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Arrays of audio/video sensors and actuators (such as microphones, cameras, speakers and

displays) along with array processing algorithms offer a rich set of new features for emerging

multimedia applications. Until now, array processing was mostly out of reach for consumer

applications perhaps due to significant costs of dedicated hardware and complexity of processing

algorithms. On the other hand, several mobile computing and communication devices like

laptops, PDAs and tablets are equipped with multiple audio/video sensors and actuators. An

ad-hoc network of such devices can be used to form a distributed sensor network. A prerequisite

for using distributed audio-visual I/O capabilities is to put the sensors and actuators into a

common time and space.

This thesis focuses on providing a common space by automatically determining the relative 3D

positions of audio sensors and actuators. A closed form approximate solution is derived, which is

further refined by minimizing a non-linear error function. The formulation and solution accounts



for the lack of temporal synchronization among different platforms. An approximate expression

for the mean and covariance of the implicitly defined estimator is derived using the implicit

function theorem and approximate Taylors’ series expansion. The theoretical performance limits

for the sensor positions are derived via the Cramér-Rao bound and analyzed with respect to the

number of sensors and actuators as well as their geometry. Extensive simulation results and the

practical details of implementing our algorithms in a real-life system are discussed.
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Chapter 1

Introduction

1.1 Motivation

Arrays of audio/video sensors and actuators (such as microphones, cameras, loudspeakers and

displays) along with array processing algorithms offer a rich set of new features for emerging

multimedia applications. A typical setup as shown in Figure 1.1 would involve capturing the

audio and video scene using multiple microphones and cameras. The captured multiple

audio/video streams can be rendered on multiple loudspeakers/displays or used for different

applications. A few such applications include multi-stream audio/video rendering, smart

conference rooms [35, 34, 37] , meeting recording, hands free voice communication [23, 15],

speech acquisition in automobile environments [16, 22], object localization and tracking,

hearing-aid devices [14], speech enhancement [25, 24], speech dereverberation and acoustic

surveillance (Refer Figure 1.2). In this thesis we are concerned only with acoustic sensors

(microphones) and actuators (loudspeakers).

The two main applications for which we can use multiple microphones are for sound source
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Figure 1.1: A general setup involving multiple microphones, loudspeakers, cameras and displays.

localization and beamforming. Using multiple microphones and knowing the locations of the

microphones we can estimate the location of the speaker based on the waveform captured at each

of the microphones. Once we know the location of the speaker we can track the moving speaker

and beamform to his location. A beamformer does spatial filtering in the sense that it separates

two signals with overlapping frequency content originating from different directions.

Consider a typical conference room scenario. The speech signal received from a speaker in such

acoustical environments is corrupted both by additive noise and room reverberation. One

effective way of dealing with such situations is to use a set of spatially distributed microphones

for recording the speech. In order to keep the speaker in focus in videoconferencing, the speaker

can be localized, and this information can be fed to a video system for actuating the pan-tilt

operations of a camera. Once the actual position of the speaker is known, the microphone array

can be steered electronically (beamformed) for high quality speech acquisition. Tracking a

moving speaker is also useful in a multispeaker scenario in which speech from a particular

speaker may need to be enhanced with respect to others, or with respect to noise sources.
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Figure 1.2: Some typical applications involving multiple audio/video sensors and actuators.

1.2 Distributed Array Processing

Much of the current work has focussed on setting up all the sensors and actuators on a single

dedicated computing platform. Such a setup would require a lot of dedicated infrastructure in

terms of the sensors, multi-channel interface cards and computing power. For example, to setup a

microphone array on a single general purpose computer we need expensive multichannel sound

cards and a CPU with huge computation power to process all the multiple streams. At the same

time, recent advances in mobile computing and communication technologies suggest a very

attractive platform for implementing these algorithms. Students in classrooms, co-workers at

meetings, family members at home are nowadays accompanied by one or several mobile

computing and communication devices like laptops, PDAs, tablets, with multiple audio and video

I/O devices onboard. We collectively refer to such devices as General Purpose Computers

(GPCs). In addition, high-speed wireless network connections, like IEEE 802.11a/b/g, are

available to network those devices. If we manage to combine sensors/actuators with wireless

connectivity and computational resources, we can potentially transform such a network into a

complex array Digital Signal Processing system. The advantage of such an approach is that

3
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Figure 1.3: Distributed computing platform consisting of N general-purpose computers along with

their onboard audio sensors, actuators and wireless communication capabilities.

multiple GPCs along with their sensors and actuators can be converted to a distributed sensor

network in an ad-hoc fashion by just adding appropriate software layers. No dedicated

infrastructure in terms of the sensors, actuators, multi-channel interface cards and computing

power is required. However, there are several important technical and theoretical problems that

need to be addressed before the idea of using GPCs for array signal processing algorithms can

materialize in real-life applications. Figure 1.3 shows a schematic representation of our

distributed computing platform consisting of N GPCs. Each GPC is assumed to be equipped

with audio sensors (microphones), actuators (speakers) for performing audio I/O, and wireless

communication capabilities for exchanging data between each other.

1.3 Common Time and Space

A prerequisite for using distributed audio-visual I/O capabilities is to put sensors and actuators

into a common time and space. [19] proposes a way to provide a common time reference for

4



multiple distributed GPCs with the precision of ten’s of microseconds. This thesis is mainly

concerned with providing a common space (relative coordinate system) by means of actively

estimating the three dimensional positions of the sensors and actuators. Many multi-microphone

array processing algorithms (like sound source localization or conventional beamforming) need to

know the positions of the microphones very precisely. Even relatively small uncertainties in sensor

location could make substantial, often dominant, contributions to overall localization error [27].

