
APPROXIMATE EXPRESSIONS FOR THE MEAN AND THE COVARIANCE OF THE
MAXIMUM LIKELIHOOD ESTIMATOR FOR ACOUSTIC SOURCE LOCALIZATION

Vikas C. Raykar and Ramani Duraiswami

Perceptual Interfaces and Reality Lab., Institute for Advanced Computer Studies,
Department of Computer Science, University of Maryland, CollegePark

ABSTRACT
Acoustic source localization using multiple microphones can be
formulated as a maximum likelihood estimation problem. The es-
timator is implicitly defined as the minimum of a certain objective
function. As a result we cannot get explicit expressions for the
mean and the covariance of the estimator. In this paper, we derive
approximate expressions for the mean vector and covariance ma-
trix of the estimator using Taylor’s series expansion of the implic-
itly defined estimator. The validity of our expressions is verified
by Monte-Carlo simulations. We also study the performance of the
estimator for different microphone array configurations.

1. INTRODUCTION
The benefits that a microphone array provides over a single mi-
crophone are two fold. Using a microphone array we can local-
ize a sound source accurately. Once the source location is known
the microphone array can be electronically steered to the source.
Broadly three types of methods exist for localizing a sound source
[1]: Focalization using a steered beamformer, High resolution spec-
tral estimation methods and Time Difference of Flight (TDOF)
based methods. The most commonly used method in practice is
the TDOF based method. In this method the signals received by
several microphones are processed to estimate the time delays be-
tween pairs of microphones. Based on the estimated TDOFs the
Maximum Likelihood (ML) estimator for the source location can
be derived. Approximate closed form solutions do exist [2]. How-
ever the ML estimation is always used as a final step to refine the
approximate source locations.

The performance of the ML estimator can be studied in terms
of the bias vector and error covariance matrix. The bias and error
covariance depends on the noise variance, the number of micro-
phones, the geometry of the array, and the source position. Often
for a given microphone array geometry we would like to see how
well the estimator performs for different source locations. One
way to study this is to do extensive Monte-Carlo Simulations for
different source locations. However if we get an analytical expres-
sion for the bias and the covariance of the estimator then these
studies can be carried out quickly and the estimator can be studied
in depth.

The ML estimate for the source location is defined implicitly
as the minimum of a certain objective function. Hence it is not pos-
sible to get exact analytical expressions for the mean vector and the
covariance matrix. However, by using the implicit function theo-
rem and the Taylor’s series it is possible to derive approximate ex-
pressions for the mean and covariance matrix of implicitly defined
estimators [3, 4]. Previous studies [5, 6] have analyzed the ML
estimator performance by deriving the Crámer-Rao lower bound
(CRLB). We could have derived the CRLB which gives the lower
bound on the error covariance matrix of any unbiased estimator.
However we cannot determine whether our estimator is unbiased.

The following are the novel contributions of this paper: (a)
Unlike other approaches which derive the CRLB assuming that

the estimator is unbiased, we derive an approximate expression for
both the bias and the error covariance matrix of the estimator. (In
[7, 8] we used a similar approach in the context of microphone
array position calibration.) (b) We study the performance of the
estimator for different array geometries and show that the array
performs best within the region enclosed by the microphones. The
rest of the paper is organized as follows. In Sec. 2 we precisely
state the estimation problem and derive the ML estimator in Sec. 3.
In Sec. 4 we derive approximate expressions for the mean and the
covariance of the estimator. In Sec. 5 we verify the validity of our
expressions by Monte-Carlo simulations and study the estimator
for different microphone array geometries.

2. PROBLEM STATEMENT
Let us say we have M microphones and one isotropic source. Let
mi = [mxi, myi, mzi]

T represent the three dimensional spatial
coordinates of the ith microphone, where mxi, myi, and mzi are
it’s coordinates. Let the source be located at s = [sx, sy, sz]T ,
where sx, sy, and sz are the coordinates of the acoustic source.
The Time Difference Of Flight (TDOF) for a given pair of micro-
phones and the source is defined as the time difference between
the signal received by the two microphones. The TDOF between
the ith and the jth microphone is given by,

TDOFij =
‖ s − mi ‖ − ‖ s − mj ‖

c
, (1)

where c the speed of sound and ‖ s − mi ‖ is the Euclidean
distance between the source and the ith microphone. The speed
of sound in a given acoustical medium is given by c = (331 +
0.6T )m/s, where T is the temperature of the medium in Cel-
sius. In practice the TDOF cannot be estimated accurately. Let
TD̂OFij be the estimated TDOF between the ith and the jth mi-
crophone based on the signal received by each of the microphones.
Given M microphones, the set of M(M − 1)/2 TDOF measure-
ments constitute our observations based on which we have to esti-
mate the location of the acoustic source.

