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Abstract

We propose a computationally efficient ε−exact approxima-

tion algorithm for univariate Gaussian kernel based density

derivative estimation that reduces the computational com-

plexity from O(MN) to linear O(N +M). We apply the pro-

cedure to estimate the optimal bandwidth for kernel density

estimation. We demonstrate the speedup achieved on this

problem using the ”solve-the-equation plug-in” method, and

on exploratory projection pursuit techniques.

1 Introduction

Kernel density estimation techniques [10] are widely
used in various inference procedures in machine learn-
ing, data mining, pattern recognition, and computer vi-
sion. Efficient use of these methods requires the opti-
mal selection of the bandwidth of the kernel. A series
of techniques have been proposed for data-driven band-
width selection [4]. The most successful state of the art
methods rely on the estimation of general integrated
squared density derivative functionals. This is the most
computationally intensive task with O(N2) cost, in ad-
dition to the O(N2) cost of computing the kernel den-
sity estimate. The core task is to efficiently compute an
estimate of the density derivative. Currently the most
practically successful approach, solve-the-equation plug-
in method [9] involves the numerical solution of a non-
linear equation. Iterative methods to solve this equation
will involve repeated use of the density functional esti-
mator for different bandwidths which adds much to the
computational burden. Estimation of density deriva-
tives is needed in various other applications like estima-
tion of modes and inflexion points of densities [2] and
estimation of the derivatives of the projection index in
projection pursuit algorithms [5].
2 Optimal bandwidth selection

A univariate random variable X on R has a density p
if, for all Borel sets A of R,

∫
A

p(x)dx = Pr[x ∈ A].
The task of density estimation is to estimate p from an
i.i.d. sample x1, . . . , xN drawn from p. The estimate
p̂ : R × (R)N → R is called the density estimate.
The most popular non-parametric method for density
estimation is the kernel density estimator (KDE) [10]

(2.1) p̂(x) =
1

Nh

N∑

i=1

K

(
x− xi

h

)
,

where K(u) is the kernel function and h is the band-
width. The kernel K(u) is required to satisfy the follow-
ing two conditions:
(2.2) K(u) ≥ 0 and

∫

R

K(u)du = 1.

The most widely used kernel is the Gaussian of zero
mean and unit variance. In this case the KDE can be
written as

(2.3) p̂(x) =
1

N
√

2πh2

N∑

i=1

e−(x−xi)
2/2h2

.

The computational cost of evaluating Eq. 2.3 at N
points is O(N2), making it prohibitively expensive. The
Fast Gauss Transform (FGT) [3] is an approximation
algorithm that reduces the computational complexity
to O(N), at the expense of reduced precision. Yang et
al. [11] presented an extension the improved fast Gauss
transform(IFGT) that scaled well with dimensions. The
main contribution of the current paper is the extension
of the IFGT to accelerate the kernel density derivative
estimate, and solve the optimal bandwidth problem.

The integrated square error (ISE) between the es-
timate p̂(x) and the actual density p(x) is given by
ISE(p̂, p) =

∫
R

[p̂(x) − p(x)]2dx. The ISE depends on
a particular realization of N points. It can be aver-
aged over these realizations to get the mean integrated
squared error (MISE). An asymptotic large sample ap-
proximation for MISE, the AMISE, is usually derived
via the Taylor’s series. The A here is for asymptotic.
Based on certain assumptions, the AMISE between the
actual density and the estimate can be shown to be

(2.4) AMISE(p̂, p) =
1

Nh
R(K) +

1
4
h4µ2(K)2R(p

′′
),

where, R(g) =
∫
R

g(x)2dx, µ2(g) =
∫
R

x2g(x)dx, and
p
′′

is the second derivative of the density p. The
first term in Eq. 2.4 is the integrated variance and the
second term is the integrated squared bias. The bias is
proportional to h4 whereas the variance is proportional
to 1/Nh, which leads to the well known bias-variance
tradeoff. Based on the AMISE expression the optimal
bandwidth hAMISE can be obtained by differentiating
Eq. 2.4 w.r.t. bandwidth h and setting it to zero.