1.4 Previous work

Current audio array processing systems either rely on placing the microphones in known

locations or manual calibration of their positions. There are some approaches which do position

calibration using speakers in known locations. [28] describes an experimental setup for automatic

calibration of a large-aperture microphone array using acoustic signals from transducers whose

locations are known. We follow a more general approach where we assume that the speakers

locations are also unknown. A lot of related theoretical work can be found in [27, 36, 21]. Most

of the formulations assume that all the sensors and actuators are on a synchronized setup i.e

capture and playback occur simultaneously. However in a typical distributed setup we start the

audio capture and playback on each GPC one by one and the playback and the capture start

time are generally unknown. Our solution explicitly accounts for the errors in localization due to

lack of temporal synchronization among different platforms. A recent paper [20] accounts only

for the unknown source emission time. The solution turns out to be a non-linear minimization

problem which requires a good starting point to reach the global minimum. We derive a closed

form approximate solution to be used as initial guess for the minimization routine.

The problem of self-localization for a network of nodes has also been dealt in the wireless

network and robotics community . The problem is essentially the same as in our case but the

ranging method differ depending on the sensors and actuators. The problem of self-localization of

a network of nodes involves two steps: ranging and multilateration. Ranging involves the

estimation of the distance between two nodes in the network. Multilateration refers to using the

5



estimated ranges to find the position of different nodes. The ranging technology can be either

based on the Time-Of-Arrival (TOA) or the Received Signal Strength (RSS) of acoustic,

ultrasound or radio frequency (RF) signals. The choice of a particular technology depends on the

environment and the range for which the sensor network is designed. The GPS system and long

range wireless sensor networks use RF technology for range estimation. Localization using Global

Positioning System (GPS) is not suitable for our applications since GPS systems do not work

indoors and are very expensive. Also RSS based on RF is very unpredictable [29] and the RF

TOA is very small to be used indoors. [29] discuss systems based on ultrasound TOA using

specialized hardware (like motes) as the nodes. However, our goal is to use the already available

sensors and actuators on the GPCs to estimate their positions. So our ranging technology is

based on acoustic TOA as in [28, 20, 13]. Once we have the range estimates the Maximum

Likelihood (ML) estimate can be used to get the positions.

1.5 Organization

The thesis is organized as follows. In Chapter 2, we formulate the problem and derive the

Maximum Likelihood (ML) estimator. We derive two estimators, one based on TOF and the

other based on TDOF. In Chapter 3, an approximate closed form solution is derived, which can

be used as an initial guess for the non-linear minimization routine. In Chapter 4, we derive the

theoretical mean and covariance of the estimated parameters. The Cramér-Rao bound is also

derived and analyzed for its sensitivity with respect to the number of sensors and actuators as

well as their geometry. Chapter 5 gives a discussion of the issues involved in designing a practical

system. Chapter 6, concludes with a summary of the present work.

1.6 Novel Contributions

The following are the novel contributions of this thesis.

• We propose a novel setup for array processing algorithms with ad-hoc connected GPCs.

6



• The position estimation problem has been derived as a maximum likelihood in several

papers [20, 36, 28]. The solution turns out to be the minimum of a nonlinear cost function.

Iterative nonlinear least square optimization procedures require a very close initial guess to

converge to a global maximum. We propose the technique of metric Multidimensional

Scaling (MDS)[32] in order to get an initial guess for the nonlinear minimization problem.

Using this technique, we get the approximate positions of GPCs.

• Most of the previous work on position calibration (except [13] which describes a setup

based on Compaq iPAQs and motes) are formulated assuming time synchronized platforms.

However in an ad-hoc distributed computing platform consisting of heterogeneous GPCs we

need to explicitly account for errors due to lack of temporal synchronization. We perform an

analysis of the localization errors due to lack of synchronization among multiple platforms

and propose ways to account for the unknown emission start times and capture start times.

• Most of the existing localization methods use the Time Of Flight (TOF) approach for

position calibration [20, 28, 13]. We show that for distributed computing platforms, the

method based on Time Difference of Flight (TDOF) is better than the TOF method in

many respects.

• We derive the approximate mean and covariance of the implicitly defined estimator using

the implicit function theorem and Taylor series expansion as in [11]. We also derive the

Cramèr-Rao bound and analyze the localization accuracy with respect to the number of

sensors and sensor geometry.

The work presented in this paper resulted in two conference publications and two patents being

filed.

Publications

• Position Calibration of Audio sensors and actuators in a distributed computing platform

Vikas C. Raykar, Igor Kozintsev and Rainer Lienhart , ACM Multimedia 2003, Berkeley,

CA, USA, November 2003.
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• Self Localization of acoustic sensors and actuators on distributed platforms Vikas C.

Raykar, Igor Kozintsev and Rainer Lienhart, ICCV 2003 International Workshop on

Multimedia Technologies in E-Learning and Collaboration, Nice, France, October 2003.

Patents filed

• Three-Dimensional Position Calibration of Audio Sensors and Actuators on a Distributed

Computing Platform. (filed on 05/09/2003 along with Igor Kozintsev and Rainer Lienhart)

• Method for 3-Dimensional position calibration of audio sensors and actuators on a

distributed computing platform. (filed on 08/29/2003 along with Igor Kozintsev and Rainer

Lienhart)
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Chapter 2

Problem Formulation

2.1 Problem statement and notation

Given a set of M acoustic sensors (microphones) and S acoustic actuators (speakers) in unknown

locations, our goal is to estimate their three dimensional coordinates. We assume that each of the

GPCs has at least one microphone and one speaker. We also assume that at any given instant we

know the number of sensors and actuators in the network. Any new node entering/departing the

network announces its arrival/departure by some means, so that the network of sensors and

actuators can be recalibrated.

Each of the speaker is excited using a known calibration signal such as maximum length sequence

or chirp signal and the signal is captured by each of the acoustic sensors. The Time of Flight

(TOF) is estimated from the captured audio signal. The TOF for a given pair of microphone and

speaker is defined as the time taken by the acoustic signal to travel from the speaker to the

microphone1. We assume that the signals emitted from each of the speakers do not interfere with
1In some papers, TOF is referred to as Time Of Arrival (TOA).
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each other i.e. each signal can be associated with a particular speaker. This can be achieved by

confining the signal at each speaker to disjoint frequency bands or time intervals. Alternately, we

can use coded sequences such that the signal due to each speaker can be extracted at the

microphones and correctly attributed to the corresponding speaker. The MS TOF measurements

constitute our observations, based on which we have to estimate the microphone and speaker

positions.

