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Abstract—This paper presents the results of simulation and real
room studies for localization of a moving speaker using informa-
tion about the excitation source of speech production. The first step
in localization is the estimation of time-delay from speech collected
by a pair of microphones. Methods for time-delay estimation gen-
erally use spectral features that correspond mostly to the shape
of vocal tract during speech production. Spectral features are af-
fected by degradations due to noise and reverberation. This paper
proposes a method for localizing a speaker using features that arise
from the excitation source during speech production. Experiments
were conducted by simulating different noise and reverberation
conditions to compare the performance of the time-delay estima-
tion and source localization using the proposed method with the
results obtained using the spectrum-based generalized cross corre-
lation (GCC) methods. The results show that the proposed method
shows lower number of discrepancies in the estimated time-delays.
The bias, variance and the root mean square error (RMSE) of
the proposed method is consistently equal or less than the GCC
methods. The location of a moving speaker estimated using the
time-delays obtained by the proposed method are closer to the ac-
tual values, than those obtained by the GCC method.

Index Terms—Excitation source information, Hilbert envelope,
speaker localization, time-delay estimation.

I. INTRODUCTION AND PREVIOUS WORK

APPLICATIONS such as videoconferencing [1]–[3],
hands-free voice communication [4], [5], speech acqui-

sition in automobile environments [6], [7], speech recognition
[8], [9], acoustic surveillance and hearing-aid devices [10]
require the capture of high-quality speech from the speakers.
The speech signal received from a speaker in such acoustical
environments is corrupted both by additive noise and room
reverberation. One effective way of dealing with such situations
is to use a set of spatially distributed microphones for recording
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the speech. Some of the previously mentioned applications may
also require localizing and tracking the moving speaker. For
instance, to keep the speaker in focus in videoconferencing, the
speaker can be localized, and this information can be fed to a
video system for actuating the pan-tilt operations of a camera
[1]–[3]. Once the actual position of the speaker is known, the
microphone array can be steered electronically (beamformed)
for high-quality speech acquisition. Speaker Localization is
also useful in a multispeaker scenario in which speech from
a particular speaker may need to be enhanced with respect to
others, or with respect to noise sources.

The essential requirement for all the applications mentioned
previously is the ability of the microphone array to locate a
speaker accurately. Broadly three types of methods exist for lo-
calizing the speaker [11]: a) maximizing the steered response
power (SRP) of a beamformer, b) methods based on high-reso-
lution spectral estimation, and c) methods based on time differ-
ence of arrival (TDOA). In the steered beamformer approach,
the microphone array is electronically steered to various loca-
tions to search for a peak in the output power. A simple delay
and sum beamformer or more sophisticated beamformers which
apply filtering can be used. Due to its computational complexity
and lack of prior knowledge of the source and noise character-
istics, this method may not be practical for localizing speakers.
The second method, based on the high-resolution spectrum esti-
mation, uses the spatio-spectral correlation matrix derived from
the signals received at the microphones. The high-resolution
methods are designed for far field narrow-band stationary sig-
nals and, hence, it is difficult to apply them to wide-band speech.
The most commonly used method in practice is the TDOA-
based method. In this method, the signals received by several
microphones are processed to estimate the time-delays between
pairs of microphones. The estimated time-delays can be used to
derive the location of the speaker.

For effective speaker localization, it is essential to obtain a
good estimate of the time-delay even when the signals are cor-
rupted by noise and reverberation [12]. The time-delay may be
estimated by locating the peak in the cross correlation function
of the signals received by a pair of microphones. However, this
method is not robust to degradations in the signals. Knapp and
Carter [13] developed the maximum likelihood (ML) estimator
for determining the time-delay between signals received at two
spatially separated microphones when the noise is uncorrelated.
In this method, the estimated delay is the time lag which max-
imizes the cross correlation between filtered versions of the re-
ceived signals [13]. The cross correlation of the filtered versions
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of the signals is called the generalized cross correlation (GCC)
function. The GCC function is given by [13]

(1)

where and are the Fourier transforms of the mi-
crophone signals and , respectively, and is the
weight function. The effect of five different weight functions,
namely, the Roth Impulse Response, the smoothed coherence
transform (SCOT), the phase transform (PHAT), the Eckart filter
and the ML weighting were studied in [13].

