer studies

University of Maryland, College Park, College Park, MD, USA

Abstract

Gaussian processes allow the treatment of
non-linear non-parametric regression prob-
lems in a Bayesian framework. However the
computational cost of training such a model
with N examples scales as O(N3). Iterative
methods for the solution of linear systems can
bring this cost down to O(N2), which is still
prohibitive for large data sets. We consider
the use of ε-exact matrix-vector product al-
gorithms to reduce the computational com-
plexity to O(N). Using the theory of inex-
act Krylov subspace methods we show how
to choose ε to guarantee the convergence of
the iterative methods. We test our ideas us-
ing the improved fast Gauss transform. We
demonstrate the speedup achieved on large
data sets. For prediction of the mean the
computational complexity is reduced from
O(N) to O(1). Our experiments indicated
that for low dimensional data (d ≤ 8) the
proposed method gives substantial speedups.

1 INTRODUCTION

The Gaussian process (GP) is a popular method for
Bayesian non-linear nonparametric regression. Unfor-
tunately its non-parametric nature causes computa-
tional problems for large data sets, due to an unfavor-
able O(N3) time and O(N2) memory scaling for train-
ing. While the use of iterative methods, as first sug-
gested by [10], can reduce the cost to O(kN2) where
k are the number of iterations, this is still too large.
An important subfield of work in GP has attempted
to bring this scaling down to O (

m2N
)

by making
sparse approximations of size m to the full GP where
m ¿ N [24, 18, 3, 9, 2, 21, 20, 19]. Most of these meth-
ods are based on using a representative subset of the
training examples of size m. Different schemes spec-

ify different strategies to effectively choose the subset.
A good review can be found in Ch. 8 of [13] or [12]
for a more recent survey. A recent work [19] considers
choosing m datapoints not constrained to be a subset
of the data. While these methods often work quite
well, there is no guarantee on the quality of the GP
that results from the sparse approximation.

A GP is completely specified by its mean and covari-
ance functions. Different forms of the covariance func-
tion gives us the flexibility to model different kinds of
generative processes. One of the most popular covari-
ance function used is the negative squared exponen-
tial (Gaussian). In this paper we explore an alterna-
tive class of methods that seek to achieve a speed-up
for GP regression by computing an ε-exact approxi-
mation to the matrix-vector product used in the con-
jugate gradient method. Unlike methods which rely
on choosing a subset of the dataset we use all the
available points and still achieve O(N) complexity.
There are at least three methods proposed to accel-
erate the matrix-vector product using approximation
ideas: the dual-tree method [4], the fast Gauss trans-
form (FGT) [6], and the improved fast Gauss trans-
form (IFGT) [26], which have their own areas of appli-
cability and performance characteristics. These meth-
ods claim to provide the matrix-vector product with
a guaranteed accuracy ε, and achieve O(N log N) or
O(N) performance at fixed ε in both time and mem-
ory.

Novel contribution: An important question when
using these methods is the influence of the approxi-
mate matrix-vector product on the convergence of the
iterative method. Obviously these methods converge
at machine precision. However, the accuracy necessary
to guarantee convergence must be studied. Generally
previous papers [26, 16] choose ε to a convenient small
value such as 10−3 or 10−6 based on the application.
We use a more theoretical approach and base our re-
sults on the theory of inexact Krylov subspace meth-
ods. We show that the matrix-vector product may be

performed in an increasingly inexact manner as the
iteration progresses and still allow convergence.

2 GAUSSIAN PROCESS MODEL

While Gaussian processes are covered well elsewhere
(e.g. see [13]), both to establish notation and for com-
pleteness we provide a brief introduction here.

Model: The simplest most often used model for
regression [23] is y = f(x) + ε, where f(x) is a
zero-mean Gaussian process with covariance function
K(x, x

′
) : Rd × Rd → R and ε is independent zero-

mean normally distributed noise with variance σ2, i.e.,
N (0, σ2). Therefore the observation process y(x) is a
zero-mean Gaussian process with covariance function
K(x, x

′
) + σ2δ(x, x

′
).

