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ABSTRACT
We propose a method to train a cascade of classifiers by
simultaneously optimizing all its stages. The approach re-
lies on the idea of optimizing soft cascades. In particular,
instead of optimizing a deterministic hard cascade, we op-
timize a stochastic soft cascade where each stage accepts or
rejects samples according to a probability distribution in-
duced by the previous stage-specific classifier. The overall
system accuracy is maximized while explicitly controlling
the expected cost for feature acquisition. Experimental re-
sults on three clinically relevant problems show the effec-
tiveness of our proposed approach in achieving the desired
tradeoff between accuracy and feature acquisition cost.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; I.5.2 [Pattern Recognition]:
Models—Statistical ; H.2.8 [Database Applications]: Data
mining; I.2.6 [Artificial Intelligence]: Learning—Param-
eter learning

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
cascade design, cost sensitive learning, accuracy vs cost

1. INTRODUCTION
In many applications features are acquired on demand ;

usually a set of features can be acquired as a group. However
each feature group incurs a certain cost. This cost could be
either computational, financial, or human discomfort. For
example, in certain medical applications (see Section 7) some
tests are very expensive (e.g. acquiring some blood bio-
markers or a MRI) or cause extreme discomfort (e.g. biopsy)
for the patient.
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This motivates the design of a cascade of classifiers–each
stage using features with increasing predictive power and
also increasing acquisition cost. Each stage of the cascade
can either accept and pass a sample into the next stage for
further feature acquisition and further classification analy-
sis or it can reject the sample immediately–classifying it as
a negative class sample–thus avoiding any further (down-
stream) feature acquisition cost. Typically we would like
the first stage of our classifier to use the cheapest features
and the most expensive features at the later stage.

In general, cascaded classifier design is used to reduce run
time of the overall classifier by reducing the number of sam-
ples which need the computation of more expensive features.
However, this process of cascaded classification may reduce
accuracy of classification somewhat, but at the same time
we do not want to sacrifice accuracy too much. In this paper
we describe a method to jointly train all the stage-wise clas-
sifiers of a cascade of classifiers in order to maximize clas-
sification accuracy while simultaneously restricting the run-
time explicitly. We develop principled methods to achieve
the desired tradeoff between accuracy and cost.

1.1 Previous work and Novel Contributions
Most previous work on designing cascades are based on

the Viola-Jones cascade framework [10] and are developed
for building rapid real-time object detection systems (see
[10, 1, 12] and references therein). Each stage of the cas-
cade is an Adaboost classifier with decisions stump as the
base learner and has its own threshold. The Viola-Jones cas-
cade was developed in the context of face detection where
we have a large number of very cheap features–all of them
having the same relatively low computational cost. There
is no explicit notion of feature groups and different acqui-
sition costs. Feature cost has also been considered in the
framework of cost-sensitive learning [7, 6, 9].

This paper makes two novel contributions. First we pro-
pose an algorithm to jointly train all the stages in a cascade.
Second we provide a knob to control the tradeoff between
accuracy and cost.

1. Joint training of all stages: Conventionally a cas-
cade is trained in a sequential manner [10, 1, 12]. Only
examples for which the classifier score is greater than
a certain threshold pass through the next stage of the
cascade. Each stage of the classifier is trained using
only those examples which pass through all the pre-
vious stages. This is clearly not the optimal solution.
Also in sequential training we have to focus on opti-



mally choosing these thresholds to maximize a certain
performance metric, since the training process depends
on the choice of the thresholds.

Starting with logistic regression as the base classifier
for each stage we propose a method to jointly train
a cascade of classifiers. This is achieved by relaxing
the hard cascade into a soft cascade as described in
Section 3. Since we relax our cascade into a soft one
we can train the entire cascade jointly and choose the
thresholds as a post-processing step. Our usage of the
term soft cascade is very different from the one pro-
posed in [1]. A related recent paper [4] also proposes
to jointly train a cascade of SVMs using an AND-OR
framework. Our proposed solution is probabilistic and
more importantly they do not take the costs into con-
sideration.