The two most commonly used weight functions are ML and
PHAT. The ML weight function accentuates the signal passed
to the correlator at frequencies where the signal-to-noise ratio
(SNR) is high [13]. Brandstein et al. [14] proposed an approxi-
mate ML type weighting for speech applications. The approxi-
mate weight function is is given by

(2)

where and are the noise power spectra at the
two microphones, and are assumed to be known during the si-
lence interval [14]. We use this weight function in our simula-
tion studies. This ML weight function performs well when the
effect of room reverberation is low.

As the room reverberation increases, this method shows
degradations in performance [12]. Since the spectral charac-
teristics of the received signal are affected by the multipath
propagation or reverberation in a room, the GCC function is
made more robust by deemphasizing the frequency-dependent
weighting. The PHAT is one extreme case where the magnitude
spectrum is flattened. The PHAT weight function is
given by

(3)

By flattening the magnitude spectrum the resulting location of
the peak in the GCC function corresponds to the dominant delay.
However, the disadvantage of the PHAT weighting is that it
places equal emphasis on both low and high SNR regions and,
hence, works well only when the overall noise level is low.
Stéphanne and Champagne [15] proposed cepstral prefiltering
to reduce the effects of reverberation. Benesty [16] proposed a
novel method for time-delay estimation based on eigenvalue de-
composition of the covariance matrix.

The methods discussed previously are applicable to a general
sound source. Recently, methods have been suggested for
localization of speaker by modeling the production of speech
[17], [18]. Brandstein [18] proposed a method based on the
knowledge of the periodicity of voiced speech. This method
requires the estimation of pitch and, hence, the performance de-
pends on the robustness of pitch estimation method. Moreover,
the method uses the spectral weighting based on the estimated
pitch harmonics. Most of the speech-model-based methods
use spectral features which correspond approximately to the

characteristics of the vocal tract system during the production
of speech. The spectral features are affected by transmission
through medium, noise and room reverberation. Not many
attempts have been made to exploit the characteristics of the
excitation source during the production of speech. In this paper,
we show that features based on the excitation source in speech
production are robust to degradations such as noise and rever-
beration. We discuss methods to extract the excitation source
information from a speech signal, and show how to use this
information to estimate the time-delay. The proposed method
does not use the periodicity property of voiced speech. The
method exploits the excitation characteristics of voiced speech,
especially the characteristics around the glottal closure instants.

The paper is organized as follows. A method for estimation
of time-delay using the excitation source information is pro-
posed in Section II. The proposed method is compared with
GCC-PHAT, GCC-ML, and Brandstein’s methods using sim-
ulations, and are discussed in Section III. In Section IV, speaker
localization is described, and is compared with the results ob-
tained using the GCC-PHAT method. The paper concludes with
a summary of the present work, and a discussion on possible
extensions.

II. TIME-DELAY ESTIMATION USING EXCITATION

SOURCE INFORMATION

Speech is the result of excitation of a time-varying vocal tract
system with time-varying excitation [19]. The common and sig-
nificant mode of excitation of the vocal tract system is the vi-
bration of vocal folds, called glottal vibration, which to a first
approximation may be treated as consisting of a sequence of
impulses [20]. The characteristics of the dynamic vocal tract
system are represented by short-time spectral features. Since the
signal received at a microphone is affected by noise and the re-
sponse of room, the received signal contains information about
the vocal tract system corrupted by different levels of degrada-
tions at different microphones. However, it is interesting to note
that the relative locations of epochs or instants of significant ex-
citation in the production of speech are not affected by degrada-
tions [21]. The epochs in a voiced segment correspond to the in-
stants of glottal closure, and their locations along the time scale
do not change with the impulse response of the acoustical envi-
ronment. In unvoiced segments, also there may be epochs due
to strong bursts of excitation, even though they may not occur
at periodic intervals as in the voiced case. But their relative lo-
cations are unaffected by degradation.