(2.5) hAMISE =
[

R(K)
µ2(K)2R(p′′)N

]1/5

.



However this expression cannot be used directly since
R(p

′′
) depends on the second derivative of the density

p. In order to estimate R(p
′′
) we will need an estimate

of the density derivative.
A simple estimator for the density derivative can

be obtained by taking the derivative of the KDE p̂(x)
defined earlier [1]. The rth density derivative estimate
p̂(r)(x) can be written as

(2.6) p̂(r)(x) =
1

Nhr+1

N∑

i=1

K(r)

(
x− xi

h

)
,

where K(r) is the rth derivative of the kernel K. The
rth derivative of the Gaussian kernel k(u) is given
by K(r)(u) = (−1)rHr(u)K(u), where Hr(u) is the
rth Hermite polynomial. Hence the density derivative
estimate can be written as
(2.7)

p̂(r)(x) =
(−1)r

√
2πNhr+1

N∑

i=1

Hr

(
x− xi

h

)
e−(x−xi)

2/2h2
.

The computational complexity of evaluating the rth

derivative of the density estimate due to N points at M
target locations is O(rNM). Based on similar analysis
the optimal bandwidth hr

AMISE to estimate the rth

density derivative can be shown to be [10]

(2.8) hr
AMISE =

[
R(K(r))(2r + 1)

µ2(K)2R(p(r+2))N

]1/2r+5

.

3 Estimation of density functionals

Rather than requiring the actual density derivative,
methods for automatic bandwidth selection require the
estimation of what are known as density functionals.
The general integrated squared density derivative func-
tional is defined as R(p(s)) =

∫
R

[
p(s)(x)

]2
dx. Using

integration by parts, this can be written in the following
form, R(p(s)) = (−1)s

∫
R

p(2s)(x)p(x)dx. More specifi-
cally for even s we are interested in estimating density
functionals of the form,

(3.9) Φr =
∫

R

p(r)(x)p(x)dx = E
[
p(r)(X)

]
.

An estimator for Φr is,

(3.10) Φ̂r =
1
N

N∑

i=1

p̂(r)(xi).

where p̂(r)(xi) is the estimate of the rth derivative of the
density p(x) at x = xi. Using a kernel density derivative
estimate for p̂(r)(xi) (Eq. 2.6) we have

(3.11) Φ̂r =
1

N2hr+1

N∑

i=1

N∑

j=1

K(r)(
xi − xj

h
).

It should be noted that computation of Φ̂r is O(rN2)
and hence can be very expensive if a direct algorithm is
used. The optimal bandwidth for estimating the density
functional is given by [10]

(3.12) hr
AMSE =

[ −2K(r)(0)
µ2(K)Φr+2N

]1/r+3

.

4 Solve-the-equation plug-in method

The most successful among all current bandwidth selec-
tion methods [4], both empirically and theoretically, is
the solve-the-equation plug-in method [4]. We use the
following version as described in [9].

The AMISE optimal bandwidth is the solution to
the equation

(4.13) h =

[
R(K)

µ2(K)2Φ̂4[γ(h)]N

]1/5

,

where Φ̂4[γ(h)] is an estimate of Φ4 = R(p
′′
) using the

pilot bandwidth γ(h), which depends on h. The band-
width is chosen such that it minimizes the asymptotic
MSE for the estimation of Φ4 and is

(4.14) gMSE =
[ −2K(4)(0)
µ2(K)Φ6N

]1/7

.

Substituting for N , gMSE can be written as a function
of h as follows

(4.15) gMSE =
[−2K(4)(0)µ2(K)Φ4

R(K)Φ6

]1/7

h
5/7
AMISE.