2. Tradeoff between accuracy and cost: The ex-
pected cost to acquire the features is explicitly incor-
porated in the optimization problem (see Section 5).
In some applications the cost may be a deciding factor
and the user may be willing to sacrifice some accu-
racy. The proposed method for cascade training can
be tuned to reflect this tradeoff between cost and ac-
curacy. We are not aware of any previous work which
tries to explicitly measure or minimize run time al-
though they may implicitly assume that cascaded clas-
sifier design reduces run time by its very nature.

3. Computation cost of training Since we relax our
cascade into a soft one we have decoupled the threshold
selection from the training process. The entire cascade
has to be trained jointly only once and the thresholds
can be chosen as a post-processing step. In contrast for
sequential training for each choice of the thresholds we
have to retrain the cascade. This can be very expen-
sive if the number of stages is large and the threshold
selection is done over a fine grid. For example for a five
stage cascade if we have to search over 10 thresholds
for each stage in sequential training we have to train
the cascade roughly 105 times compared to just once
for the proposed joint training.

The rest of the paper is organized as follows. In Sections 2
and 3 we discuss how a hard cascade can be relaxed into a
soft cascade for joint training. In Section 4 we describe a
method to jointly train all the stages in the cascade via max-
imum a-posteriori estimation. The expected feature acquisi-
tion cost is explicitly modeled in Section 5, thus providing us
with a knob to achieve the desired tradeoff between accuracy
and cost. Experimental results on three medical datasets are
discussed in Section 7.

2. CASCADE OF CLASSIFIERS
In a typical supervised learning scenario for binary classifi-

cation we are given a training set D = {(xi, yi)}Ni=1 contain-
ing N instances, where xi ∈ X is an instance and yi ∈ Y =
{0, 1} is the corresponding known label. The task is to learn
a classification function f : X → Y. Typically an instance
is represented as a d-dimensional feature vector xi ∈ Rd.

2.1 Single stage linear classifier
We consider the family of linear discriminating functions:
F = {fw}, where for any x,w ∈ Rd , fw(x) = w⊤x. The
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Figure 1: A cascade of three linear classifiers. (a)
In scenario 1 each stage of the cascade uses only a
subset of the features. (b) In scenario 2 each stage
can also use the features from all the previous stages
since they are already computed. (c) In scenario
3 the weights for each stage are separate and not
shared with the previous stage as in scenario 2.

final binary classifier can be written in the following form
y = 1 if w⊤x > θ and y = 0 if w⊤x ≤ θ. The threshold
parameter θ determines the operating point of the classi-
fier. The Receiver Operating Characteristic (ROC) curve is
obtained as θ is swept from −∞ to ∞. Learning a single
stage classifier implies choosing the weight vector w given
the training data D.

2.2 Cascade of linear classifiers
We will denote a K stage cascade by [C1, C2, . . . , CK ]. The

features for any instance x ∈ Rd is divided into K distinct
sets– x =

[
x1,x2, . . . ,xK

]
. This feature grouping is usually

done based on the cost required to acquire these features.
Let tj be an estimate of the cost it takes to acquire/compute
feature subset xj . Typically the cascade is ordered by the
feature acquisition time tj , i.e., would like the first stage
of our classifier to use the cheapest features and the most
expensive features at the later stage. We will describe three
different scenarios in which the cascade can typically operate
(see Figure 1). Our proposed training procedure easily works
with all these scenarios.

• Scenario 1 Each stage Cj of the cascade uses only the
subset xj of the features. Each cascade Cj is from a
family of linear discriminating functions, where for any
x ∈ Rd, fCj (x) = w⊤

j xj .

• Scenario 2 Each stage Cj uses the subset
[
x1, . . . ,xj

]
of the features, i.e., the stage j can also use the fea-
tures from all the previous stages since they are al-
ready computed. Each cascade Cj is from a family of
linear discriminating functions, where for any x ∈ Rd

fCj (x) =
∑j

k=1 w
⊤
k xk.



• Scenario 3 This is same as the previous scenario. But
an important difference is that the weights for each
stage are separate and not shared with the previous
stage as in scenario 2. Hence each cascade Cj is from
a family of linear discriminating functions, fCj (x) =∑j

k=1 w
⊤
jkx

k.