Inference: Given training data D = {xi, yi}N
i=1 the

N × N covariance matrix K is defined as [K]ij =
K(xi, xj). If we define the vector y = [y1, . . . , yN]T

then y is a zero-mean multivariate Gaussian with co-
variance matrix K + σ2I. Given the training data D
and a new input x∗ our task is to compute the pos-
terior p(f∗|x∗,D). Observing that the joint density
p(f∗,y) is a multivariate Gaussian, the posterior den-
sity p(f∗|x∗,D) can be shown to be [13]

p(f∗|x∗,D) ∼ N (
k(x∗)T (K + σ2I)−1y,

K(x∗, x∗)− k(x∗)T (K + σ2I)−1k(x∗)
)
, (1)

where k(x∗) = [K(x∗, x1), . . . ,K(x∗, xN)]T .

If we define ξ = (K + σ2I)−1y, then the mean predic-
tion and the variance associated with it are

E[f∗] = k(x∗)T ξ, and (2)

Var[f∗] = K(x∗, x∗)− k(x∗)T (K + σ2I)−1k(x∗). (3)

Gaussian covariance: The covariance function has
to be chosen to reflect the prior information about
the problem. For high-dimensional problems, in the
absence of any prior knowledge, the negative squared
exponential (Gaussian) is the most widely used covari-
ance function, and is the one that we use in this paper.

K(x, x
′
) = σ2

f exp

(
−

d∑

k=1

(xk − x
′
k)2

h2
k

)
. (4)

The d + 2 parameters ([h1, . . . , hd, σf , σ]) are referred
to as the hyperparameters.

3 CONJUGATE GRADIENTS

Training: Given the hyperparameters, the training
phase consists of the evaluation of the vector

ξ = (K + σ2I)−1y (5)

which needs the inversion of an N×N matrix K+σ2I.
Direct computation of the inverse of the symmet-
ric matrix (using Cholesky decomposition) requires
O(N3) operations and O(N2) storage, which is im-
practical even for problems of moderate size (typically
a few thousands).

Conjugate gradient method: For larger systems it
is more efficient to solve the system

K̃ξ = y where, K̃ = K + σ2I (6)

using iterative methods, provided the method con-
verges quickly. Modern iterative Krylov subspace
methods show good convergence properties, especially
when preconditioned [8]. Since K̃ is symmetric and
positive definite we can use the well known conjugate-
gradient (CG) method [7] to iteratively solve Eq. (6)
A good exposition of this method can be found in Ch.
2 of [8]. The idea of using conjugate gradient for GP
was first suggested by [10].

Convergence of CG: The iterative method gener-
ates a sequence of approximate solutions ξk at each
step, which converge to the true solution ξ. One of
the sharpest known convergence results for the iter-
ates is given by

‖ξ − ξk‖K̃
‖ξ − ξ0‖K̃

≤ 2
[√

κ− 1√
κ + 1

]2k

, ‖w‖K̃ = wT K̃w (7)

where the K̃-norm of any vector w is defined as above
[8]. The constant κ = λmax/λmin, the ratio of the
largest to the smallest eigenvalues is called the spectral
condition number of the matrix K̃. Since κ ∈ (1,∞),
Equation 7 implies that if κ is close to one, the iterates
will converge very quickly.

Given a tolerance 0 < η < 1 a practical CG scheme
iterates till it computes a vector ξk such that the ratio
of the current residual ‖y−K̃ξk‖2 to the initial residual
is below the tolerance.

‖y − K̃ξk‖2
‖y − K̃ξ0‖2

≤ η. (8)

Most implementations start the iteration at ξ0 = 0,
though a better guess can be used if available. The
relative residual in the Euclidean norm is related to
the relative error in the K̃-norm as [8]

‖y − K̃ξk‖2
‖y − K̃ξ0‖2

≤ √
κ
‖ξ − ξk‖K̃
‖ξ − ξ0‖K̃

≤ 2
√

κ

[√
κ− 1√
κ + 1

]2k

.