3. MAXIMUM LIKELIHOOD ESTIMATOR
Assuming an additive Gaussian noise model for the observations
we can derive the Maximum Likelihood (ML) estimate for the
source location as follows. Let Θ be a column vector of length
P , representing all the unknown non-random parameters to be
estimated (the source coordinates sx, sy, and sz). Let Γ be a
column vector of length N , representing the noisy measurements.
Let T (Θ) be a column vector of length N , representing the actual
value of the observations. Then our model for the observations is
Γ = T (Θ) + η, where η is the zero-mean additive white Gaus-
sian noise vector of length N where each element has variance σ2

j .
Also let us define Σ to be the N × N covariance matrix of the
noise vector η. The likelihood function (multivariate Gaussian in
our case) of Γ in vector form can be written as:

p(Γ/Θ) = (2π)−
N
2 | Σ |− 1

2 e−
1
2 [Γ−T (Θ)]T Σ−1[Γ−T (Θ)]. (2)
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The ML estimate of Θ is the one which maximizes the like-
lihood ratio (or equivalently the log-likelihood ratio) and is given
by

Θ̂ML = argΘ max F (Θ, Γ)

F (Θ, Γ) = −1

2
[Γ − T (Θ)]T Σ−1[Γ − T (Θ)]. (3)

Assuming that each of the measurements are independently
corrupted by zero-mean additive white Gaussian noise of variance
σ2

j the ML estimate becomes a weighted nonlinear least squares
problem. For independent noise components Σ is a diagonal ma-
trix. Simplifying Eq. 3 we get

F (Θ, Γ) = −1

2

N∑
j=1

[Γj − Tj(Θ)]2

σ2
j

. (4)

In our case, Θ represents the source coordinates, Γ corre-
sponds to the estimated TDOF measurements and T (Θ) corre-
sponds to the actual TDOF. Substituting in Eq. 4 we get the fol-
lowing expression for the source location (removing the constant
term and the negative sign and replacing the maximum by the min-
imum),

ŝTDOF = args min
∑M−1

i=1

∑M
j=i+1

(TD̂OFij−TDOF ij)2

σ2
ij

.

4. MEAN AND COVARIANCE OF THE ML ESTIMATOR
The ML estimate is defined implicitly as the maximum of a certain
error function (Eq. 4). Hence it is not possible to get exact analyt-
ical expressions for the mean and the covariance. In this section
by using the implicit function theorem and the Taylor’s series ex-
pansion we to derive approximate expressions for the mean and
covariance matrix of the implicitly defined estimator [3, 4].

4.1. Vector Derivatives
In further derivations we need the first, second, and third deriva-
tives of the objective function in Eq. 3 (or Eq. 4) with respect to
Θ and Γ. The P × 1 column gradient operator �Θ is defined
as ∇ΘF (Θ, Γ) = [ ∂F (Θ,Γ)

∂Θ1
, ∂F (Θ,Γ)

∂Θ2
, ..., ∂F (Θ,Γ)

∂ΘP
]T , where (dif-

ferentiating Eq. 4), ∂F (Θ,Γ)
∂Θk

=
∑N

j=1

∂Tj(Θ)

∂Θk

1
σ2

j
[Γj − Tj(Θ)].

Similarly the N × 1 column gradient operator ∇Γ with respect to
Γ is defined as ∇ΓF (Θ, Γ) = [ ∂F (Θ,Γ)

∂Γ1
, ∂F (Θ,Γ)

∂Γ2
, ..., ∂F (Θ,Γ)

∂ΓN
]T ,

where, ∂F (Θ,Γ)
∂Γn

= − [Γn−Tn(Θ)]

σ2
n

. In the vector notation the first
derivatives can be conveniently written as,

∇ΘF (Θ, Γ) = JT Σ−1[Γ − T (Θ)],

∇ΓF (Θ, Γ) = −Σ−1[Γ − T (Θ)]. (5)

where J is a N × P matrix of partial derivatives of T (Θ) called
the Jacobian of T (Θ). [J ]ij = ∂Ti(Θ)

∂Θj
. The individual second

derivatives are as follows,
∂2F (Θ,Γ)

∂ΘlΘk
= −∑N

j=1
1

σ2
j

∂Tj(Θ)

∂Θk

∂Tj(Θ)

∂Θl
+ 1

σ2
j
[Γj−Tj(Θ)]

∂2Tj(Θ)

∂Θl∂Θk
.