Each stage predicts y = 1 if fCj (x) > θj and y = 0 if
fCj (x) ≤ θj where θj is the threshold parameter for each

stage. Given the training data D = {(xi, yi)}Ni=1 contain-
ing N instances we have to estimate the weight vector w =
[w1,w2, . . . ,wK ] and choose the thresholds for each stage
θ = [θ1, . . . , θK ] to minimize the error and also the average
cost. The sequential design of a traditional hard cascade
needs the thresholds θ1, . . . , θj−1 for previous stages to be
fixed before designing the next stage classifier parameters.
Each stage of the classifier is trained using only those exam-
ples which pass through all the previous stages.

2.3 Logistic generalized linear model
In order to train our classifier we will use the logistic re-

gression model. For each stage the posterior probability for
the positive class is written as a logistic sigmoid acting on
the linear classifier fj , i.e.,

pCj (y = 1|x,w) = σ
(
fCj (x)

)
. (1)

The logistic sigmoid function–also known as the squashing
function–is defined as σ(z) = 1/(1+e−z). This classification
model is known as logistic regression. Since we are dealing
with a binary classification problem pCj (y = 0|x,w) = 1 −
σ (fj(x)).

3. SOFT CASCADE
If we directly incorporate the thresholds, then during train-

ing we have to solve a discrete optimization problem which is
not easy. Although the eventual test set will have to be eval-
uated using a hard cascade which explicitly thresholds and
thus rejects a subset of samples at each stage, we propose to
design the parameters of this system by instead optimizing
a surrogate cascade of soft-classifiers. Rather than a hard
rejection, the stages of the surrogate system optimized dur-
ing training only provide a probability that the sample is
negative. In intuitive physical terms, this soft cascade may
be viewed as stochastically rejecting a sample at any stage
based on the posterior class probability evidenced by the
classifier for that stage.
For the overall soft cascade system, an instance x is clas-

sified as positive if all the K stages in the cascade predict
it as positive. The probability that all stages predict it as
positive can be written as

p(y = 1|x,w) =
K∏

j=1

pCj (y = 1|x,w) =
K∏

j=1

σ
(
fCj (x)

)
. (2)

An instance x is classified as negative if at least one of the
K classifiers predicts it as negative. Hence

p(y = 0|x,w) = 1−
K∏

j=1

σ
(
fCj (x)

)
. (3)

Note that the hard and soft cascades demonstrate somewhat
different properties. For example, the sequential ordering of
the cascade is not important for a soft cascade, although

it certainly matters for the hard cascade. In other words,
even if we switch the order of the stages of the soft cascade
the overall accuracy is not affected, but the ordering of the
cascade is crucial when considering the cost. This relaxation
is a device to ease the training process and as such the order
definitely matters during testing.

Nevertheless, in order to optimize all stages of a cascade
simultaneously to optimize accuracy we need a strategy that
allows us to model the inter relationships between the stages.
In other words, we want a mathematical method that explic-
itly accounts for the fact that it is sufficient for a sample to
be rejected at any stage of the classifier, we do not have to
force multiple stages to reject it. This means that the joint
design of cascades can potentially allow each stage to focus
on a different type of false positive and thus improve overall
accuracy as compared to a traditional one-stage-at-a-time
cascade design which ignores this information. In order to
utilize this intuition, we propose to design the cascade by
optimizing a soft cascade even though the final test set will
be evaluated by a hard cascade (in order to be able to reduce
the run time). Having relaxed the classifier into a soft one
we now consider how to train the entire cascade jointly.

4. TRAINING THE CASCADE
The maximum likelihood estimate for w is given by

ŵML = argmax
w

p(y1, . . . , yN |x1, . . . ,xN ,w)

= argmax
w

log p(D|w). (4)

Define pi = p(yi = 1|xi,w) =
∏K

j=1 σ
(
fCj (xi)

)
–the proba-

bility that the ith instance xi is positive. Assuming that the
training instances are independent the log-likelihood can be
written as

l(w) = log p(D|w) =

N∑
i=1

yi log pi + (1− yi) log(1− pi). (5)

The ML solution in practice can exhibit severe over-fitting
especially for high-dimensional data. This can be addressed
by using a prior on w and then finding the maximum a-
posteriori (MAP) solution. In order to promote sparsity we
impose a Laplace prior (with a common scale parameter γ)
on each parameter wi.