This suggests that we set

(4.16) γ(h) =

[
−2K(4)(0)µ2(K)Φ̂4(g1)

R(K)Φ̂6(g2)

]1/7

h5/7,

where Φ̂4(g1) and Φ̂6(g2) are estimates of Φ4 and
Φ6 using bandwidths g1 and g2 respectively. The
bandwidths g1 and g2 are chosen such that it minimizes
the asymptotic MSE.

(4.17) g1 =
[ −6√

2πΦ̂6N

]1/7

g2 =
[

30√
2πΦ̂8N

]1/9

where Φ̂6 and Φ̂8 are estimators for Φ6 and Φ8 respec-
tively. We can use a similar strategy for estimation of
Φ6 and Φ8. However this problem will continue since
the optimal bandwidth for estimating Φr will depend on
Φr+2. The usual strategy is to estimate a Φr at some
stage, using a quick and simple estimate of bandwidth
chosen with reference to a parametric family, usually a
normal density. It has been observed that as the num-
ber of stages increases, the variance of the bandwidth
increases. The most common choice is to use only two
stages. If p is a normal density with variance σ2 then for



even r we can compute Φr exactly [10]. An estimator
of Φr will use an estimate σ̂2 of the variance. Based on
this we can estimate Φ6 and Φ8 as

(4.18) Φ̂6 =
−15
16
√

π
σ̂−7, Φ̂8 =

105
32
√

π
σ̂−9.

The two stage solve-the-equation method using the
Gaussian kernel can be summarized as follows. (1)
Compute an estimate σ̂ of the standard deviation. (2)
Estimate the density functionals Φ6 and Φ8 using the
normal scale rule (Eq. 4.18). (3) Estimate the density
functionals Φ4 and Φ6 using Eq. 3.11 with the optimal
bandwidth g1 and g2 (Eq. 4.17). (4) The bandwidth
is the solution to the nonlinear Eq. 4.13 which can be
solved using any numerical routine like the Newton-
Raphson method. The main computational bottleneck
is the estimation of Φ which is of O(N2).
5 Fast density derivative estimation

To estimate the density derivative at M target points,
{yj ∈ R}M

j=1, we need to evaluate sums such as
(5.19)

Gr(yj) =
N∑

i=1

qiHr

(
yj − xi

h1

)
e−(yj−xi)

2/h2
2j = 1, . . . ,M,

where {qi ∈ R}N
i=1 will be referred to as the source

weights, h1 ∈ R+ is the bandwidth of the Gaussian and
h2 ∈ R+ is the bandwidth of the Hermite polynomial.
The computational complexity of evaluating Eq. 5.19 is
O(rNM). For any given ε > 0 the algorithm computes
an approximation Ĝr(yj) such that
(5.20)

∣∣∣Ĝr(yj)−Gr(yj)
∣∣∣ ≤ Qε,

where Q =
∑N

i=1 |qi|. We call Ĝr(yj) an ε − exact
approximation to Gr(yj). We describe the algorithm
briefly. More details can be found in [8].

For any point x∗ ∈ R the Gaussian can be written
as,

e−‖yj−xi‖2/h2
2 = e−‖xi−x∗‖2/h2

2e−‖yj−x∗‖2/h2
2

e2(xi−x∗)(yj−x∗)/h2
2 .(5.21)

In Eq. 5.21 for the third exponential e2(yj−x∗)(xi−x∗)/h2

the source and target are entangled. This entanglement
is separated using the Taylor’s series expansion as
follows.
e2(x−x∗)(y−x∗)/h2

=
p−1∑

k=0

2k

k!

(
x− x∗

h

)k (
y − x∗

h

)k

+ error,(5.22)

Using this the Gaussian can now be factorized as

e−‖yj−xi‖2/h2
2 =

p−1∑

k=0

2k

k!

[
e−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k
]

[
e−‖yj−x∗‖2/h2

2

(
yj − x∗

h2

)k
]

+ err.(5.23)

The rth Hermite polynomial can be factorized as [10]

Hr

(
yj − xi

h1

)
=

br/2c∑

l=0

r−2l∑
m=0

alm

(
xi − x∗

h1

)m

(
yj − x∗

h1

)r−2l−m

, where(5.24)

(5.25) alm =
(−1)l+mr!