∂2F (Θ, Γ)

∂ΓmΓn
=

{
0, if m �= n;
− 1

σ2
n

, if m = n.

∂2F (Θ, Γ)

∂ΓnΘk
=

∂2F (Θ, Γ)

∂ΘkΓn
=

1

σ2
n

∂Tn(Θ)

∂Θk
. (6)

In our derivations we only need the second derivatives evalu-
ated at Γ = Γ = T (Θ) where, Γ is the mean of Γ. Evaluating

Eqs. 6 at Γj = Tj(Θ) the second derivatives can be conveniently
written in the matrix form as follows,

∇Θ∇ΘF (Θ, Γ)|Γ=Γ = −JT Σ−1J.

∇Γ∇ΓF (Θ, Γ)|Γ=Γ = −Σ−1.

∇Γ∇ΘF (Θ, Γ)|Γ=Γ = Σ−1J.

∇Θ∇ΓF (Θ, Γ)|Γ=Γ = JT Σ−1. (7)

The following are the third derivatives of the objective func-
tion which we will be using in our derivation of the mean vector.

∂3F (Θ,Γ)
∂Θm∂Θl∂Θk

=
∑N

j=1 − 1
σ2

j
[
∂Tj(Θ)

∂Θk

∂2Tj(Θ)

∂Θm∂Θl
+

∂Tj(Θ)

∂Θl

∂2Tj(Θ)

∂Θm∂Θk
+

∂Tj(Θ)

∂Θm

∂2Tj(Θ)

∂Θl∂Θk
] +

[Γj−Tj(Θ)]

σ2
j

∂3Tj(Θ)

∂Θm∂Θl∂Θk
,

∂3F (Θ, Γ)

∂Θl∂Θk∂Γn
=

1

σ2
n

∂2Tn(Θ)

∂Θl∂Θk
,

∂3F (Θ, Γ)

∂Θk∂Γ2
n

= 0. (8)

Unlike the first and the second derivatives Eqs. 8 cannot be
written in a much simpler form without invoking tensor notation.
All individual derivatives are listed in Appendix I.

4.2. Estimator Covariance
The ML estimate is the one which maximizes the objective func-
tion F (Θ, Γ) defined in Eq. 3. Assuming that the objective func-
tion has a unique global maximum, the maximum can be found by
setting the first derivative to zero, i.e., ∇ΘF (Θ, Γ) |Θ=Θ̂ML

= 0,
where 0 is a zero column vector of length P . The implicit func-
tion theorem guarantees that this implicitly defines a vector valued
function Θ̂ML = h(Γ) = [h1(Γ), h1(Γ), ..., hP (Γ)]T that maps
the observation vector Γ to the parameter vector Θ̂ML. Therefore,

∇ΘF (Θ, Γ) |Θ=h(Γ)= ∇ΘF (h(Γ), Γ) = 0. (9)

It is not possible to find an analytical expression for h(Γ), but
we can approximate the covariance using the first-order Taylor’s
series expansion for h(Γ). Let Γ be the mean of Γ. Then the
first-order Taylor’s series expansion for h(Γ) around Γ gives,

h(Γ) ≈ h(Γ) + [∇Γh(Γ)T |Γ=Γ]T (Γ − Γ). (10)

Taking the covariance on both sides yields

Cov[h(Γ)] ≈ [∇Γh(Γ)T |Γ=Γ]T Cov(Γ)[∇Γh(Γ)T |Γ=Γ]. (11)

Note we do not know h(Γ), but the dependence is only through
the first-order partial derivatives of h(Γ). Differentiating Eq. 9
with respect to Γ and evaluating at Γ yields

∇Θ∇ΘF (h(Γ), Γ)[∇Γh(Γ)T ]T + ∇Θ∇ΓF (h(Γ), Γ) = 0. (12)