(9)
This implies that for a given η the number of iterations
required is

k ≥ ln
[
2
√

κ

η

]
/2 ln

[√
κ + 1√
κ− 1

]
. (10)

Sometimes the estimate (10) can be very pessimistic.
Even if the condition number is large, the convergence
is fast if the eigenvalues are clustered in a few small
intervals [8]. In the examples we consider later conver-
gence was achieved relatively quickly. If convergence
is slow we must consider preconditioning, which is a
topic outside the scope of the present paper.

Computational complexity: The actual implemen-
tation of the CG method requires one O(dN2) matrix-
vector multiplication and 5N flops per iteration. Four
vectors of length N are required for storage. The stor-
age is O(N) since the matrix-vector multiplication can
use elements computed on the fly and not storing the
entire matrix. Empirically the number of iterations
required is generally small compared to N leading to
a computational cost of O(kdN2). It should be noted
that the O(N) space comes at a time trade-off. If the
matrix is cached (i.e. O(N2) memory) then the com-
putational cost is O(dN2 + kN2).

4 FAST MATRIX-VECTOR
PRODUCTS

The quadratic complexity is still too high for large
datasets. The core computational step in each CG
iteration involves the multiplication of the matrix K
with some vector, say q. The jth element of the
matrix-vector product Kq can be written as (Kq)j =∑N

i=1 qik(xi, xj).

In general for each target point {tj ∈ Rd}M
j=1 (which

in our case are the same as the source points xi) this
can be written as

G(tj) =
N∑

i=1

qik(xi, tj). (11)

The computational complexity to evaluate (11) at M
target points is O(MN). For the Gaussian kernel var-
ious approximation algorithms have been proposed to
compute the above sum in O(M + N) time. These
algorithms compute the sum to any arbitrary ε pre-
cision. Broadly there are two kinds of methods–the
series based methods and data structure based meth-
ods.

Series based methods: These methods are inspired
by the fast multipole methods (FMM) which were orig-
inally developed for the fast summation of the po-
tential fields generated by a large number of sources,
such as those arising in gravitational potential prob-
lems [5]. The fast Gauss transform (FGT) is a special
case where FMM ideas were used for the Gaussian po-
tential [6]. The improved fast Gauss transform (IFGT)
is a similar algorithm based on a single different fac-
torization and data structures. It is suitable for higher

dimensional problems and provides comparable perfor-
mance in lower dimensions [26].

Data structure based methods: Another class
of methods proposed are the dual-tree methods [4].
These methods rely on space partitioning trees like
kd-trees and ball trees and not on series expansions.

5 THE ACCURACY ε, NECESSARY

Obviously the accuracy, ε, that minimizes work while
achieving the best performance must be chosen. How-
ever, determining this quantity in a principled way is
often difficult. Most previous methods choose ε to a
convenient small value such as 10−3 or 10−6 based on
the application and a posteriori analysis. Indeed, one
can in principle adaptively vary ε as the iteration pro-
ceeds. We were however able to use some recent results
from linear algebra [17] and analyze the effect of the
choice of ε on the CG method.

Krylov subspace method: The conjugate gradi-
ent method is a Krylov subspace method adapted
for a symmetric positive definite matrix. Krylov
subspace methods at the kth iteration compute an
approximation to the solution of any linear sys-
tem Ax = b by minimizing some measure of error
over the affine space x0 + Kk, where x0 is the ini-
tial iterate and the kth Krylov subspace is Kk =
span(r0, Ar0, A

2r0, . . . , A
k−1r0). The residual at the

kth iterate is rk = b−Axk.

Inexact Krylov subspace method: A general
framework for understanding the effect of approximate
matrix-vector products on Krylov subspace methods
for the solution of symmetric and nonsymmetric lin-
ear systems of equations is given in [17]. The paper
considers the case where at the kth iteration instead of
the exact matrix-vector multiplication Avk, the prod-
uct

Avk = (A + Ek)vk (12)

is computed, where Ek is an error matrix which may
change as the iteration proceeds. A nice result in the
paper shows how large ‖Ek‖ can be at each step while
still achieving convergence with the desired tolerance.
Let rk = ‖Axk−b‖ be the residual at the end of the kth

iteration. Let r̃k be the corresponding residual when
an approximate matrix-vector product is used. If at
every iteration

‖Ek‖ ≤ lm
1

‖r̃k−1‖δ, (13)

then at the end of k iterations ‖r̃k− rk‖ ≤ δ [17]. The
term lm in general is unavailable since it depends on
knowing the spectrum of the matrix. However our
empirical results and also some experiments in [17]

suggest that lm = 1 seems to be a reasonable value.
This shows that the matrix-vector product may be
performed in an increasingly inexact manner as the
iteration progresses and still allow convergence to the
solution.