p(wi|γ) =
√
γ

2
exp (−√γ|wi|) . (6)

We also assume that individual weights inw are independent
and hence the overall prior is the product of the priors for
each component.

p(w|γ) =
d∏

i=1

p(wi|γ) =
(√

γ

2

)d

exp (−√γ∥w∥1) , (7)

where ∥w∥1 =
∑d

i=1 |wi| is the l1-norm.
Once we observe the training data D we will update the

prior to compute the posterior p(w|D), which can be written
as follows (using Bayes’s rule)–

p(w|D, γ) = p(D|w)p(w|γ)∫
p(D|w)p(w|γ)dw

. (8)

This posterior can then be used to compute predictive dis-
tributions, which will typically involve high dimensional in-
tegrals. For computational efficiency we will base our pre-



diction on point estimates of w. We could either use the
mean, median, or the mode of the posterior. However the
posterior is difficult to compute because of the integral in
the denominator. Hence we use the mode of the posterior,
since the denominator does not depend on w. The mode of
the posterior–the maximum a-posteriori (MAP) estimate is
given by

ŵMAP = argmax
w

p(w|D, γ)

= argmax
w

[log p(D|w) + log p(w|γ)] . (9)

Substituting for the log likelihood (Eq. 5) and the prior
(Eq. 7) we have

ŵMAP = argmax
w

L(w), (10)

where

L(w) =

[
N∑
i=1

yi log pi + (1− yi) log(1− pi)

]
−√γ∥w∥1.

(11)
The terms which do not depend on w have been omitted
out.

5. MODELING THE EXPECTED COST
An crucial motivation for adopting cascade structure is

that we have limited cost. Hence we would like to find the
MAP estimate subject to the constraint that the expected
cost for a new instance

Ep(x) [T (x)] ≤ c, (12)

where T is the cost for a new instance x. The expectation
is over the unknown test distribution. Since we do not know
p(x) we can use an estimate of this quantity based on the
training set.
Consider a training instance xi. The first stage takes

cost t1 to compute the set of features w1. Once the fea-
tures are computed it declares it as positive with probability
σ (fC1(xi)). This means that xi passes through to the sec-
ond stage of the cascade with probability σ (fC1(xi)). The
second stage now takes cost t2 to acquire the set of features
w2. The second stage declares it a positive with probabil-
ity σ (fC2(xi)). Hence it passes through to the third stage
of the cascade with probability σ (fC1(xi))σ (fC2(xi)). So
given the parameters w an estimate of the expected cost
can be written as

T (w) =
1

N

N∑
i=1

[
t1 +

K∑
j=2

tj

j−1∏
l=1

σ (fCl(xi))

]
. (13)

So the optimization problem is

ŵMAP = argmax
w

L(w) subject to T (w) ≤ c. (14)

In practice we solve the following unconstrained optimiza-
tion problem

ŵMAP = argmax
w

L(w)− βT (w), (15)

where β controls the tradeoff between accuracy and cost.

6. THE OPTIMIZATION PROBLEM
The final optimization problem can now be written as

ŵ = argmin
w

J(w) (16)

where

J(w) = −l(w) + α∥w∥1 + βT (w), (17)

where l(w) is the log-likelihood that measures the accuracy,
α =
√
γ controls the amount of sparsity, and β controls the

cost.
In order to minimize J(w) we use the cyclic coordinate de-

scent algorithm because of its simplicity, speed, and stability.
Methods of this flavor has been earlier used for lasso penal-
ized regression problems [11] and logistic regression [13, 5].
We first set all the parameters to some initial value (zero).
It sets the first variable to a value that minimizes the ob-
jective function, holding all other parameters constant. The
algorithm then cycles through all the parameters and up-
dates them in turn. Multiple passes are made until some
convergence criterion is met. The Newton-Raphson update
for the one-dimensional minimization problem is given by

wnew
t = wt + η∆wt, (18)

where η is the step-length and ∆wt is the Newton update
given by

∆wt = −
J

′
(wt)

J ′′(wt)
. (19)

In order to avoid large updates we use a trust region ∆t > 0
which |∆wt| is not allowed to exceed on a single iteration[13,
5], i.e.,∆wt ← min(max(∆wt,−∆t),∆t). The trust region
is adapted every pass using ∆new

t = max(2|∆wt|,∆t/2). We
update wnew

t = wt + η∆wt only once before going to the
next parameters. The componentwise derivatives and the
convergence criterion are derived in the appendix.