The excitation source information can be extracted from the
speech signal using linear prediction (LP) analysis [22]. In LP
analysis, each sample is predicted as a linear combination of the
past samples, where is the order of prediction. If is the
speech signal sample at th instant, then its predicted value is
given by

(4)
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Fig. 1. (a) Speech waveform. (b) Tenth-order LP residual. (c) Hilbert envelope
of the LP residual for a segment of speech signal collected over a close-speaking
microphone (mic-0).

where are the LP coefficients. The error between the
speech sample and its predicted value is given by

(5)

The optimal values of the linear prediction coefficients (LPCs)
can be obtained by minimizing the squared error over an anal-
ysis frame of about 10–30 ms. These LPCs define the inverse
filter given by

(6)

Passing the speech signal through this inverse filter is equivalent
to using the optimal values of LPCs in (5) and, hence, the min-
imum error signal is the LP residual signal denoted by .
The LP residual mostly contains information about the exci-
tation source. The most important information about the exci-
tation source is the sequence of epochs in the case of voiced
speech.

Speech signals are collected using a microphone placed close
to the speaker, which here after will be termed as close-speaking
microphone (mic-0) and two other microphones (say, mic-1 and
mic-2), placed at a distance (distant microphones) in an office
room of dimension 5.67 4.53 2.68 m with an average rever-
beration time of about 0.2 s and noise level of about 40–50 dB.
All the signals are sampled at 8 kHz and stored as 16 bit num-
bers. The microphones signals are shown in Figs. 1(a), 2(a), and
3(a), respectively. The two distant microphones are placed at a
distance of about 2.75 m from the speaker. All the three signals
differ from one another. The low SNR of the signals collected
at the distant microphones can be seen from the amplitudes of
signals in Figs. 2(a) and 3(a) in relation to the signal in Fig. 1(a).
The tenth-order LP residuals derived from the speech signals of
mic-0, mic-1 and mic-2 are shown in Figs. 1(b), 2(b), and 3(b),
respectively. The LP residual signals in Figs. 2(b) and 3(b) also
reflect the low SNR characteristics of the signals at mic-1 and
mic-2.

Fig. 2. (a) Speech waveform. (b) Tenth-order LP residual. (c) Hilbert envelope
of the LP residual for a segment of speech signal collected over mic-1, which is
placed at a distance of about 2.75 m from the speaker.

Fig. 3. (a) Speech waveform. (b) Tenth-order LP residual. (c) Hilbert envelope
of the LP residual for a segment of speech signal collected over mic-2, which is
placed at a distance of about 2.75 m from the speaker.

The time-delay may be estimated by locating the peak in the
cross correlation function of signals received by two micro-
phones. Due to degradation caused by noise and room rever-
beration, the signal received at one microphone will not simply
be a delayed version of the other. If speech signals are directly
used for computing the cross correlation function, then the cor-
relation peak may not be prominent and distinct due to effects
of noise and reverberation on the spectra of speech signals. The
effects of noise and reverberation are somewhat reduced around
the epochs in the LP residual, where the residual error is large.
Note that the relative epoch locations are not affected by the
degradations. Therefore, it is possible to obtain a peak in the
cross correlation of LP residuals that corresponds mostly to the
correlated components around the epochs in LP residuals. Al-
though, due to inverse filtering, noise is enhanced in the high-
frequency region in the spectrum of LP residual, this will have
little effect on the peak in the cross correlation, since the noise
at the two microphones are not correlated.
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In each pitch period major excitation occurs at the epoch cor-
responding to the instant of glottal closure. Around each epoch
the prediction will be poor and, hence, the error is large in the
residual. However, the amplitudes of the residual signal around
each epoch depend on the phase of the signal [20]. This causes
random fluctuation in amplitudes, which may lead to ambiguity
in the location of the peak in the cross correlation function.
Therefore, instead of using the LP residual directly, the Hilbert
envelope of the LP residual can be used [20]. The Hilbert enve-
lope of the LP residual is defined as