ε-exact approximation: We will use the following
notion of ε-exact approximation as used previously
in [6, 26, 14]. Given any ε > 0, Ĝ(tj) is an ε-exact
approximation to G(tj) if the maximum absolute er-
ror relative to the total weight Q =

∑N
i=1 |qi| is upper

bounded by ε, i.e.,

max
tj

[
|Ĝ(tj)−G(tj)|

Q

]
≤ ε. (14)

For our problem because of the ε-exact approximation
criterion (Equation 14) every element in the approx-
imation to the vector Kq is within ±Qεk of the true
value, where Q =

∑N
i=1 |qi| and εk is the error in the

matrix vector product at the kth iteration. Hence the
error matrix Ek is of the form

Ek = εk

±e11 . . . ±e1N

...
. . .

...
±eN1 . . . ±eNN

 , (15)

where eij = sign(qj) ∈ (+1,−1). It should be noted
that this matrix is an upper bound rather than the
actual error matrix. It can be seen that ‖Ek‖ = Nεk.
Hence Equation 13 suggests the following strategy to
choose εk.

εk ≤ δ

N

‖y − K̃ξ0‖
‖r̃k−1‖ . (16)

This guarantees that

‖y − K̃ξk‖2
‖y − K̃ξ0‖2

≤ η + δ. (17)

Figure 1 shows the εk selected at each iteration for a
sample regression problem. As the iteration progresses
the εk required increases.

6 PREDICTION

Once ξ is computed in the training phase, the mean
prediction for any new x∗ is given by E[f∗] =
k(x∗)T ξ =

∑N
i=1 ξik(xi, x∗). Predicting at M points

is again a matrix vector multiplication operation. Di-
rect computation of E[f∗] at M test points due to
the N training examples is O(NM). Using the fast
matrix-vector product reduces the computational cost
to O(N + M).

The variance for each prediction is given by Var[f∗] =
K(x∗, x∗)−k(x∗)T (K+σ2I)−1k(x∗). First we need to

0 2 4 6 8 10 12 14
10

−7

10
−6

10
−5

Iteration

ε

Figure 1: The error for the IFGT εk selected at each
iteration for a sample 1D regression problem. The
error tolerance for the CG was set to η = 10−3 and
δ = 10−3.

solve a linear system with K+σ2I during the training
phase via some suitable decomposition. Once the de-
composition is computed for each x the computation
of uncertainty is O(N2). For M points it is O(MN2).
Using the conjugate gradient method and the IFGT
we can compute K̃−1k(x∗) in O(kN) time. For M
points we need O(kMN) time.

Table 1 compares the computational and space com-
plexities for different stages of Gaussian process regres-
sion using different methods.

7 EXPERIMENTS

Datasets: We use the following two datasets – rob-
otarm 1[dataset size N = 10, 000, dataset dimen-
sion d = 2] and abalone 2[N = 4, 177, d = 7].
The datasets are chosen to be representative of low
and medium dimensions respectively. These are also
known to be highly non-linear regression problems and
widely used to benchmark regression algorithms.

Evaluation Procedure: For each dataset 90% of
the examples were used for training and the remain-
ing 10% were used for testing. The results are shown
for a ten-fold cross validation experiment. The inputs
are linearly re-scaled to have zero mean and unit vari-
ance on the training set. The outputs are centered
to have zero mean on the training set. The mean

1 A synthetic 2-d nonlinear robot arm mapping prob-
lem [11]. The data is generated according to f(x1, x2) =
2.0 cos(x1) + 1.3 cos(x1 + x2). The value of x1 is chosen
randomly in [−1.932,−0.453] and x2 is chosen randomly
in [0.534, 3.142] as in [13]. The target values are obtained
by adding Gaussian noise of variance 0.1 to f(x1, x2).