7. EXPERIMENTS
We evaluate the proposed algorithm on three clinically

relevant proprietary medical datasets where acquisition cost
plays an important role.

• Survival Prediction for Lung Cancer Our first
dataset concerns the 2-year survival prediction for ad-
vanced non-small cell lung cancer (NSCLC) patients
treated with chemo/radiotherapy. The task is to pre-
dict whether the patient will survive for more than
2 years. We consider four groups of features which
are known to be predictive for this problem [3], with
increasing predictive power and also increasing acqui-
sition cost :

– 9 Clinical features such as gender, age, etc.

– 8 features from tests before therapy such as lung
function, creatinine clearance, etc.

– 7 imaging and treatment features such as gross
tumor volume, treatment dose, etc.

– 21 Blood bio-markers such as Interleukin-8, Os-
teopontin, etc..

The cost to acquire these features is given as 0, 1,
2, and 5 respectively. The clinical features are already
available and have zero acquisition cost while acquiring
the blood bio-markers is costly. The study [3] contains
82 advanced NSCLC patients treated at the MAAS-
TRO Clinic in the Netherlands from 2002 to 2006,
among which 24 survived 2 years (hence positive in-
stances for training).



• Pathological Complete Response (pCR) Pre-
diction for Rectal Cancer Our second example is
to predict tumor response after chemo/radiotherapy
for locally advanced rectal cancer. This is very impor-
tant in individualizing treatment strategies, since pa-
tients with a pCR after therapy, i.e., with no evidence
of viable tumor on pathologic analysis, would need
less invasive surgery or another radiotherapy strat-
egy instead of resection. Most available models com-
bine clinical factors such as gender and age, and pre-
treatment imaging-based factors such as tumor length
and SUVmax (from CT/PET imaging), but it is ex-
pected that adding imaging data collected after ther-
apy would lead to a better predictive model (with a
higher cost certainly). We use data from [2] which
contains 78 prospectively collected rectal cancer pa-
tients. 21 of them had pCR. All patients underwent
a CT/PET scan before treatment and 42 days after
treatment. We have 2 groups of features:

– 8 features based on clinical information and CT/PET
scan before treatment, and

– 2 features based on the difference of CT/PET
scans before and after treatment.

The cost for the second feature group (assigned to 10)
is much higher than the first group (assigned to 1)
because a CT/PET scan is an expensive procedure.

• Computer aided diagnosis of lung cancer Lung
cancer is a leading cause of cancer related death in
western countries. With the advent of computed to-
mography (CT) and computer aided detection (CAD)
systems [8] it is now possible to detect pulmonary nod-
ules (which are usually precursors to cancer) during
early stages leading to early intervention. A CAD sys-
tem aids the radiologist by marking the location of
likely nodules on a CT scan. Most CAD algorithms op-
erate in a sequence of three stages–(1)Candidate gener-
ation–this step identifies potentially unhealthy regions
of interest. While this step can detect most of the
anomalies, the number of false positives will be ex-
tremely high. (2) Feature computation–computation
of a set of descriptive morphological features for each
of the candidates. (3) Classification–labeling of each
candidate as a nodule or not by a classifier. Based on
a set of features computed for these candidates we can
train a classifier which can discriminate a nodule from
other candidates. However we want the run time of the
classifier during testing be as small as possible. This
motivates the proposed cascade design. A certain im-
age processing step computes a group of features. Each
group requires a different amount of time to compute
them. In this experiment we use a set of three feature
groups. The number of features are 9, 23, and 15 for
these three groups. The average cost to compute these
features are 1.07, 3.10, and 20.7 seconds respectively.
For training we used 196 CT scans with 923 positive
candidates and 54455 negative candidates. The per-
formance was verified on an independent test set con-
taining 113 CT scans with 585 positive candidates (277
nodules) and 32977 negative candidates.