Assuming that ∇Θ∇ΘF (h(Γ), Γ) is invertible we can write
[∇Γh(Γ)T ]T = −[∇Θ∇ΘF (h(Γ), Γ)]−1∇Θ∇ΓF (h(Γ), Γ). Sub-
stituting for the derivatives form Eq. 7 we get, [∇Γh(Γ)T ]T =
−[−JT Σ−1J ]−1JT Σ−1. Using this in the covariance expression
in Eq. 11, we arrive at the following expression for the covariance
of the estimator,

CovΘ̂ = Cov[h(Γ)] = [JT Σ−1J ]−1. (13)

If we assume all the observations have the same variance σ2, i.e.,
Σ = σ2I , we get CovΘ̂ = σ2[JT J ]−1.
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4.3. Estimator Mean
Taking the expectation of the first order Taylor series expansion
in Eq. 10, we get E[h(Γ)] ≈ h(Γ) = h(T (Θ)). We made use
of the fact that Γ = T (Θ). We see that the mean is the value
given by the estimation procedure when applied to the actual noise
free measurements T (Θ). A more accurate expression for the
mean can be derived using the second order Taylor’s series expan-
sion. The second-order Taylor’s series expansion for h(Γ) around

Γ can be written as, h(Γ) ≈ h(Γ) +
∑

n
∂h(Γ)
∂Γn

(Γn − Γn) +

1
2

∑
n

∑
m

∂2h(Γ)
∂Γn∂Γm

(Γn − Γn)(Γm − Γm). Taking the expecta-
tion on both sides of the truncated Taylor’s series expansion we

get, E[h(Γ)] ≈ h(T (Θ)) + 1
2

∑
n

∑
m

∂2h(Γ)
∂Γn∂Γm

Cov(Γn, Γm).
Since the observations are independent, this simplifies to,

E[h(Γ)] ≈ h(T (Θ)) +
1

2

∑
n

∂2h(Γ)

∂2Γn
σ2

n (14)

To evaluate, ∂2h(Γ)

∂2Γn
we need to differentiate Eq. 12 with respect

to Γ. Eq. 12 on a term by term basis can be written as follows,∑
k

∂2F (h(Γ),Γ)
∂Θj∂Θk

∂hk(Γ)
∂Γn

+ ∂2F (h(Γ),Γ)
∂Θj∂Γn

= 0, j = 1, . . . , P , n =

1, . . . , N . Differentiating this with respect to Γn,

∑
k

[∑
l

∂3F (h(Γ), Γ)

∂Θj∂Θk∂Θl

∂hl(Γ)

∂Γn
+ 2

∂3F (h(Γ), Γ)

∂Θj∂Θk∂Γn

]
∂hk(Γ)

∂Γn

+
∑

k

∂2F (h(Γ), Γ)

∂Θj∂Θk

∂2hk(Γ)

∂Γ2
n

+
∂3F (h(Γ), Γ)

∂Θj∂Γ2
n

= 0, (15)

j = 1, .., P , n = 1, .., N . From Eq. 8 we have ∂3F (h(Γ),Γ)

∂Θj∂Γ2
n

= 0.

Eq. 15 can be written as,

∑
k

∂2F (h(Γ), Γ)

∂Θj∂Θk

∂2hk(Γ)

∂Γ2
n

= ∇Θ∇ΘF (Θ, Γ)|Γ=Γ

∂2h(Γ)

∂Γ2
n

−
∑

k

[∑
l

∂3F (h(Γ), Γ)

∂Θj∂Θk∂Θl

∂hl(Γ)

∂Γn
+ 2

∂3F (h(Γ), Γ)

∂Θj∂Θk∂Γn

]
∂hk(Γ)

∂Γn
. (16)

Substituting from Eq. 7, ∂2h(Γ)

∂Γ2
n

= [JT Σ−1J ]−1an where an is

P × 1 vector where the jth element is given by the following

, [an]j =
∑

k

[∑
l

∂3F (h(Γ),Γ)
∂Θj∂Θk∂Θl

∂hl(Γ)
∂Γn

+ 2 ∂3F (h(Γ),Γ)
∂Θj∂Θk∂Γn

]
∂hk(Γ)

∂Γn
.