2ll!m!(r − 2l −m)!
.

Using Eq. 5.23 and 5.24, Gr(yj) after ignoring the error
terms can be approximated as

Ĝr(yj) =
p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBkme−‖yj−x∗‖2/h2
2

(
yj − x∗

h2

)k (
yj − x∗

h1

)r−2l−m

, where

Bkm =
2k

k!

N∑

i=1

qie
−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k (
xi − x∗

h1

)m

.

Thus far, we have used the Taylor’s series expansion
about a certain point x∗. However if we use the same
x∗ for all the points we typically would require very high
truncation number p since the Taylor’s series gives good
approximation only in a small open interval around x∗.
We uniformly sub-divide the space into K intervals of
length 2rx. The N source points are assigned into K
clusters, Sn for n = 1, . . . , K with cn being the center
of each cluster. The aggregated coefficients are now
computed for each cluster and the total contribution
from all the clusters is summed up. Since the Gaussian
decays very rapidly a further speedup is achieved if we
ignore all the sources belonging to a cluster if the cluster
is greater than a certain distance from the target point,
i.e., ‖yj − cn‖ > ry. Substituting h1 = h and h2 =

√
2h

the final algorithm can be written as

Ĝr(yj) =
∑

‖yj−cn‖≤ry

p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBn
km

e−‖yj−cn‖2/2h2
(

yj − cn

h

)k+r−2l−m

(5.26)

Bn
km =

1
k!

∑

xi∈Sn

qie
−‖xi−cn‖2/2h2

(
xi − cn

h

)k+m

.

5.1 Computational and space complexity Com-
puting the coefficients Bn

km for all the clusters is
O(prN). Evaluation of Ĝr(yj) at M points is
O(npr2M), where n if the maximum number of neigh-
bor clusters which influence yj . Hence the total com-
putational complexity is O(prN + npr2M). For each
cluster we need to store all the pr coefficients. Hence
the storage needed is of O(prK + N + M).
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Figure 1: (a) Running time in seconds and (b) maxi-
mum absolute error relative to Q for the direct and the
fast methods as a function of N . N = M source and the
target points were uniformly distributed [0, 1]. [h = 0.1,
r = 4, and ε = 10−6.]

5.2 Choosing the parameters Given any ε > 0,
we want to choose the following parameters, K (the
number of intervals), ry (the cut off radius for each
cluster), and p (the truncation number) such that for
any target point yj ,

∣∣∣Ĝr(yj)−Gr(yj)
∣∣∣ ≤ Qε. We

give the final results for the choice of the parameters.
The detailed derivations can be seen in the technical
report [8]. The number of clusters K is chosen such
that rx = h/2. The cutoff radius ry is given by

ry = rx + 2h
√

ln (
√

r!/ε). The truncation number p

is chosen such that ∆
∣∣
[b=min (b∗,ry), a=rx] ≤ ε, where,

∆ =
√

r!
p!

(
ab
h2

)p
e−(a−b)2/4h2

, and b∗ = a+
√

a2+8ph2

2 .
5.3 Numerical experiments The algorithm was
programmed in C++ and was run on a 1.6 GHz Pentium
M processor with 512Mb of RAM. Figure 1 shows the
running time and the maximum absolute error relative
to Q for both the direct and the fast methods as a
function of N = M . We see that the running time of
the fast method grows linearly as the number of sources
and targets increases, while that of the direct evaluation
grows quadratically.
6 Speedup achieved for bandwidth estimation