7.1 Methods compared
We compare the results for the following methods.

1. Single stage classifier This corresponds to a single
classifier trained by acquiring all the features at once.
This is essentially a single stage cascade (which for our
model is a sparse logistic regression classifier) and acts
as our baseline. The average cost for this model is one,
since it uses all the features.

2. Proposed soft cascade β = 0 The proposed method
of jointly training the cascade. While the proposed
method can be used for all the scenarios described in
section 2 we report results only for scenario 1 where
each stage uses only a disjoint set of features. We found
that for the datasets in this paper all three scenarios
gave similar performance. We also set β = 0 so that
we do not explicitly account for the cost of feature
acquisition during training. The l1-sparsity parameter
α was chosen based on a 5-fold cross-validation on the
training set.

3. Sequential Training: Logistic Regression The
proposed cascade classifier trained sequentially, i.e.,
each stage of the classifier is trained using only those
examples which pass through all the previous stages.

4. Sequential Training: AdaBoost Each stage of the
classifier is trained using AdaBoost with decision stump
as the base learner. This is essentially the well known
Viola-Jones cascade [10]. The Viola-Jones cascade was
developed in the context of face detection where we
have a huge amount of very cheap features. There is
no explicit notion of feature groups and different costs.
We adapted the Viola-Jones cascade to our problem by
training each stage of the cascade using only the fea-
tures belonging to that group.

5. Sequential Training: LDA A sequentially trained
classifier where each stage of the classifier is trained
using linear discriminant analysis.

6. Proposed soft cascade β > 0 The proposed method
of jointly training the cascade by taking into consid-
eration the computational cost. We report results for
β = 10N, 100N, and 1000N where N is the number of
examples in the training set.

Choosing the thresholds: Once the classifier is trained
we need to choose the threshold for each stage of the clas-
sifier. There has been a lot of work on choosing the thresh-
olds for each stage in a conventional sequential cascade de-
sign [10, 1]. We choose our thresholds by doing an exhaus-
tive two-level hierarchical grid search over a range of thresh-
olds for each stage such that the area under the ROC curve
for the training set is maximized. For the proposed method
the entire cascade has to be trained jointly only once and
the thresholds can be chosen as a post-processing step. For
sequential training for each choice of the thresholds we have
to retrain the cascade.

Evaluation Procedure: For the first two datasets we
randomly select 70% of the data for training and 30% for
testing. The split was done such that the ratio of the num-
ber of positive to negative examples was the same for both
the sets. We report the resulting area under the ROC curve



Table 1: Results for the Lung and Rectum Cancer datasets. We randomly select 70% of the data for training
and 30% for testing. The results shown are averaged over 10 such repetitions. The cost is normalized so that
using all the available features has a cost of 1. For the proposed cascade we show results for β = 10N, 100N,
and 1000N where N is the number of examples in the training set. The statistically significant values are
marked as X (as assessed by a two-sample t-test at 5% significance level against the Proposed soft cascade
with β = 0 (marked ⋆) ) .

Training set Testing set
AUC Cost AUC Cost

mean[± std] mean[± std] mean[± std] mean[± std]

Lung Cancer

(1) Single stage classifier 0.87[± 0.05] X 1.00[± 0.00] 0.79[± 0.12] X 1.00[± 0.00]
(2) Proposed soft cascade β = 0 ⋆ 0.84[± 0.06] ⋆ 0.35[± 0.10] ⋆ 0.72[± 0.11] ⋆ 0.37[± 0.08]
(3) Sequential Training via Logistic Regression X 0.78[± 0.05] X 0.46[± 0.03] 0.71[± 0.09] X 0.45[± 0.08]
(4) Sequential Training via AdaBoost 0.81[± 0.04] X 0.51[± 0.02] X 0.63[± 0.05] X 0.68[± 0.08]
(5) Sequential Training via LDA X 0.79[± 0.02] X 0.55[± 0.03] 0.70[± 0.03] X 0.66[± 0.08]