The approach we describe is a generalization of the trilateration and multilateration techniques

used in GPS positioning and other localization systems. Such systems assume that the locations

of four sources are known. Based on these sources the TOF to a sensor is estimated. By

trilateration a sensor’s position can be determined. At least four speakers are required to find the

position of an omnidirectional microphone. Knowing the distance from one speaker, the

microphone can lie anywhere on a sphere centered at the speaker. With two speakers the

microphone can lie on a circle, since two spheres intersect at a circle. With three we can get two

points and four speakers can give a unique location. Since the estimated distances are corrupted

by noise, the intersection in general need not be a unique point. Therefore we solve the problem

in a least square sense by adding more speakers. We formulate the problem for the general case

where the positions of both the microphones and the speakers are unknown.

Let mi for i ∈ [1, M ] and sj for j ∈ [1, S] be the three dimensional vectors representing the

spatial coordinates of the ith microphone and jth speaker, respectively. We excite one of the S

speakers at a time and measure the TOF at each of the M microphones. Let TOF actual
ij be the

actual TOF for the ith microphone due to the jth source. Based on geometry the actual TOF can

be written as (assuming a direct path),

TOF actual
ij =

‖ mi − sj ‖
c

(2.1)

where c the speed of sound in the acoustical medium 2 and ‖ ‖ is the Euclidean norm. The TOF,

which we estimate based on the signal captured confirms to this model only when all the sensors
2The speed of sound in a given acoustical medium is assumed to be constant. In air it is given by c = (331 +

0.6T )m/s, where T is the temperature of the medium in Celsius degrees. For improved position calibration it is

beneficial to integrate a temperature sensor into the system. It is also possible to include the speed of sound as a

10
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Figure 2.1: Schematic indicating the unknown emission and capture start time.

start capturing at the same instant and we know when the calibration signal was sent from the

speaker. This is generally the case when we use multichannel sound cards to interface multiple

microphones and speakers 3.

However in a typical distributed setup of GPCs as shown in Figure 1.3, the master starts the

audio capture and playback on each of the GPCs one by one. As a result the capture starts at

different instants on each GPC and also the time at which the calibration signal was emitted

from each loud speaker are not known. In a distributed setting, the TOF which we measure

includes both the speaker emission start time and the microphone capture start time (See Figure

2.1 where ˆTOF ij is what we measure and TOFij is what we require).

The speaker emission start time is defined as the time at which the sound is actually emitted

from the speaker. This includes the time when the play back command was issued (with

reference to some time origin), the network delay involved in starting the playback on a different

machine (if the speaker is on a different GPC), the delay in setting up the audio buffers and also

parameter to be estimated, as in [28].
3For multichannel sound cards all the channels are synchronized and the time when the calibration signal was

sent can be determined by doing a loop back from the output to the input. This loopback signal can be used as a

reference to estimate the TOF.
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the time required for the speaker diaphragm to start vibrating. The emission start time is

generally unknown and depends on the particular sound card, speaker and the system state such

as the processor workload, interrupts, and the processes scheduled at the given instant. The

microphone capture start time is defined as the time instant at which capture is started. This

includes the time when the capture command was issued, the network delay involved in starting

the capture on a different machine and the delay in transferring the captured sample from the

sound card to the buffers.

Let tsj be the emission start time for the jth source and tmi be the capture start time for the ith

microphone with respect to some origin (see Figure 2.1). Incorporating these two the actual TOF

now becomes,

ˆTOF
actual

ij = TOF actual
ij + tsj − tmi

=
‖ mi − sj ‖

c
+ tsj − tmi (2.2)

The origin can be arbitrary since ˆTOF
actual

ij depends on the difference of tsj and tmi. We start

the audio capture on each GPC one by one. We define the microphone on which the audio

capture was started first as our first microphone. In practice, we set tm1 = 0 i.e. the time at

which the first microphone started capturing is our origin. We define all other times with respect

to this origin.

If two audio input and output channels are available on a single GPC then one of the output

channels can be used to play a reference signal which is RF modulated and transmitted through

the air [19]. This reference signal can be captured in one of the input channels, demodulated and

used to estimate tsj − tmi, since the transmission time for RF waves can be considered almost

zero. Note that this assumes that all audio channels on the same I/O device are synchronized,

which is generally true. However this method requires more hardware in terms of RF

modulators/demodulators. The other solution is to jointly estimate the unknown source emission

and capture start time along with the microphone and source coordinates. However we can

eliminate the source emission start time if we use Time Difference Of Flight instead of Time Of

Flight.
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2.1.1 Time Difference Of Flight

The TDOF for a given pair of microphones and a speaker is defined as the time difference

between the signal received by the two microphones 4. Let TDOF estimated
ikj be the estimated

TDOF between the ith and the kth microphone when the jth source is excited. Let TDOF actual
ikj

be the actual TDOF. It is given by

TDOF actual
ikj =

‖ mi − sj ‖ − ‖ mk − sj ‖
c

(2.3)

Including the source emission and capture start times, it becomes

ˆTDOF
actual

ikj =
‖ mi − sj ‖ − ‖ mk − sj ‖

c
+ tmk − tmi (2.4)

In the case of TDOF the source emission time is the same for both microphones and thus gets

cancelled out. Therefore, by using TDOF measurements instead of TOF we can reduce the

number of parameters to be estimated.