We demonstrate the speedup achieved on the mixture
of normal densities used by Marron and Wand [6]. The
family of normal mixture densities is extremely rich and,
in fact any density can be approximated arbitrarily well
by a member of this family. Fig. 2 shows a sample of
four different densities out of the fifteen densities which
were used by the authors in [6] as typical representatives
of the densities likely to be encountered in real data
situations. We sampled N = 50, 000 points from each
density. The AMISE optimal bandwidth was estimated
using both the direct methods and the proposed fast
method. Table 1 shows the speedup achieved and the
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Figure 2: Four normal mixture densities from Marron
and Wand [6].The solid line shows the actual density
and the dotted line is the estimated density using the
optimal bandwidth.
absolute relative error. We also used the Adult database
from the UCI machine learning repository [7]. The
database extracted from the census bureau database
contains 32,561 training instances with 14 attributes
per instance. Table 2 shows the speedup achieved and
the absolute relative error for two of the continuous
attributes.
7 Projection Pursuit

Projection Pursuit (PP) is an exploratory technique
for visualizing and analyzing large multivariate data-
sets [5]. The idea of PP is to search for projections from
high- to low-dimensional space that are most interest-
ing. The PP algorithm for finding the most interesting
one-dimensional subspace is as follows. First project
each data point onto the direction vector a ∈ Rd, i.e.,
zi = aT xi. Compute the univariate nonparametric ker-
nel density estimate, p̂, of the projected points zi. Com-
pute the projection index I(a) based on the density es-
timate. Locally optimize over the the choice of a, to
get the most interesting projection of the data. Repeat
from a new initial projection to get a different view. The
projection index is designed to reveal specific structure
in the data, like clusters, outliers, or smooth manifolds.
The entropy index based on Rényi’s order-1 entropy is
given by I(a) =

∫
p(z) log p(z)dz. The density of zero

mean and unit variance which uniquely minimizes this
is the standard normal density. Thus the projection in-
dex finds the direction which is most non-normal. In
practice we need to use an estimate p̂ of the the true
density p, for example the KDE using the Gaussian ker-
nel. Thus we have an estimate of the entropy index as
follows

(7.27) Î(a) =
∫

log p̂(z)p(z)dz =
1
N

N∑

i=1

log p̂(aT xi).



Table 1: The running time in seconds for the direct and the fast methods for four normal mixture densities of
Marron and Wand [6] (See Fig. 2). The absolute relative error is defined as |hdirect − hfast/hdirect|. For the fast
method we used ε = 10−3.

Density hdirect hfast Tdirect (sec) Tfast (sec) Speedup Abs. Relative Error
(a) 0.020543 0.020543 8523.26 101.62 83.87 1.53e-006
(b) 0.092240 0.092240 5918.19 88.61 66.79 6.34e-006
(c) 0.024326 0.024326 7186.07 106.17 67.69 1.84e-006
(d) 0.032492 0.032493 8310.90 119.02 69.83 3.83e-006

Table 2: Optimal bandwidth estimation for two continuous attributes for the Adult database [7].
Attribute hdirect hfast Tdirect (sec) Tfast (sec) Speedup Abs. Relative Error

Age 0.860846 0.860856 4679.03 66.42 70.45 1.17e-005
fnlwgt 4099.564359 4099.581141 4637.09 68.83 67.37 4.09e-006

The entropy index Î(a) has to be optimized over the
d-dimensional vector a subject to the constraint that
‖a‖ = 1. The optimization function will require the
gradient of the objective function. For the index de-
fined above the gradient can be written as d

da [Î(a)] =
1
N

∑N
i=1

bp′ (aT xi)
bp(aT xi)

xi. For the PP the computational bur-
den is greatly reduced if we use the proposed fast
method. The computational burden is reduced in the
following three instances. (1) Computation of the kernel
density estimate, (2) estimation of the optimal band-
width, and (3) computation of the first derivative of the
kernel density estimate, which is required in the opti-
mization procedure. Fig. 3 shows an example of the PP
algorithm to segment an image based on color.
8 Conclusions

We proposed an fast ε− exact algorithm for kernel den-
sity derivative estimation which reduced the computa-
tional complexity from O(N2) to O(N). We demon-
strated the speedup achieved for optimal bandwidth es-
timation both on simulated as well as real data. A ex-
tended version of this paper is available as a technical
report [8].
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