2The task is to predict the age of abalone (number
of rings) from physical measurements. Downloaded
from http://www.liacc.up.pt/~ltorgo/Regression/
DataSets.html

Table 1: The dominant computational and space complexities. We have N training points and M test points
in d dimensions. k is the number of iterations required by the conjugate gradient procedure to converge to a
specified tolerance. The memory requirements are for the case where the Gram matrix is constructed on the
fly at each iteration. For the fast MVM procedure, the constant D grows with d depending on the type of fast
MVM used.

Direct Method Conjugate gradient Conjugate gradient+Fast MVM
Time Space Time Space Time Space

Training O(N3) O(N2) O(kdN2) O(dN) O(kDN) O(dN +D)
Prediction O(dMN) O(dM + dN) O(DM +DN) O(dM + dN +D)
Uncertainty O(MN2) O(kdMN2) O(dM + dN) O(kDMN) O(dM + dN +D)

squared error (MSE) is defined as the squared error
between the mean prediction and the actual value av-
eraged over the test set. Since the MSE is sensitive to
the overall scale of the target values we normalize it
by the variance of the targets of the test cases to ob-
tain the standardized mean squared error (SMSE) [13].
This causes the trivial method of guessing the mean of
the training targets to have a SMSE of approximately
1. For all the experiments we used the squared expo-
nential covariance function (Equation 4). The d + 2
hyperparameters ([h1, . . . , hd, σf , σ]) were selected by
optimizing the marginal likelihood on the subset using
the direct method (automatic relevance determination
(ARD) [23]) 3. For all methods the same hyperparam-
eters were used. For larger subsets where we cannot
find the hyperparameters directly we use the one com-
puted from the largest possible subset.

Fast Matrix-Vector multiplication algorithms:
In order to compute the matrix-vector product we ex-
perimented with two algorithms–(1) the IFGT 4 [26]
and (2) the kd-tree based dual-tree algorithm 5 [4].
However it should be noted that the results regarding
the choice of ε hold for any fast algorithm.

With regard to the bandwidth–the general trend is
that IFGT shows better speedups for large bandwidths
while the dual-tree algorithm performs better at small
bandwidths. In our experiments–for the hyperparam-
eters chosen by the ARD procedure–we found that the
IFGT gave better speedups than the dual-tree meth-
ods.

The IFGT requires the choice of two parameters (trun-
cation number p and the number of clusters K) such
that the actual error will be less than the desired. The
IFGT originally proposed [26] did not specify how to
choose these parameters and the error bound speci-

3Code downloaded from http://www.
gaussianprocess.org/gpml/code/matlab/doc/.

4The IFGT code was downloaded from http://www.cs.
umd.edu/~vikas/code/IFGT/IFGT_code.htm

5The dual-tree code was downloaded from http://www.
cs.ubc.ca/~awll/nbody_methods.html

fied there was also not tight. However, recent work
by the developers [14] has given an optimal way to
choose the parameters and is part of the code avail-
able online. Another issue was that in the IFGT code
the bandwidth hk has to be the same for all dimen-
sions. However this was easily addressed by dividing
each co-ordinate with the corresponding bandwidth hk

and then using the IFGT with a bandwidth h = 1.

7.1 RESULTS

Figure 2 shows the total training time, the SMSE, and
the total prediction time for the two datasets as a
function of the number of datapoints. For each fold
a subset of the training data of size m was selected at
random. The process was repeated 10 times. m was
progressively increased to get a learning curve. All the
experiments were run on a 1.83 GHz processor with
1GB of RAM. We show the scaling behavior for the
following four methods.

1. Subset of datapoints (SD) This is simply the
direct implementation with a subset of the train-
ing data. The subset is chosen randomly. The
training and prediction time scale as O(m3) and
O(mM) respectively. M is the total number of
test points.

2. Subset of regressors/projected process (SR
and PP) (See Chapter 8 in [13] for a description of
these methods.) The training and prediction time
scale as O(m2N) and O(mM) respectively. N is
the total number of training points. The SR and
PP methods have the same predictive mean. The
recent paper [19] also has the same computational
complexity 6.