2.2 Maximum Likelihood Estimate

Assuming an additive Gaussian5 noise model for the TDOF observations we can derive the

Maximum Likelihood estimate as follows. Let Θ, be a vector of length P × 1, representing all the

unknown non-random parameters to be estimated (microphone and speaker coordinates and

microphone capture start times). Let Γ, be a vector of length N × 1, representing noisy TDOF

measurements. Let T (Θ), be a vector of length N × 1, representing the actual value of the

observations. Then our model for the observations is Γ = T (Θ) + η where η is the zero-mean

additive white Gaussian noise vector of length N × 1 where each element has the variance σ2
j .

Also let us define Σ to be the N ×N covariance matrix of the noise vector η. The likelihood
4Given M microphones and S speakers we can have MS(M−1)/2 TDOF measurements as opposed to MS TOF

measurements. Of these MS(M − 1)/2 TDOF measurements only (M − 1)S are linearly independent.
5We estimate the TDOF or TOF using Generalized Cross Correlation (GCC)[17]. The estimated TDOF or TOF

is corrupted due to ambient noise and room reverberation. For high SNR the delays estimated by the GCC can be

shown to be normally distributed with zero mean. [17].
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function of Γ in vector form can be written as:

p(Γ/Θ) = (2π)−
N
2 | Σ |− 1

2 exp−1
2
(Γ− T )T Σ−1(Γ− T ) (2.5)

The log-likelihood function is given by

ln p(Γ/Θ) = −N

2
ln(2π)− 1

2
ln | Σ | −1

2
(Γ− T )T Σ−1(Γ− T ) (2.6)

The ML estimate of Θ is the one which maximizes the log likelihood ratio and is given by

Θ̂ML = argΘ max F (Θ, Γ)

F (Θ,Γ) = −1
2
[Γ− T (Θ)]T Σ−1[Γ− T (Θ)] (2.7)

In our case, Θ represents a vectorized form of the following parameters.

Θ = [Θm, Θs, Θtm] (2.8)

Θm = [mx1,my1,mz1, ......,mxM , myM ,mzM ]T

Θs = [sx1, sy1, sz1, ......, sxS , syS , szS ]T

Θtm = [tm1, tm2, ......, tmM ]T

(2.9)

where mxi, myi, and mzi are the x, y and z coordinates of the ith microphone and sxi, syi, and

szi are the x, y and z coordinates of the ith speaker. tmi is the microphone capture start time for

the ith microphone. Γ and T corresponds to the estimated

Assuming that each of the TDOFs are independently corrupted by zero-mean additive white

Gaussian noise of variance σ2
ikj the ML estimate becomes a nonlinear least squares problem (in

this case Σ is a diagonal matrix), i.e.

Θ̂ML = argΘ min[F̃TDOF (Θ, Γ)]

F̃TDOF (Θ, Γ) =
S∑

j=1

M−1∑

i=1

M∑

k=i+1

(TDOF estimated
ikj − ˆTDOF

actual

ikj )2

σ2
ikj

(2.10)
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In the case of TOF measurements the ML estimate can be similarly derived as above and is given

by,

Θ̂ML = argΘ min[F̃TOF (Θ, Γ)]

F̃TOF (Θ, Γ) =
S∑

j=1

M∑

i=1

(TOF estimated
ij − TOF actual

ij )2

σ2
ij

(2.11)

In this case Θ also includes the speaker emission start times.

2.3 Reference Coordinate System

Since the TOF and TDOF depends on pairwise distances, any translation and rotation of the

coordinate system, will also be a global minimum. In order to eliminate multiple global minima

we select three arbitrary nodes to lie in a plane such that the first is at (0, 0, 0), the second at

(x1, 0, 0), and the third at (x2, y2, 0). Basically we are fixing a plane so that the sensor

configuration cannot be translated or rotated. In two dimensions we select two nodes to lie on a

line, the first at (0, 0) and the second at (x1, 0). To eliminate the ambiguity due to reflection

along the Z-axis (or Y-axis in 2D) we specify one more node to lie in the positive Z-axis (or

positive Y-axis in 2D). Also the reflections along the X-axis and Y-axis (for 3D) can be

eliminated by assuming the nodes, which we fix, to lie on the positive side of the respective axes,

i.e. x1 > 0 and y2 > 0.

Since the TDOF and TOF depends on time differences (i.e. tsj − tmi in case of TOF and

tmk − tmi in case of TDOF) there are multiple global minima due to shifts in the time axis.

Similar to fixing a reference coordinate system in space we introduce a reference time line by

setting tm1 = 0. This is needed since we are estimating the absolute source emission and capture

start times6. Note we are only interested in the positions of the microphones and speakers. The

emission and capture times are just nuisance parameters.
6If we are estimating the difference then we do not need a time reference. However estimating the difference

introduces a lot of unnecessary parameters(O(N2) parameters instead of O(N) parameters.

15



2.4 Non-Linear Least Squares

The ML estimate for the node coordinates of the microphones and speakers is implicitly defined

as the minimum of the non-linear function defined in Equation 2.10. This function has to be

minimized using numerical optimization methods. Least squares problems can be solved using a

general unconstrained minimization. However there exist specialized methods like the

Gauss-Newton and the Levenberg-Marquardt method which are often more efficient in practice.

The Levenberg-Marquardt method [8] is a popular method for solving non-linear least squares

problems. It is a compromise between steepest descent and Newton’s methods. The steepest

descent method potentially has a very slow convergence, but can converge from any starting

point. Newton’s method converges fast but requires a good initial guess and computation of the

inverse of the Hessian matrix. For more details on nonlinear minimization refer to [12]. Appendix

A gives the non zero partial derivatives needed for the minimization routines7. The common

problem with minimization methods is that they often get stuck in a local minima. Good initial

guesses of the node locations counteract the problem.

2.5 Minimum number of microphones and speakers

required

Non-linear least squares optimization requires that the total number of observations is greater

than or equal to the total number of parameters to be estimated. This imposes a minimum

number of microphones and speakers required for the position estimation method to work.