(7)

where is the Hilbert transform of [23]. The Hilbert
transform is obtained by interchanging the real and imaginary
parts of the Discrete Fourier Transform (DFT) of , and then
taking the inverse DFT. A 1024 point DFT or higher is used
throughout this study for computing the Hilbert envelope. That
is, the residual signal block size is 1024 points or more for
computing Hilbert envelope. Figs. 1(c), 2(c), and 3(c) show the
Hilbert envelopes of the LP residuals for speech signals from
mic-0, mic-1 and mic-2, respectively. The ambiguity present
around epochs in the LP residual is reduced significantly in the
Hilbert envelope. The epoch locations are also clearly visible in
the Hilbert envelopes of the LP residuals.

The time-delay between speech signals at a pair of micro-
phones is estimated by computing the cross correlation of the
Hilbert envelopes of the LP residuals. For every frame (size in
the range 50 ms to 500 ms), the cross correlation function is
computed. The choice of frame size depends on the accuracy of
tracking. Smaller frame size will yield better tracking. But larger
frame size will yield accurate delay estimation. In any case, each
frame should contain at least a few (about 5) pitch periods to ob-
tain good estimate of time-delay. The displacement of the peak
with respect to the center of cross correlation function is the de-
sired time-delay.

To compare different methods we define the quantity
peak-to-sidelobe ratio (PSR) as the peak value divided by the
standard deviation of 40 samples around the peak, excluding 5
samples on either side of the peak [24]. The PSR measure gives
the strength of the main peak in relation to the values around
the peak. The choice of 40 samples is quite arbitrary. Fig. 4(a)
shows the cross correlation function between two 50 ms speech
segments from mic-1 and mic-2. The PSR values are also given
in the figure. The PSR value for speech signal is 5.52. Fig. 4(b)
shows the cross correlation function obtained by GCC with
PHAT weighting for the same two segments [13]. It can be seen
that the PSR is larger than for Fig. 4(a). The disadvantage of the
PHAT weighting is that it emphasizes the noise samples and,
hence, it works well only when the noise level is low. Fig. 4(c)
shows the cross correlation function for the tenth-order LP
residuals of the two speech segments. The plot looks similar
to that for the GCC case. Fig. 4(d) shows the cross correlation
function for the Hilbert envelopes of the LP residuals. The use
of the Hilbert envelopes produces a significantly high value of
PSR, compared to the PSR values of the three previous cases.
This is because, in the Hilbert envelopes of the LP residuals,
the high SNR portions correspond to the major excitations

Fig. 4. Cross correlation function for different cases for 50 ms voiced
speech segments from mic-1 and mic-2. (a) Speech signals. (b) GCC with
PHAT weighting. (c) Tenth-order LP residuals. (d) Hilbert envelopes of the
LP residuals. PSR is computed for the largest peak in each cross correlation
function.

Fig. 5. Cross correlation function for different cases for 50 ms unvoiced
speech segments from mic-1 and mic-2. (a) Speech signals. (b) GCC with
PHAT weighting. (c) Tenth-order LP residuals. (d) Hilbert envelopes of the
LP residuals. PSR is computed for the largest peak in each cross correlation
function.

(epochs) of the vocal tract system. The high-amplitude values
at the epochs in the signal dominate the computation of the
cross correlation function. Note that the time-delay is estimated
using only the main peak in the cross correlation function. The
other large peaks in Fig. 4(d) are due to the pitch period. Since
the PSR value computed from the Hilbert envelopes of the LP
residuals is high for a given voiced segment, we use the PSR
value for each frame to derive a normalized weight function in
order to compare the bias, variance and root mean square error
(RMSE) for each of the methods.

