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Gaussian processes (GP) allow the treatment of
non-linear non-parametric regression problems in a
Bayesian framework [6].  Unfortunately its non-
parametric nature causes computational problems for
large data sets, due to an unfavorable O(N?) time and
O(N?) memory scaling for training.

The key computational task involves inversion of an
N x N covariance matrix K + 0?1, where [K];; =
K(z;,z;), K is the covariance function of the GP, and
o2 is the noise variance. Direct computation of the in-
verse requires O(N?3) operations and O(N?) storage,
which is impractical even for problems of moderate size
(typically a few thousands).

An important subfield of work in GP has attempted to
bring this scaling down to O (mQN ) by making sparse
approximations of size m to the full GP where m < N
(see [5] for a survey). Most of these methods are based
on using a representative subset of the training ex-
amples of size m. Different schemes specify different
strategies to effectively choose the subset. While these
methods often work well, there is no guarantee on the
quality of the GP that results from the sparse approx-
imation. These methods can be considered to provide
exact inference in an approximate model.

An alternate class of methods is to use iterative meth-
ods like conjugate-gradient (CG) for the solution of
linear system [3], instead of directly computing the in-
verse. The use of iterative methods, as first suggested
by [4], can reduce the cost to O(kN?) where k are
the number of iterations. The iterative method gener-
ates a sequence of approximate solutions at each step,
which converge to the true solution. While iterating
till £ = N gives the exact solution a practical CG
scheme iterates till a specified tolerance. In contrast
to the subset of the dataset methods these methods
can be considered to provide approzimate inference in
an exact model.

The core computational step contributing to the
quadratic complexity in each CG iteration involves the
multiplication of the matrix K with some vector. We
consider the use of e-exact matrix-vector product al-
gorithms to reduce the computational complexity to
O(N). There are at least three methods proposed to
accelerate the matrix-vector product using approxima-
tion ideas: the dual-tree method [1], the fast Gauss
transform (FGT) [2], and the improved fast Gauss
transform (IFGT) [7], which have their own areas of
applicability and performance characteristics. These
methods claim to provide the matrix-vector product
with a guaranteed accuracy ¢, and achieve O(N log N)
or O(N) performance at fixed € in both time and mem-
ory.

An important question when using these methods is
the influence of the approximate matrix-vector prod-
uct on the convergence of the iterative method. Obvi-
ously these methods converge at machine precision.
However, the accuracy necessary to guarantee con-
vergence must be studied. Generally previous pa-
pers [10, 8] choose € to a convenient small value such as
1073 or 10~ % based on the application. We use a more
theoretical approach and base our results on the the-
ory of inexact Krylov subspace methods [9]. We show
that matriz-vector product may be performed in an in-
creasingly ineract manner as the iteration progresses
and still allow convergence (see Figure 1).

We test our ideas using the IFGT and the dual-tree
methods. We demonstrate the speedup achieved on
large data sets using the negative squared exponential
(Gaussian) covariance function. Our experiments indi-
cated that for low dimensional data (d < 8) the IFGT
gives substantial speedups. For the hyperparameters
chosen the dual-tree methods were unable to give good
speedups.

Unlike methods which rely on choosing a subset of
the dataset we use all the available points and still
achieve O(N) complexity. As an added advantage, for
prediction of the mean the computational complexity



Table 1: The dominant computational and space complexities. We have N training points and M test points
in d dimensions. k is the number of iterations required by the conjugate gradient procedure to converge to a
specified tolerance. The memory requirements are for the case where the Gram matrix is constructed on the fly
at each iteration. For the fast matrix-vector product algorithms, the constant D grows with d depending on the

type of the algorithm used.

Direct Method

Conjugate gradient

Congugate gradient+Fast MVM

Time | Space Time

| Space Time | Space

Training O(N?) O(N?) O(kdN?)

O(dN) O(kDN) O(dN + D)

Prediction O(dMN) | O(dM + dN)

O(DM + DN) | O(dM + dN + D)

Uncertainty | O(MN?)

O(kdMN?)

O(dM + dN) | O(kDMN) O(dM + dN + D)

?terations 10 12 14

Figure 1: The accuracy required for fast matrix-vector
product at each iteration for a sample 1D regression prob-
lem.

is reduced from O(N) to O(1).

We have also used Gaussian process regression for fast
implicit surface fitting from the point cloud data (see
Figure 2). This is an application where it is impor-
tant to use all the available data to get a good surface
representation.

While the scope of this paper is to speed up the orig-
inal GPR it should be noted that methods which use
a subset of the data can also be further speeded up
using these algorithms. This is because even these
methods require matrix-vector products to be taken
with a smaller subset of the data.

We were unable to get good speedups for high dimen-
sional datasets like SARCOS (a 21 dimensional robot
arm dataset) using the IFGT. However the subset of
data methods can be used with a higher dimensional
data set such as SARCOS.

Table 1 compares the computational and space com-
plexities for different stages of Gaussian process regres-
sion using different methods.
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Figure 2: The isosurface extracted using the function
learnt by Gaussian Process regression. The point cloud
data is also shown. It took 6 minutes to learn this implicit
surface form 10,000 surface points.