3. Proposed method with IFGT (CG+IFGT)
The training and prediction time scale as O(km)
and O(m+M) respectively. The tolerance for the

6Also it is expected to be much more expensive because
of the optimization procedure to find the location of the
pseudo-inputs.

256 512 1024 2048 4096 8192

10
−1

10
0

10
1

m

T
ra

in
in

g
tim

e
(s

ec
s)

robotarm

SD
SR and PP
CG+IFGT
CG+kd−tree

(a)

256 512 1024 2048 4096 8192
0.13

0.135

0.14

0.145

0.15

0.155

0.16

m

S
M

S
E

robotarm

SD
SR and PP
CG+IFGT
CG+kd−tree

(b)

256 512 1024 2048 4096 8192

10
−2

10
−1

10
0

m

T
es

tin
g

tim
e

(s
ec

s)

robotarm

SD
SR and PP
CG+IFGT
CG+kd−tree

(c)

256 512 1024 2048 3759

10
−1

10
0

10
1

10
2

m

T
ra

in
in

g
tim

e
(s

ec
s)

abalone

SD
SR and PP
CG+IFGT
CG+kd−tree

(d)

256 512 1024 2048 3759
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

S
M

S
E

abalone

SD
SR and PP
CG+IFGT
CG+kd−tree

(e)

256 512 1024 2048 3759

10
−3

10
−2

10
−1

m

T
es

tin
g

tim
e

(s
ec

s)

abalone

SD
SR and PP
CG+IFGT
CG+kd−tree

(f)

Figure 2: (a) The total training time, (b) the SMSE, and (c) the testing time as a function of m for the robotarm
dataset. The errorbars show one standard deviation over a 10-fold experiment. The results are slightly displaced
w.r.t. the horizontal axis for clarity. The lower panel show the same for the abalone dataset.

conjugate gradient procedure η was set to 10−3

and the δ in Equation 17 for IFGT was set to
10−3. The accuracy for testing using IFGT was
set to ε = 10−6.

4. Proposed method with kd-tree(CG+kd-tree)
Same as above but using kd-tree instead of the
IFGT.

The following observations can be made:

• From Figure 2(a) it can be seen that as m in-
creases the training time for the proposed method
increases linearly in contrast to the quadratic in-
crease for the SD method. The SR and PP meth-
ods have small training times only for small m.

• As m increases the general trend for all methods
is that SMSE decreases (see Figure 2(b)).

• It is not surprising that SR and PP show the least
SMSE. This is because SR and PP use all the
datapoints while retaining m of them as the active
set. However the proposed method can still catch
up with the SMSE of SR and PP and still have a
significantly lower running time.

• Regarding the testing time the proposed method
shows significant speedups.

• As the dimension of the problem increases the
cutoff point, i.e., N at which the proposed fast
method is better than the direct method in-
creases.

• At the hyperparameters chosen, the dual-tree al-
gorithms ended up taking larger time than the di-
rect method probably because of the time taken
to build up the kd-trees.

For large dimensional data the fast algorithms like
IFGT and dual-tree methods do not scale well. We
were unable to get good speedups for high dimensional
datasets like SARCOS 7 (a 21 dimensional robot arm
dataset) using the IFGT. However either the subset
of data or PP/SR methods can be used with a higher
dimensional data set such as SARCOS.

8 IMPLICIT SURFACE FITTING

Recently implicit models for surface representation are
gaining popularity [1, 15, 22]. An implicit represen-
tation describes the surface S as the set of all points
where a certain smooth function, f : Rd → R vanishes,
i.e., S = f−1(0) = {x ∈ Rd such that f(x) = 0}. Once

7http://www.gaussianprocess.org/gpml/data/

negative
off−surface points

positive
off−surface points

on−surface points

surface normals

Figure 3: Appending the positive and the negative off-
surface points along the surface normals at each point.

we have a representation f it can be evaluated on a
grid in Rd and an explicit representation can be formed
as a mesh of polygons for visualization purposes–often
referred to as isosurface extraction.