The expression for the mean can now be written as, E[h(Γ)] ≈
h(T (Θ)) + 1

2
[JT Σ−1J ]−1 ∑

n anσ2
n. If A = [an . . . aN] is a

P × N matrix and diag(Σ) is a N × 1 vector consisting of the
diagonal elements of Σ, then

E[h(Γ)] ≈ h(T (Θ)) +
1

2
[JT Σ−1J ]−1A diag(Σ). (17)

If we assume all the observations have the same variance σ2, i.e.,
Σ = σ2I , we get E[h(Γ)] ≈ h(T (Θ))+0.5σ4[JT J ]−1A1 where
1 is a column vector of ones of length N .

5. DISCUSSION
5.1. Monte-Carlo Simulations
We perform Monte-Carlo simulations in order to verify the validity
of the approximate expressions for the mean vector and the covari-
ance matrix of the estimator. Fig. 1(a) shows a configuration of 4

microphones (solid squares) distributed in a 4m × 4m square 1.
For the given configuration the actual TDOF was computed and
corrupted with zero mean additive gaussian noise of standard de-
viation σ = 10−4 (0.1 milliseconds, around 3.5 cm). The source
location was estimated using the Levenberg-Marquardt method for
solving non-linear least square problems. This was repeated for
200 trials for different source locations. The estimated source loca-
tions are plotted as dots in Fig. 1(a). The 95 % uncertainty ellipses
derived from the theoretical expression for the covariance matrix
are also plotted around the theoretical mean. The bias vector is in-
dicated as a line from the actual source position to the mean source
position. As can be seen the estimated source locations lie within
the theoretical 95 % uncertainty ellipses. The bias is negligible to
be clearly seen in the figure.

5.2. Effect of Microphone Array Geometry
Fig. 1(b)-(d) shows the bias vector and the covariance ellipses for
different microphone array configurations. First, we note that as
the number of microphones increases the variance and the bias de-
creases (compare Fig. 1(b) and (c)). This is because as the number
of microphones increases (O(n)) the number of observations also
increases (O(n2)). The estimator performs best within the region
bounded by the microphones. The area of the uncertainty ellipses
increases as we move further away from the microphone array.
The particular orientation is dictated by the geometrical configu-
ration of the microphone array. For a given pair of microphones
and a given TDOF, Eq. 1 represents one half of a hyperbola, with
mi+mj

2
as the center with mi and mj being the two focal points

and the line joining the two microphones as the axis of symme-
try. The actual source location is obtained as the intersection of
the hyperbolas in a least square sense. Ay error in the estimated
TDOF, will cause a error in the intersection whose shape is dic-
tated by the microphone array geometry. Fig. 1(f) show the shape
of the error region as a intersection of two hyperbolas (error of 4
cm), corresponding to 2 TDOF pairs for 3 microphones, for two
different source positions (one within the region bounded by the 3
microphones and the other outside). For the source position within
the region bounded by the microphones the error region is much
smaller compared to that of the source far away from the micro-
phone array. In all the plots the bias is indicated as a line from the
actual source position to the theoretical mean position. The bias is
negligible to be clearly seen in the figure. Fig. 1(e) shows only the
bias vectors for a 4 microphone array.

5.3. Effect of Number of TDOF pairs
Given M microphones we can have M(M − 1)/2 measurements.
Of these only M − 1 are linearly independent. We need not use
all the TDOF pairs in our estimation procedure. Fig. 1(g) and (h)
shows the norm of the bias vector and the sum of the variances in
the x and y direction as a function of the noise standard deviation
σ, for different number of microphone pairs used in our estimation
procedure. The graph is for a source location situated at the center
of a 4m × 4m room consisting of 20 microphones distributed
randomly. The variance and the bias decrease as the number of
microphone pairs are increased.

6. CONCLUSION
In this paper we derived an approximate expression for the mean
vector and the covariance matrix of the ML estimator for acoustic

1For illustration purpose and reasons of space we consider all our mi-
crophones to be distributed in two dimensions. Similar results apply in
three dimensions.