Fig. 5 shows the cross correlation functions for a 50 ms un-
voiced segment. Even for unvoiced segment the PSR value is
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Fig. 6. Top view of the simulated room used to evaluate the proposed
time-delay estimation method.

high when Hilbert envelope of LP residual is used. But the PSR
value depends on the strength of the bursts in the unvoiced seg-
ment. Note that the bursts need not be periodic. Hence, for un-
voiced segments also the Hilbert envelope is useful for obtaining
a correlated peak with PSR value higher than other methods.

III. COMPARISON WITH OTHER METHODS

In this section, time-delays estimated using the excitation
source information are compared with those obtained from
other methods. In particular, we compare the results by the
proposed method with the results from the GCC with PHAT
weighting [13], GCC with ML weighting [14], and Brandstein’s
pitch-based weighting [18] methods. The relative performance
of the proposed method is evaluated using a series of Monte
Carlo trials in a simulated rectangular room of dimension
5.6 4.5 2.6 m as illustrated in Fig. 6. The microphones
are assumed to have an omnidirectional pattern. The source is
placed at a distance of 2.0 m from the center of microphone
pair which are 1 m apart. Simulation studies are made for four
different source positions, each corresponding to a different
direction of arrival (DOA) as shown in Fig. 6. The DOA is
the angle between the line joining the source to the center of
the microphone pair, and the normal to the line joining the
two microphones at the center of the microphone pair. The
four positions of the source shown in Fig. 6 correspond to
DOAs of 15 , 30 , 60 , and 80 . The simulated walls are
plane reflective surfaces with frequency independent reflection
coefficients. The impulse response between any two points in
the room is generated using Allen and Berkley’s image method
[25]. The impulse response is convolved with the input signal
to simulate the effect of room reverberation.1 The simulation
studies are carried out for reverberation times varying from 0 to
0.3 s. The reflection coefficient for a given room dimension
and reverberation time are related by the Eyring’s formula

[26], where ,

1The nonphysical behavior of the Allen and Berkley’s image method at zero
frequency is avoided by using a low cutoff (1% of the sampling frequency) high-
pass filter [25].

Fig. 7. (a) Sample speech waveform with reverberation of 100 ms and SNR
30 dB. (b) Corresponding PSR weighting function for a framesize of 100 ms
with a shift of 10 ms. The PSR was computed for the proposed method.

and are the dimensions of the room, is reverberation time
in seconds and is speed of sound in air (342 m/s).

Speech recorded over a close-speaking microphone in noise
free conditions and sampled at 8 kHz is used in these studies.
The speech signal is convolved with the impulse response of
the room to derive the reverberant signal. The SNR of rever-
berant signal is then varied from 0 to 50 dB by adding zero
mean white Gaussian noise to the speech signal. The resulting
degraded speech signal is segmented into frames of 200 ms with
a shift of 50 ms. Each segment is multiplied with a Hanning
window [19]. The time-delay is estimated for each frame using
the proposed method, and by the GCC method with PHAT, ML,
and Brandstein’s pitch-based2 weighting.

The performance of the time-delay estimation method is eval-
uated by calculating the bias, variance and RMSE for different
room impulse responses and SNR values. In each of the simu-
lations, the actual time-delay can be calculated corresponding
to a given DOA. Often noise and some unvoiced segments give
large random error, and thus these segments contribute signifi-
cantly to the estimated bias, variance and RMSE. To reduce the
contribution due to these segments, the knowledge of the PSR
value of each frame is used. The PSR values are relatively high
in voiced regions, and low in some unvoiced and noise regions.
The PSR values computed by the proposed method are used for
deriving a weight function. A sample weight function is shown
in Fig. 7(b) for the speech waveform shown in Fig. 7(a). The
errors in the estimated time-delays by all the four methods are
weighted for computing the bias, variance and RMSE values.
The bias, variance and RMSE values given for different cases
are computed by averaging the results obtained from 100 dif-
ferent simulations.