Given a set of N points {xi ∈ Rd}N
i=1 (d = 3 for sur-

face fitting) lying on a smooth manifold S we have
to find a function f : Rd → R such that f(xi) =
0, for i = 1, . . . , N , and it smoothly interpolates
for any other x ∈ Rd. In order to avoid the triv-
ial solution f(x) = 0 we need to add additional con-
straints, i.e., points where the function f is not zero.
Such additional points are referred to as the off-surface
points. So the formulation now is to find a func-
tion f such that f(xi) = 0, for i = 1, . . . , N and
f(xi) = di 6= 0, for i = N + 1, For generating the
off-surface points we use the following scheme [1]. We
append each data point xi with two off-surface points
x+

i and x−i , one on each side of the surface as shown
in Figure 3. The off-surface points are generated by
projecting along the surface normals at each point. It
should be ensured that the surface normals are consis-
tently oriented. We use the signed-distance function
for the off-surface points. The value of the function
is chosen to be the distance to the closest on-surface
point. Points outside the surface are assigned a pos-
itive value while those inside the surface are given a
negative value. We ensure that the off-surface points
do not intersect the underlying surface using the nor-
mal length validation scheme described in [1].

We have used Gaussian process regression to learn this
function from the point cloud data. One of the major
bottlenecks for most implicit surface methods is their
prohibitive computational complexity, and this applies
to Gaussian process regression as well, the computa-
tional complexity of which scales as O(N3). Using the
propose method we were able to handle large data-sets.
Since surface fitting in done in d = 3 IFGT gave good
speedups. Figure 4 shows the fitted surface for the
bunny data. It took 6 minutes to fit the model using

Figure 4: The isosurface extracted using the function
learnt by Gaussian Process regression. The point cloud
data is also shown. It took 6 minutes to learn this
implicit surface form 10, 000 surface points.

10,000 surface points. Note that the actual number of
points used for Gaussian process regression is 30,000
due to the off-surface points. We were unable to run
the direct method on such large datasets. Unlike re-
gression for surface fitting we would like to use all the
available data to get accurate surface reconstruction.
The IFGT was also used for isosurface extraction.

9 DISCUSSION/FURTHER ISSUES

We have demonstrated that the approximate fast ma-
trix vector products achieved by ε-exact methods such
as the improved fast Gauss transform can achieve a
fast solution of the Gaussian process regression. The
following are the contributions of this paper:

(1) We show that the training time for GP regres-
sion is reduced to linear O(N) by using the conjugate-
gradient method coupled with the IFGT. The predic-
tion time per test input is reduced to O(1).

(2) Using results from the theory of inexact Krylov
subspace methods we show that the matrix-vector
product may be performed in an increasingly inexact
manner as the iteration progresses and still allow con-
vergence to the correct solution.

(3) Our experiments indicated that for low dimen-
sional data (d ≤ 8) the proposed method gives sub-
stantia speedups.

The idea of speeding up matrix-vector multiplication
for Gaussian process regression was first explored in
[16]–who use kd-trees to speed up the matrix-vector
multiplication. The main contribution of this paper is
a strategy to choose ε while using such methods.

While the scope of this paper is to speed up the original
GPR it should be noted that methods which use a
subset of the data [24, 18, 3, 9, 2, 21, 20] can also

be further speeded up using these algorithms. This
is because even these methods require matrix-vector
products to be taken with a smaller subset of the data.

One drawback of the IFGT is that it is specific to the
Gaussian kernel. For other covariance functions, like
the Matern class of kernels–fast algorithms can be de-
veloped. The results presented in this paper, regarding
the choice of ε should hold independent of the covari-
ance function used.

It would also be interesting to explore whether the
techniques presented here can be used to speedup clas-
sification [25] using a Gaussian process model.

References

[1] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J.
Mitchell, W. R. Fright, B. C. McCallum, and T. R.
Evans. Reconstruction and representation of 3d ob-
jects with radial basis functions. In ACM SIGGRAPH
2001, pages 67–76, Los Angeles, CA, 2001.

[2] L. Csato and M. Opper. Sparse on-line gaussian pro-
cesses. Neural Computation, 14(3):641–668, 2002.