Assuming we have M microphones and S speakers Table 2.1 summarizes the number of

independent observations (N) and the number of parameters to be estimated (P ) in each of the

estimation procedures. In case of the TDOF based method only (M − 1)S out of MS(M − 1)/2

pair of TDOF measurements for each speaker are linearly independent. Assuming M=S=K, the
7Many commercial software solutions are available for the Levenberg-Marquardt method such as lsqnonlin in

MATLAB, mrqmin provided by Numerical Recipes in C[26] , and the MINPACK-1 routines[3]
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Table 2.2 lists the minimum K required for least squares fitting.

Table 2.1: Total Number of independent observations(N) and parameters to be estimated(P ) for

different estimation procedures: M = Number of Microphones, S = Number of Speakers, D =

Dimension.

N P

TOF Position Estimation MS DM + DS − D(D+1)
2

TDOF Position Estimation (M − 1)S DM + DS − D(D+1)
2

TOF Joint Estimation MS (D + 1)M + (D + 1)S − D(D+1)
2 − 1

TDOF Joint Estimation (M − 1)S (D + 1)M + DS − D(D+1)
2 − 1

Table 2.2: Minimum value of Microphone Speaker Pairs (K) required for different estimation

procedures (D=Dimension).

K ≥ D = 2 D = 3

TOF Position Estimation 3 5

TDOF Position Estimation 5 6

TOF Joint Estimation 6 7

TDOF Joint Estimation 6 7
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Chapter 3

Closed Form approximate Solution

The common problem with minimization methods is that they often get stuck in a local minima.

They do not converge unless we have a very good starting point. In this chapter we make some

approximations to get closed form solutions to the microphone and speaker positions and the

capture start times which can be used as a initial guess for the nonlinear minimization routine.

3.1 Initial Guess for capture and emission start times

Consider two laptops i and j each having one microphone and one speaker. For these two laptops

we can measure ˆTOF ii, ˆTOF jj , ˆTOF ij and ˆTOF ji. Assuming no noise these are related to the

actual TOF as follows:

ˆTOF ii = TOFii + tsi − tmi

ˆTOF jj = TOFjj + tsj − tmj

ˆTOF ij = TOFij + tsj − tmi

ˆTOF ji = TOFji + tsi − tmj (3.1)
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Assuming sufficient closeness between the microphone and speaker on the same laptop compared

to the distance between two laptops, the following approximations can be made.

TOFii ≈ TOFjj ≈ 0

TOFij ≈ TOFji (3.2)

Substituting we have the following equations:

ˆTOF ii ≈ tsi − tmi

ˆTOF jj ≈ tsj − tmj

ˆTOF ij ≈ TOFij + tsj − tmi

ˆTOF ji ≈ TOFij + tsi − tmj (3.3)

From the above equations we can solve for TOFij as:

TOFij ≈ ( ˆTOF ij + ˆTOF ji)− ( ˆTOF ii + ˆTOF jj)
2

(3.4)

Also we can solve for the microphone capture start time and the source emission start time as

follows:

tsi ≈ ˆTOF ii + tmi

tmj ≈ ( ˆTOF ij − ˆTOF ji) + ( ˆTOF ii − ˆTOF jj)
2

+ tmi (3.5)

Considering the time when the capture on the first microphone is started as zero ( i.e. tm1 = 0 ),

we can solve for all the other microphone capture start times and the speaker emission start

times. Note that all the above equations are true only approximately. Their values have to be

refined further using the ML estimation procedure.

3.2 Initial Guess for microphone and speaker positions

Given the pairwise Euclidean distances between N nodes their relative positions can be

determined by means of metric Multidimensional Scaling (MDS) [32]. MDS is popular in
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psychology and denotes a set of data-analysis techniques for the analysis of proximity data on a

set of stimuli for revealing the hidden structure underlying the data [31]. The proximity data

refers to some measure of pairwise dissimilarity. Given a set of N stimuli along with their

pairwise dissimilarities pij , MDS places the N stimuli as points in a multidimensional space, such

that the distances between any two points are a monotonic function of the corresponding

dissimilarity. MDS is widely used to visually study the structure in proximity data. [31] describes

an experiment where MDS is used to reveal some of the perceptual dimensions that people might

use for face similarity judgement tasks.

If proximity data are based on the Euclidean distances, then classical metric MDS [32] can

exactly recreate the configuration. Given a set of N GPCs, let X be a N × 3 matrix where each

row represents the 3D coordinates of each GPC. Then the N ×N matrix B = XXT is called the

dot product matrix. By definition, B is a symmetric positive definite matrix, so the rank of B

(i.e the number of positive eigen values) is equal to the dimension of the datapoints i.e. 3 in this

case. Also based on the rank of B we can find whether the GPCs are on a plane or distributed in

3D. Starting with a matrix B (possibly corrupted by noise), it is possible to factor it to get the

matrix of coordinates X. One method to factor B is to use singular value decomposition (SVD)

[26], i.e., B = UΣUT where Σ is a N ×N diagonal matrix of singular values. The diagonal

elements are arranged as s1 ≥ s2 ≥ sr > sr+1 = ..... = sN = 0, where r is the rank of the matrix

B. The columns of U are the corresponding singular vectors. We can write X
′
= UΣ1/2. From

X
′
we can take the first three columns to get X. If the elements of B are exact (i.e., they are not

corrupted by noise), then all the other columns are zero. It can be shown that SVD factorization

minimizes the matrix norm ‖ B −XXT ‖.

In practice, we can estimate the distance matrix D, where the ijth element is the Euclidean

distance between the ith and the jth GPC. This distance matrix D must be converted into a dot

product matrix B before MDS can be applied. We need to choose some point as the origin of our

coordinate system in order to form the dot product matrix. Any point can be selected as the

origin, but Togerson [32] recommends the centroid of all the points. If the distances have random
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errors then choosing the centroid as the origin will minimize the errors as they tend to cancel

each other. We can obtain the dot product matrix using the cosine law which relates the distance

between two vectors to their lengths and the cosine of the angle between them. Refer to Appendix

B for a detailed derivation of how to convert the distance matrix to the scalar product matrix.