(6) Proposed soft cascade β = 10N 0.82[± 0.06] 0.32[± 0.06] 0.73[± 0.12] 0.35[± 0.12]
(7) Proposed soft cascade β = 100N 0.80[± 0.06] 0.30[± 0.05] 0.70[± 0.11] 0.35[± 0.11]
(8) Proposed soft cascade β = 1000N 0.80[± 0.06] X 0.26[± 0.02] 0.70[± 0.11] X 0.27[± 0.10]

Rectum Cancer

(1) Single stage classifier X 0.84[± 0.03] X 1.00[± 0.00] 0.83[± 0.06] X 1.00[± 0.00]
(2) Proposed soft cascade β = 0 ⋆ 0.80[± 0.04] ⋆ 0.61[± 0.10] ⋆ 0.79[± 0.06] ⋆ 0.59[± 0.09]
(3) Sequential Training via Logistic Regression X 0.75[± 0.02] X 0.72[± 0.13] 0.76[± 0.09] X 0.70[± 0.10]
(4) Sequential Training via AdaBoost X 0.89[± 0.01] X 0.70[± 0.08] 0.73[± 0.10] X 0.68[± 0.09]
(5) Sequential Training via LDA 0.82[± 0.05] 0.68[± 0.14] X 0.71[± 0.09] 0.63[± 0.12]

(6) Proposed soft cascade β = 10N 0.78[± 0.06] 0.58[± 0.08] 0.79[± 0.06] 0.57[± 0.08]
(7) Proposed soft cascade β = 100N 0.76[± 0.09] X 0.53[± 0.06] 0.77[± 0.04] X 0.50[± 0.07]
(8) Proposed soft cascade β = 1000N X 0.73[± 0.08] X 0.51[± 0.08] 0.76[± 0.08] X 0.48[± 0.08]

(AUC) both for the training and the test set as our perfor-
mance metric. We also report the average cost per patient.
The cost is normalized so that using all the available features
has a cost of 1. The results are averaged over 10 repetitions,
and both the mean and standard deviation are reported. For
the LungCAD dataset the classifier is training on the train-
ing set and we show the Free Reponse Receiver Operating
Curve (FROC) for an independent test set. The FROC is
a plot of the nodule level sensitivity vs the number of false
positives per CT scan.

7.2 Results
Table 1 shows the results both on the training as well

as the test set for the Lung cancer and the Rectum can-
cer datasets. For the proposed cascade we show results for
varying values of β, which controls the emphasis we place
on minimizing the cost over accuracy. Note that β = 0 cor-
responds to training the cascade without taking into consid-
eration the computational cost. Larger the β more is the
emphasis on reducing the cost. The statistically significant
values–as assessed by a two-sample t-test against the pro-
posed soft cascade with β = 0–are marked as X. We make
the following observations:

1. As expected among all the methods the single stage
classifier is the most accurate. This corresponds to the
classifier trained by acquiring all the features. However
it is the most expensive in terms of cost. The average
cost per patient for this model is one. The cost is

normalized so that using all the available features has
a cost of one.

2. The proposed soft cascade with β = 0 has a lower
performance (around 3 − 7% lower) in terms of the
AUC but is significantly cheaper (2-3 times) than the
single stage classifier. Even if the cascade is trained
with β = 0, at test time some data samples are rejected
early (e.g. after the first or second stage) and therefore
we do not obtain/compute the remaining features for
them.

3. The proposed method of jointly training the cascade
shows a superior performance (both in terms of the
AUC and the cost) in comparison to the same classifier
trained in a sequential manner (see lines (2) and (3) in
the table). While the improvement of the AUC on the
test set is not statistically significant we obtain quite
significant improvements on the cost.

4. In terms of the cost the proposed method was supe-
rior than the sequentially trained adaboost or the LDA
cascade. (see lines (2), (4), and (5) in the table)

5. For the proposed method increasing β reduces the cost
and at the same time reduces the accuracy (though not
that significantly). Only our method gives us a knob
in terms of β to achieve our desired tradeoff between
accuracy and cost.

Similar results can be observed for the LungCAD dataset.
Figure 2 shows the FROC curves on an independent test
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Sequential Training: Proposed Classifier Cost = 0.194 

Proposed soft cascade: β=1000 cost = 0.065
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Figure 2: FROC Curves for the various cascade de-
sign methods on the LungCAD test set.

set. For this dataset the proposed joint training gives us a
significant improvement over the same cascade trained se-
quentially. Also the proposed cascade is 10 times cheaper
than a single stage classifier. Increasing β reduces the cost
further with a slight drop in the performance.