Figs. 8–10 show the bias (in number of samples), variance (in
number of samples square) and RMSE (in number of samples),
respectively, for a DOA of 15 . The SNR and the reverberation
time, respectively, are varied from 0 to 50 dB and 0 to 0.3 s. For
very low SNR, the GCC-ML performs better than all the other
methods (see 0–10 dB regions in all the plots). The GCC-ML
weighting has been derived as the optimal estimator when the
noise is Gaussian. Since in our simulations we use the Gaussian

2For the Brandstein’s pitch-based method [18] we estimate the pitch directly
from the clean speech signal rather than the reverberant noisy signal. As a result
there will not be errors due to error in the pitch estimation.
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Fig. 8. Comparison of absolute bias (in number of samples) for the four
methods: GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed
method. The DOA is 15 and the SNR is varied from 0 dB to 50 dB. Four
different reverberation times are considered. (a) Reverberation time = 0.0
s. (b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s. The scale on y axis in each of the subplots is
different.

Fig. 9. Comparison of the error variance (in number of samples square) for
the four methods: GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the
proposed method. The DOA is 15 and the SNR is varied from 0 dB to 50
dB. Four different reverberation times are considered. (a) Reverberation time =
0.0 s. (b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s. The scale on y axis in each of the subplots is
different.

noise model, it is not surprising that GCC-ML performs the best.
For high SNR and low reverberation, GCC-ML, GCC-PHAT
and the Brandstein’s pitch-based method perform equally well.
The Brandstein’s pitch-based method performs slightly better
than the GCC-PHAT method, and the GCC-PHAT performs
better than the GCC-ML. The proposed method performs better
than all these three methods [see, 20–50 dB regions in Figs. 8, 9,
and 10(a), (b)]. For low SNR and high reverberation GCC-ML
seems to be performing better than GCC-PHAT (see, 0–10 dB

Fig. 10. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method.
The DOA is 15 and the SNR is varied from from 0 dB to 50 dB. Four
different reverberation times are considered. (a) Reverberation time = 0.0
s. (b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s. Note that the scale on y axis in each of the
subplots is different.

regions in Figs. 8, 9, and 10(c), (d)]. For high SNR and high
reverberation the proposed method outperforms all the other
three methods (see, 10–50 dB regions in Figs. 8, 9, and 10(c),
(d)]. Thus, it can be concluded that the performance of the pro-
posed method is consistently equal to, or better than, the best
performing of the three methods.

One more metric, namely, percentage discrepancy is intro-
duced, which is defined as the percentage of trials for which
the absolute error in the estimated delay is greater than a given
threshold ( in the DOA). Fig. 11 shows percentage discrep-
ancies in the estimated delays for the proposed and the GCC
methods for the DOA corresponding to 15 . From Fig. 11(a), it
can be seen that all the three methods perform equally well for
the zero reverberation case. As the reverberation increases, the
GCC-PHAT method gives lower discrepancies compared to the
GCC-ML method for high SNR values. The proposed method
gives significantly fewer discrepancies for all the SNR values.

Similar trends in bias, variance, RMSE and percentage dis-
crepancies were observed for the experiments with DOAs 30
and 60 . For illustration, we have given the RMSE for the case
of reverberation time of 0.3 s in Fig. 12. Similar experiments
were conducted using colored noise obtained by bandpass fil-
tering the white noise. Figs. 13 and 14 show the RMSE and per-
centage discrepancies, respectively, for a DOA of 15 for col-
ored noise. In all these cases, the proposed method performs
better than other methods. For the bandpass filtered noise the
GCC-ML performs consistently worse than the other methods.