3.2.1 Multidimensional Scaling with clustering

In our case of M microphones and S speakers we cannot use MDS directly because we cannot

measure all the pairwise distances. We can measure the distance between each speaker and all

the microphones. However we cannot measure the distance between two microphones or two

speakers. In order to apply MDS, we cluster microphones and speakers, which are close together.

Based on the approximation discussed in the previous section, the distance dij between the ith

and jth GPC is given by

dij ≈ c ( ˆTOF ij + ˆTOF ji − ˆTOF ii − ˆTOF jj)
2

(3.6)

where c is the speed of the sound.

The position estimate from MDS is arbitrary with respect to the centroid and the orientation

and is converted into the reference coordinate system described in Section 2.3. The approximate

locations of the GPCs are slightly perturbed to get the initial guess for the microphone and

speaker locations.

3.3 Final Algorithm

Figure 3.1 summarizes the algorithm.

Say we have M microphones and S speakers

• STEP 1: Measure the M × S Time Of Flight ( ˆTOF ) matrix.

• STEP 2:
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Finally the complete algorithm…
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Nonlinear 

minimization

Microphone and speaker
locations tm

Figure 3.1: Flow chart of the complete algorithm.

– Form the approximate distance matrix D. (Equation 3.6)

– Assume tm1 = 0 (microphone on which capture was started first) and get the

approximate microphone capture and speaker emission start times. (Equation 3.5)

– Convert the distance matrix D to the dot product matrix B (Appendix I). Find the

rank of B to determine whether the GPCs are in 2D or 3D.

• STEP 3: Form a reference coordinate system

– If 3D select three nodes: The first one as the origin, the second to define the x-axis and

the third to form the xy-plane. Also select a fourth node to represent the positive z-axis.

– If 2D select two nodes: The first one as the origin, the second to define the x-axis.

Also select a third node to represent the positive y-axis.

• STEP 4:

– Get the approximate positions of the GPCs using metric Multidimensional Scaling.

– Translate, rotate and mirror to the coordinate system choosen.
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– Slightly perturb the coordinates to get approximate initial guess for the microphone and

speaker coordinates.

• STEP 5: Minimize the TDOF based error function using the Levenberg-Marquardat

method to get the final positions of the microphones and speakers. Use the approximate

positions and the capture start times as the initial guess.

Figure 3.2 shows an example with 10 laptops each having one microphone and one speaker. The

actual locations of the sensors and actuators are shown as ’x’. The ’*’s are the approximate GPC

locations as determined by MDS. As can be seen the MDS results are very close to the

microphone and speaker locations. The estimated locations are further improved in STEP 3 and

marked as ’o’s.
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Figure 3.2: Results of Multidimensional Scaling for a network consisting of 10 GPCs each having

one microphone and one speaker.
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Chapter 4

Estimator Performance

The properties of the ML estimator can be studied in terms of the estimator bias and error

covariance matrix. The bias and error variance depends on the noise variance, the number of

microphones and speakers and the geometry of the setup. One way to study it is to do extensive

Monte Carlo Simulations for various geometries and different number of nodes. However if we get

an analytical expression for the bias and the variance of the estimator then these simulation

studies can be carried out quickly and the estimator can be studied in depth.

The ML estimate for the microphone and speaker positions is defined implicitly as the minimum

of a certain error function. Hence it is not possible to get exact analytical expressions for the

mean and the variance. However, by using the implicit function theorem and the Taylor series it

is possible to derive approximate expressions for the mean and variance of implicitly defined

estimators [10, 11]. In this section we derive the approximate expressions for both the mean and

variance of the estimators. We could have derived the Cramér-Rao bound which gives the lower

bound on the error covariance matrix of any unbiased estimator. However since we cannot

determine whether our estimator is unbiased, we cannot use the Cramér-Rao bound for unbiased
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estimators. However, we also derive the Cramér-Rao bound assuming our estimator is unbiased.

It turns out be to same as our approximate covariance matrix expression.

4.1 Notation

Let Θ, be a vector of length P × 1, representing all the unknown non-random parameters to be

estimated. Let Γ, be a vector of length N × 1, representing our noisy measurements. Let T (Θ),

be a vector of length N × 1, representing the actual value of the observations.

Θ = [θ1, θ2, ......, θP ]T

Γ = [γ1, γ2, ......, γN ]T

T (Θ) = [t1, t2, ......, tN ]T (4.1)

Then our model for the observations was Γ = T (Θ) + η where η is the zero-mean additive white

Gaussian noise vector of length N × 1 where each element has the variance σ2
j . Also let us define

Σ to be the N ×N covariance matrix of the noise vector η.

The ML estimate of Θ is the one which maximizes the log likelihood ratio and is given by

ˆΘML = argΘ max F (Θ, Γ)

F (Θ,Γ) = −1
2
[Γ− T (Θ)]T Σ−1[Γ− T (Θ)] (4.2)

4.2 Vector Derivatives

In further derivations we need the first and second derivatives of Equation 4.2 with respect to Θ

and Γ. In this section we specify the vector derivative notation we use and the corresponding

derivatives of F (Θ,Γ).