8. CONCLUSIONS AND FUTURE WORK
We proposed a method to train a cascade of classifiers

when groups of features are obtained together as a result
of a sensing operation (i.e. entire group of features is ob-
tained at the same cost). The classifier was trained jointly
using the notion of soft cascades. We also demonstrated
that by explicitly incorporating the computational cost into
the algorithm we can achieve the desired tradeoff between
accuracy and cost.
One assumption we have made is that prior to training

the cascade the ordering of the different stages in the cas-
cade is fixed. Typically the cascade is ordered by the feature
acquisition time, i.e., would like the first stage of our clas-
sifier to use the cheapest features and the most expensive
features at the later stage. However this may not be the
most optimal strategy in terms of both accuracy and cost.
We are currently exploring strategies to formulate the auto-
matic selection and ordering of different feature groups.
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APPENDIX
A. DERIVATIVES FOR THE CYCLIC COORDINATE DESCENT OPTIMIZATION

A.1 Componentwise derivatives when wt ̸= 0

Because of the ∥w∥1 term the derivatives are defined only when wt ̸= 0. The first derivative can be written as

J
′
(wt) = = −

N∑
i=1

[
yi
pi
− 1− yi

1− pi

]
∂pi
∂wt

+ α sgn(wt) + β
∂T (w)

∂wt
, (20)

where sgn(z) = 1 if z > 0 and −1 is z < 1. The second derivative is given by

J
′′
(wt) = −

N∑
i=1

[
yi
pi
− 1− yi

1− pi

](
∂2pi
∂2wt

)
−

[
yi
p2i

+
1− yi

(1− pi)2

](
∂pi
∂wt

)2

+ β
∂2T (w)

∂2wt
.

(21)

Define 1t∈Cj = 1 if the feature xt is used by the stage Cj and zero other wise. Then

∂pi
∂wt

= pi(xi)t

K∑
j=1

(1− σ(fCj (xi))1t∈Cj . (22)

∂2pi
∂2wt

=
1

pi

(
∂pi
∂wt

)2

− pi(xi)
2
t

K∑
j=1

σ(fCj (xi))(1− σ(fCj (xi))1t∈Cj . (23)

∂T (w)

∂wt
=

1

N

N∑
i=1

(xi)t

K∑
j=2

tj

[
j−1∏
l=1

σ (fCl(xi))

]
j−1∑
l=1

(1− σ (fCl(xi)))1t∈Cl . (24)

∂2T (w)

∂2wt
=

1

N

N∑
i=1

(xi)
2
t

K∑
j=2

tj

[
j−1∏
l=1

σ (fCl(xi))

][
j−1∑
l=1

(1− σ (fCl(xi)))1t∈Cl

]2

− 1

N

N∑
i=1

(xi)t

K∑
j=2

tj

[
j−1∏
l=1

σ (fCl(xi))

][
j−1∑
l=1

σ (fCl(xi)) (1− σ (fCl(xi)))1t∈Cl

]
.

(25)

A.2 Componentwise derivatives when wt = 0

Since the l1-penalty is not differentiable at wt = 0 we write the directional derivative along the forward and the backward
direction. Let et be the co-ordinate direction along which wt varies. Then the directional derivatives are given by

J
′
+(wt) = lim

δ→0

J(w + δet)− J(w)

δ
= −∂l(w)

∂wt
+ α+ β

∂T (w)

∂wt
, (26)

and

J
′
−(wt) = lim

δ→0

J(w − δet)− J(w)

δ
= −∂l(w)

∂wt
− α+ β

∂T (w)

∂wt
. (27)

The algorithm evaluates both J
′
+(wt) and J

′
−(wt). We attempt to update in both directions and see if either succeeds as

suggested in [5].

A.3 Convergence Criterion
We declare convergence when

∑n
i=1 |∆pi|∑n
i=1 |pi|

≤ ϵ, where |∆pi| is the change in pi between the beginning and the end of a cycle.