IV. LOCALIZATION OF SPEAKER IN A REAL ENVIRONMENT

Localization of speaker in an acoustical environment involves
two steps. The first step is estimation of time-delays between
pairs of microphones. The next step is to use these delays to
estimate the location of speaker.
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Fig. 11. Comparison of percentage discrepancies for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method.
The DOA is 15 and the SNR is varied from 0 dB to 50 dB. Four different
reverberation times are considered. (a) Reverberation time = 0.0 s.
(b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s.

Fig. 12. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method for
reverberation time 0.3 s corresponding to the DOA. (a) 30 . (b) 60 .

The speaker localization problem may be formulated as fol-
lows: Let there be pairs of microphones. Let and for

be the vectors representing spatial coordinates (
and ) of two microphones in the th pair. Let the source be lo-
cated at . The actual delay associated with a source at and the
th pair of microphones is given by

(8)

where is the speed of propagation of sound ( ms
at room temperature). The speed of sound in a given acoustical
medium is assumed to be constant. Let be the estimated time-
delay. If the estimated time-delay is corrupted by zero-mean
additive white Gaussian noise with known variance , then

is normally distributed with mean and variance

(9)

Fig. 13. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method.
The DOA is 15 and the SNR is varied from from 0 dB to 50 dB. Four
different reverberation times are considered. (a) Reverberation time = 0.0
s. (b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s, and (d)
Reverberation time = 0.3 s. Colored noise was used for these results. Note that
the scale on y axis in each of the subplots is different.

Fig. 14. Comparison of percentage discrepancies for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch-based, and the proposed method.
The DOA is 15 and the SNR is varied from 0 dB to 50 dB. Four different
reverberation times are considered. (a) Reverberation time = 0.0 s.
(b) Reverberation time = 0.1 s. (c) Reverberation time = 0.2 s. (d)
Reverberation time = 0.3 s. Colored noise was used for these results. Note that
the scale on y axis in each of the subplots is different.

Assuming that each of the time-delays is independently cor-
rupted by a zero-mean additive white Gaussian noise, the like-
lihood function can be written as

(10)
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Fig. 15. (a) Picture showing the actual setup of the microphones. (b) Schematic of the room indicating the positions of the eight microphones selected for the
study. Microphones 3 and 4 are on the partition.

The ML location estimate is the position which maxi-
mizes the log likelihood ratio, or equivalently which minimizes

(11)

This does not have a closed-form solution for the source posi-
tion, since it is a nonlinear function of . Nonlinear optimization
methods are needed to solve this problem. In our experiments,
we used the Gauss–Newton nonlinear least square method to
minimize this function [27]. The initial guess was set at the
center of the room.

In order to study the effectiveness of the proposed method
for speaker localization in noisy and reverberant environment,
an 8 element microphone array is setup in an office room of
dimension 5.67 4.53 2.68 m. The reverberation time of the
room is approximately 0.2 s, and the noise level in the room was
about 40–50 dB. Fig. 15(a) shows the actual microphone setup
in the room, and Fig. 15(b) shows the schematic of room and
the positions of microphones.3

For all the experiments speaker was instructed to move in the
room reading a text at his normal level of speaking. In order
to validate the results, speaker was asked to move in a prede-
termined path with known coordinates. The actual path for his
movement was marked on the floor of room. The speaker moved
in such a way that he was always facing the microphones. In
each case, as the speaker moved, the localization error, defined
as the distance between the actual position of speaker and the
estimated position of speaker, was plotted. The delays were esti-
mated using the proposed method and the GCC-PHAT method.
Frame lengths of 200 ms and 500 ms, each with a shift of 50 ms
were used.

3The microphones are electret microphones. Data acquisition is done using
the Power DAQ board PD-MF-16-330/12L. The microphones are connected to
the board through a custom-built preamplifier. Signal from each channel is sam-
pled at 8 kHz sampling frequency.

Fig. 16. Three cases for which the methods were tested. (a) Case 1: Speaker
is stationary. (b) Case 2: Speaker moves from one end of the room toward the
microphones. (c) Case 3: Speaker moves from one end of the room toward the
microphones and from the microphones toward the other end of the room.