The P × 1 column gradient operator 5Θ is defined as

∇ΘF (Θ,Γ) = [
∂F (Θ, Γ)

∂θ1
,
∂F (Θ, Γ)

∂θ2
, ...,

∂F (Θ, Γ)
∂θP

]T (4.3)
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Similarly the N × 1 column gradient operator ∇Γ with respect to Γ is defined as

∇ΓF (Θ, Γ) = [
∂F (Θ, Γ)

∂γ1
,
∂F (Θ, Γ)

∂γ2
, ...,

∂F (Θ,Γ)
∂γN

]T (4.4)

We also define the following four second derivative operators: the P × P operator ∇Θ∇Θ, N ×N

operator ∇Γ∇Γ, N × P operator ∇Γ∇Θ and P ×N operator ∇Θ∇Γ, which are defined as below

∇Θ∇ΘF (Θ, Γ) = ∇Θ[{∇ΘF (Θ,Γ)}T ]

∇Γ∇ΓF (Θ, Γ) = ∇Γ[{∇ΓF (Θ,Γ)}T ]

∇Γ∇ΘF (Θ, Γ) = ∇Γ[{∇ΘF (Θ,Γ)}T ]

∇Θ∇ΓF (Θ, Γ) = ∇Θ[{∇ΓF (Θ,Γ)}T ] (4.5)

Using the generalized chain rule it can be shown that the vector derivatives are as follows

∇ΘF (Θ,Γ) = JT Σ−1(Γ− T (Θ))

∇ΓF (Θ,Γ) = −Σ−1(Γ− T (Θ))

∇Θ∇ΘF (Θ, Γ) = −JT Σ−1J

∇Γ∇ΓF (Θ,Γ) = −Σ−1

∇Γ∇ΘF (Θ, Γ) = Σ−1J

∇Θ∇ΓF (Θ,Γ) = JT Σ−1 (4.6)

where J is a N × P matrix of partial derivatives of T (Θ) called the Jacobian of T (Θ).

[J ]ij =
∂ti(Θ)

∂θj
(4.7)

Refer to Appendix A for the individual derivatives of the Jacobian matrix.

4.3 Estimator Covariance

In this section we use the Taylor series expansion and the implicit function theorem to derive an

approximate expression for the covariance of the implicity defined estimator. The ML estimate of

Θ is the one which maximizes the log likelihood ratio defined in Equation 4.2. The maximum can
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be found by setting the first derivative to zero i.e.

∇ΘF (Θ, Γ) |Θ=Θ̂= 0 (4.8)

where 0 is a zero column vector of length P . The implicit function theorem guarantees that

Equation 4.8 implicitly defines a vector valued function Θ̂ = h(Γ) = [h1(Γ), h1(Γ), ..., hP (Γ)]T

that maps the observation vector Γ to the parameter vector Θ̂. Equation 4.8 can be written as

∇ΘF (Θ, Γ) |Θ=h(Γ)= 0 (4.9)

∇ΘF (h(Γ),Γ) = 0 (4.10)

However it is not possible to find an analytical expression for h(Γ). But we can approximate the

covariance using the first-order Taylor series expansion for h(Γ). Let Γm be the mean of Γ. Then

expanding h(Γ) around Γm we get

h(Γ) ≈ h(Γm) + [∇Γh(Γ)T |Γ=Γm ]T (Γ− Γm) (4.11)

where ∇Γ = [ ∂
∂γ1

, ∂
∂γ2

, ..., ∂
∂γN

]T is a N × 1 column gradient operator. Taking the covariance on

both sides yields

Cov(h(Γ)) ≈ [∇Γh(Γ)T |Γ=Γm ]T Cov(Γ)[∇Γh(Γ)T |Γ=Γm ] (4.12)

Note we do not know h(Γ). Differentiating Equation 4.10 with respect to Γ and evaluating at

Γm yields

∇Θ∇ΘF (h(Γ),Γ)[∇Γh(Γ)T ]T +∇Θ∇ΓF (h(Γ), Γ) |Γ=Γm= 0

∇Θ∇ΘF (h(Γm), Γm)[∇Γh(Γm)T ]T +∇Θ∇ΓF (h(Γm), Γm) = 0 (4.13)

Assuming ∇Θ∇ΘF (h(Γm), Γm) is invertible we can write

[∇Γh(Γm)T ]T = −[∇Θ∇ΘF (h(Γm), Γm)]−1∇Θ∇ΓF (h(Γm), Γm) (4.14)

Substituting from Equation 4.6 we get

[∇Γh(Γm)T ]T = −[−JT Σ−1J ]−1JT Σ−1 (4.15)
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Using this in the covariance expression in Equation 4.12, we arrive at

CovΘ̂ = Cov(h(Γ)) = [JT Σ−1J ]−1JT Σ−1Σ[JT Σ−1]T {[JT Σ−1J ]T }−1

= [JT Σ−1J ]−1JT Σ−1ΣΣ−1J{[JT Σ−1J ]T }−1

= [JT Σ−1J ]−1[JT Σ−1J ][JT Σ−1J ]−1

= [JT Σ−1J ]−1 (4.16)

CovΘ̂ = [JT Σ−1J ]−1 (4.17)

4.4 Estimator Mean

Taking the expectation of the first order Taylor series expansion in Equation 4.11

E(h(Γ)) ≈ h(Γm) = h(T (Θ)) (4.18)

We have made use of the fact that Γm = T (Θ). We see that the mean is the value given by the

estimation procedure when applied to the actual noise free measurements T . It is also possible to

get the mean using the second order Taylor series expansion, but it involves third order

derivatives and generally we cannot get simple form as in Equation 4.17.

4.5 Cramér-Rao Bound

The Cramér-Rao bound gives a lower bound on the variance of any unbiased estimate [33]. It

does not depend on the particular estimation method used. In this section, we derive the

Cramér-Rao bound (CRB) assuming our estimator is unbiased. The variance of any unbiased

estimator Θ̂ of Θ is bounded as [33]

E
[
(Θ̂−Θ)(Θ̂−Θ)T

]
≥ F−1(Θ) (4.19)

where F (Θ) is called the Fischer’s Information matrix and is given by

F (Θ) = E
{

[∇Θ ln p(Γ/Θ)] [∇Θ ln p(Γ/Θ)]T
}

(4.20)
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The derivative of the log-likelihood function can be found using the generalized chain rule and is

given by

∇Θ ln p(Γ/Θ) = JT Σ−1(Γ− T ) (4.21)

where J is the Jacobian. Substituting this in Equation 4.20 and taking the expectation the

Fishers Information matrix is,

F = JT Σ−1J (4.22)

CovΘ̂ ≥ [JT Σ−1J ]−1 (4.23)

Note that this expression is the same as the approximate covariance of the estimator derived in

the previous section.