[3] S. Fine and K. Scheinberg. Efficient SVM training
using low-rank kernel representations. Journal of Ma-
chine Learning Research, 2:243264, December 2001.

[4] A. G. Gray and A. W. Moore. Nonparametric den-
sity estimation: Toward computational tractability. In
SIAM International conference on Data Mining, 2003.

[5] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. J. of Comp. Physics, 73(2):325–
348, 1987.

[6] L. Greengard and J. Strain. The fast Gauss transform.
SIAM Journal of Scientific and Statistical Computing,
12(1):79–94, 1991.

[7] M. R. Hestenes and E. Stiefel. Methods of conjugate
gradients for solving linear systems. Journal of Re-
search of the National Bureau of Standards, 49:409–
436, 1952.

[8] C. T. Kelley. Iterative Methods for Linear and Non-
linear Equations. SIAM, 1995.

[9] N. Lawrence, M. Seeger, and R. Herbrich. Advances
in Neural Information Processing Systems 15, chapter
Fast Sparse Gaussian Process methods: The Informa-
tive Vector Machine, pages 625–632. MIT Press, 2003.

[10] D. MacKay and M. N. Gibbs. Efficient implementa-
tion of Gaussian processes. unpublished, 1997.

[11] D. J. C. MacKay. A practical Bayesian framework
for backpropagation networks. Neural Computation,
4:448–472, 1992.

[12] J. Quiñonero Candela and C. E. Rasmussen. A uni-
fying view of sparse approximate gaussian process
regression. Journal of Machine Learning Research,
6:1935–1959, 2005.

[13] C. E. Rasmussen and C. K. I. Williams. Gaussian Pro-
cesses for Machine Learning. The MIT Press, 2006.

[14] V. C. Raykar, C. Yang, R. Duraiswami, and
N. Gumerov. Fast computation of sums of Gaussians
in high dimensions. Technical Report CS-TR-4767,
Department of Computer Science, University of Mary-
land, CollegePark, 2005.

[15] B. Schölkopf, J. Giesen, and S. Spalinger. Kernel
methods for implicit surface modeling. In Lawrence K.
Saul, Yair Weiss, and Léon Bottou, editors, Advances
in Neural Information Processing Systems 17, pages
1193–1200. MIT Press, Cambridge, MA, 2005.

[16] Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process
regression using KD-trees. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information
Processing Systems 18. MIT Press, Cambridge, MA,
2006.

[17] V. Simoncini and D. B. Szyld. Theory of inexact
Krylov subspace methods and applications to scien-
tific computing. SIAM J. Sci. Comput., 25(2):454–
477, 2004.

[18] A. Smola and B. Bartlett. Sparse greedy gaussian
process regression. In Advances in Neural Information
Processing Systems, page 619625. MIT Press, 2001.

[19] E. Snelson and Z. Ghahramani. Sparse Gaussian pro-
cesses using pseudo-inputs. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information
Processing Systems 18. MIT Press, Cambridge, MA,
2006.

[20] M. Tipping. Sparse bayesian learning and the rele-
vance vector machine. Journal of machine learning
research, 1:211–244, 2001.

[21] V. Tresp. A bayesian committee machine. Neural
Computation, 12(11):2719–2741, 2000.

[22] C. Walder, O. Chapelle, and B. Schölkopf. Implicit
surface modelling as an eigenvalue problem. In Pro-
ceedings of the 22nd International Conference on Ma-
chine Learning, pages 937 – 944, 2005.

[23] C. K. I. Williams and C. E. Rasmussen. Gaussian
processes for regression. In Advances in Neural Infor-
mation Processing Systems, volume 8, 1996.

[24] C. K. I. Williams and M. Seeger. Using the Nyström
method to speed up kernel machines. In Advances in
Neural Information Processing Systems, page 682688.
MIT Press, 2001.

[25] C. K. I. Willimas and D. Barber. Bayesian clas-
sification with Gaussian processes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
20(12):1342–1351, 1998.

[26] C. Yang, R. Duraiswami, and L. Davis. Efficient kernel
machines using the improved fast Gauss transform. In
L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances
in Neural Information Processing Systems 17, pages
1561–1568. MIT Press, Cambridge, MA, 2005.