The following three cases were considered for study: 1) Sta-
tionary speaker. 2) Speaker moving from one end of room to-
ward the microphones. 3) Speaker moving from one end of room
toward the microphones, and then from the microphones toward
the other end of room. Fig. 16 shows all three cases.

Fig. 17 shows the estimated delays as a function of frame
number for one microphone pair (mic-1 and mic-4) for Case 2 in
Fig. 16, using the proposed and GCC-PHAT methods for frame
lengths of 200 ms and 500 ms, with a frame shift of 50 ms. It can
be seen that delay values vary in accordance with the movement
of speaker, though there are a few random delays. Also it can be
seen that the number of random delays are reduced as the frame
size is increased, giving a better estimate of delays. In partic-
ular, the number of random delays obtained using the proposed
method are less as compared to the GCC-PHAT method.
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Fig. 17. Estimated delay as a function of frame number for one microphone
pair (mic-1 and mic-4) using (a) proposed and (b) GCC methods using a frame
size of 200 ms, and (c) proposed and (d) GCC methods using a frame size of
500 ms, both with a frame shift of 50 ms for Case 2 [shown in Fig. 16(b)].

Fig. 18. Actual and the estimated locations (x; y, and z coordinates in cm) of
the speaker. (a) Proposed method. (b) GCC method. A frame size of 200 ms and
a frame shift of 50 ms were used for the Case 2 shown in Fig. 16(b). The actual
path is shown as solid line, and the estimated path is shown as dots.

Figs. 18 and 19 show the actual and the estimated co-
ordinates for Case 2 by proposed and GCC-PHAT methods, for
frame lengths of 200 ms and 500 ms, respectively. In these plots,
the actual path is shown using a solid line, and the estimated path
is shown using dots. It can be seen that the estimated path fol-
lows the actual path more closely for the proposed method than
for the GCC-PHAT method. Figs. 20 and 21 show the localiza-
tion error as a function of frame number using the proposed and
GCC-PHAT methods for Case 2 and Case 3. From these plots,
it can be observed that, for a given frame size, the localization
error is lower for the proposed method compared to the error ob-
tained by the GCC-PHAT method. The error is generally lower

Fig. 19. Actual and the estimated location (x; y, and z coordinates in cm) of
the speaker. (a) Proposed method. (b) GCC method. A frame size of 500 ms with
frame shift of 50 ms were considered for the Case 2 as shown in Fig. 16(b). The
actual path is shown as solid line and the estimated path is shown as dots.

Fig. 20. Localization error (in cm) as a function of frame number using the
proposed and GCC methods for frame size of (a) Frame size = 200 ms and
(b) Frame size = 500 ms with frame shift of 50 ms for the Case 2 as shown in
Fig. 16(b).

for frames where signal energy is high, and also a lower error is
obtained when larger frame sizes are used.

V. CONCLUSION

In this paper, a method for estimation of time-delays and
speaker localization using the information in the excitation
source of speech production was proposed. Comparison of the
results show that the delay and location parameters estimated
by the proposed method are closer to the actual values than the
parameters estimated from the spectral-based GCC method.
Generally all the correlation-based methods work better when
longer segments are used. The proposed method works even
with smaller segments. Since the proposed method is based on
the information in the source of excitation, the Hilbert envelope
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Fig. 21. Localization error (in cm) as a function of frame number using the
proposed and GCC methods for frame size of (a) frame size = 200 ms and
(b) frame size = 500 ms with frame shift of 50 ms for the Case 3 as shown in
Fig. 16(c).

of the LP residual of even four or five pitch periods may be
sufficient for estimating time-delays. In general, features of the
vocal tract system and features of the excitation source contain
significant information about a moving speaker. The potential
of vocal tract system features has already been established. In
this paper the usefulness of excitation source information is il-
lustrated. An effective way of combining these two approaches
may yield a robust method for localization and tracking a
moving speaker in an adverse acoustic environment.
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