III - 75

➡ ➡



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X (m)

Y
 (

m
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X (m)

Y
 (

m
)

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X (m)

Y
 (

m
)

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X (m)

Y
 (

m
)

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X (m)

Y
 (

m
)

(e)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X (m)

Y
 (

m
) SOURCE 1 

SOURCE 2 

(f)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Noise Standard Deviation σ (µ sec)
N

o
rm

 o
f 

th
e

 b
ia

s
 v

e
c
to

r 
(c

m
)

190 TDOF pairs
80 TDOF pairs
19 TDOF pairs

(g)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Noise Standard Deviation σ (µ sec)

S
u
m

 o
f 

v
a
ri
a
n
c
e
 i
n
 X

 a
n
d
 Y

 d
ir
e
c
ti
o
n
 (

c
m

2
)

190 TDOF pairs
80 TDOF pairs
19 TDOF pairs

(h)

Fig. 1. [Noise standard deviation for all cases is σ = 10−4 (0.1 milliseconds, around 3.5 cm). The microphones are represented as filled
squares. The actual source positions are marked as dots.] (a) 95% uncertainty covariance ellipses for different source locations for a 4 four
microphone array. The results of 200 Monte-Carlo trails are shown as dots. (b)-(d) 95% uncertainty covariance ellipses and the bias vector
for the following different microphone array configurations:(b) 4 microphones one near each wall, (c) 8 microphones forming a square, and
(d) 12 microphones approximately arranged as a circle. The bias is indicated as a line from the actual source position to the theoretical mean
position. The bias is negligible to be clearly seen in the figures. (e) shows only the bias vectors for a 4 microphone array. (f) Error region
as a intersection of two hyperbolas (error of 4 cm), corresponding to 2 TDOF pairs for 3 microphones, for two different source positions
(g) The norm of the bias vector and (h) the sum of the variances in the x and y direction as a function of the noise standard deviation σ, for
different number of microphone pairs. The source is situated at the center of a 4m × 4m room consisting of 20 microphones.

source localization. A microphone array designer can quickly ver-
ify how his array performs for different source locations. In this
paper we dealt with only one acoustic source. Future work would
involve the same analysis with multiple acoustic sources.

7. APPENDIX I
∂TDOFij

∂sx
= (sx−mxi)

c‖s−mi‖ − (sx−mxj)

c‖s−mj‖

∂2TDOFij

∂sx2 = − (sx−mxi)
2

c‖s−mi‖3 +
(sx−mxj)2

c‖s−mj‖3 + 1
c‖s−mi‖ − 1

c‖s−mj‖

∂2TDOFij

∂sy∂sx
=

∂2TDOFij

∂sx∂sy
= − (sx−mxi)(sy−myi)

c‖s−mi‖3 +
(sx−mxj)(sy−myj)

c‖s−mj‖3

Similar expressions can be derived with respect to the source loca-
tion sy and sz.

8. REFERENCES

[1] M. Brandstein and D. Ward, Microphone arrays-Signal Pro-
cessing Techniques and Applications, Springer-Verlag, 2001.

[2] J. O. Smith and J. S. Abel, “Closed-form least-squares
source location estimation from range-difference measure-
ments,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. ASSP-35, no. 12, pp. 1661–1669, 1987.

[3] J. A. Fessler, “Mean and variance of implicitly defined biased
estimators (such as penalized maximum likelihood): Applica-

tions to tomography,” IEEE Trans. on Image Processing, vol.
5, no. 3, pp. 493–506, March 1996.

[4] A. R. Chowdhury and R. Chellappa, “Stochastic approxima-
tion and rate distortion analysis for robust structure and mo-
tion estimation,” International Journal of Computer Vision,
vol. 55, no. 1, pp. 27–53, October 2003.

[5] M.J.D. Rendas and J.M.F. Moura, “Cramer-rao bound for lo-
cation systems in multipath environments,” IEEE Transac-
tions on Signal Processing, vol. 39, no. 12, pp. 2593–2610,
1991.

[6] X. Sheng and Hu Yu-Hen, “Energy based acoustic source lo-
calization,” in The 2nd International Workshop on Informa-
tion Processing in Sensor Networks, Palo Alto, CA, 2003, pp.
285–300.

[7] V. C. Raykar, I. Kozintsev, and R. Lienhart, “Position cali-
bration of microphones and loudspeakers in distributed com-
puting platforms,” IEEE Transactions on Speech and Audio
Processing (to appear).

[8] V. C. Raykar and R. Duraiswami, “Automatic position cali-
bration of multiple microphones,” in Proceedings of Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, Montreal, Canada, May 2004, vol. IV, pp. 69–72.

III - 76

➡ ➠