4.6 Rank of the Fischer Information Matrix

If we assume Σ = σ2I, i.e. the noise components are independent, then the covariance matrix can

be simplified as

Cov[Θ̂] =
1
σ2

[JT J ]−1 = F−1 (4.24)

where F = 1
σ2 JT J . If we assume that all the microphone and source locations are unknown, F is

rank deficient and hence not invertible. This is because the solution to the ML estimation

problem as formulated is not invariant to rotation and translation. In order to make the Fisher

Information matrix invertible we remove the rows and columns corresponding to the known

parameters.

Theorem : rank(F ) < P

Proof : rank(F ) = rank(JT J) = rank(J) ≤ min(N, P ). In our case we have always sufficient

number of microphones and speakers such that P < N i.e. the number of parameters to be

estimated is always less than the number of observations. Hence rank(F ) ≤ P . Since rank of F

is equal to rank of J rank of F will be strictly less than P only when the columns of J are

linearly dependent. J is a N × P matrix of partial derivatives of T (Θ) called the Jacobian of

T (Θ). Each row of J corresponds to the derivatives of TOFij with respect to all the unknown
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parameters. From Appendix A it can be seen that for TOFij the only non-zero derivatives are

with respect to mxi, myi, mzi, sxj , syj and szj . Also all these derivatives sum up to zero.

Therefore each row of J sums up to zero. Hence the columns of J are linearly dependent.

4.7 Effect of the Nuisance parameters

The speaker emission start time, the microphone capture start time and the loudspeaker

coordinates can be considered as the nuisance parameters since we are interested only in the

microphone coordinates. We can split J the Jacobian into two blocks, one involving the

parameters which we are interested i.e the microphone coordinates and the other nuisance

parameters. Let Θm represent the parameters of interest and let Θs be the nuisance parameters.

J = [JmJs] where Jm =
[
∂T (Θ)
∂Θm

]
Js =

[
∂T (Θ)
∂Θs

]
(4.25)

So now,

F =
1
σ2




JT
mJm JT

mJs

JT
s Jm JT

s Js


 (4.26)

Using the formula for the inverse of a block matrix we can write

F−1 = σ2




F−1
mm Fms

Fms F−1
ss


 (4.27)

where

Fmm = JT
m

[
I − Js(JT

s Js)−1JT
s

]
Jm

Fss = JT
s

[
I − Jm(JT

mJm)−1JT
m

]
Js

Fms = −(JT
mJm)−1(JT

mJs)F−1
ss

Fsm = −F−1
ss (JT

s Jm)(JT
mJm)−1 (4.28)

where I is the Identity matrix of appropriate dimensions. So the first term of the block matrix

which gives a bound on the parameters of interest (i.e. microphone coordinates) can be written as

F−1
mm = σ2

{
JT

m

[
I − Js(JT

s Js)−1JT
s

]
Jm

}−1
(4.29)
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Figure 4.1: Cramér-Rao bound on the total variance of the unknown microphone coordinates as a

function of TOF noise standard deviation σ for different estimation procedures. For the TDOF-

based method the noise variance was taken as twice that of the TOF variance. The network had

a total of 16 microphones and 16 speakers.

The diagonal terms of F−1
mm represents the error variance for estimating each of the parameters in

Θm. In the next few sections we explore the dependency of the error variance on different

parameters.

Figure 4.1 shows Cramér-Rao bound on the total variance of the unknown microphone

coordinates as a function of TOF noise standard deviation σ for a sensor network consisting of 16

microphones and 16 speakers, for different estimation procedures. In order to do a fair

comparison, the corresponding TDOF noise variance was approximated to be twice the

corresponding TOF noise variance. In the TOF case only one signal was degraded due to noise

and reverberation while the other was the reference signal. In case of TDOF both the signals are

degraded.
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The effect of the nuisance parameters on the Cramér Rao bound can be seen from Figure 4.1,

where the total error variance in the microphone coordinates is plotted against the noise

standard deviation σ for both normal position estimation and joint position estimation. For both

the TOF and TDOF approaches the joint estimation results in a higher variance which is due to

the extra nuisance parameters. Among TOF and TDOF approaches TOF has more number of

nuisance parameters and hence it has a higher variance than the TDOF approach. Another point

to be noted is that in the TDOF approach we need not use all the M(M − 1)/2 pairwise TDOF

measurements. However as we use more and more TDOF measurements the variance decreases

as can be seen in Figure 4.1.

4.8 Increasing the number of GPCs

As the number of nodes increases in the network, the CRB on the covariance matrix decreases.

The more microphones and speakers in the network, the smaller the error in estimating their

positions. Figure 4.2(a) shows the 95% uncertainty ellipses for a regular two dimensional array

consisting of 9 microphones and 9 speakers, for both the TOF and the TDOF-based joint

estimation procedures. We fixed the position of one microphone and the x coordinate of one

speaker. For the fixed speaker only the variance in y direction is shown since the x coordinate is

fixed. For TOF-based method the noise variance was assumed to be 10−9 in order to properly

visualize the uncertainty ellipses. In order to give a fair comparison, a noise variance of 2× 10−9

was assumed for the TDOF-based method. Figure 4.2(b) shows the corresponding 95%

uncertainty ellipses for a two dimensional array consisting of 25 microphones and 25 speakers. It

can be seen that as the number of sensors in the network increases the size of the uncertainty

ellipses decreases.

Intuitively this can be explained as follows: Let there be a total of n nodes in the network whose

coordinates are unknown. Then we have to estimate a total of 3n parameters. The total number

of TOF measurements available is however n2/4 (assuming that there are n/2 microphones and

n/2 speakers). So if the number of unknown parameters increases as O(n), the number of
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available measurements increases as O(n2). The linear increase in the number of unknown

parameters, is compensated by the quadratic increase in the available measurements, which

suggests that the uncertainty per unknown variable will decrease.

4.9 How to select a coordinate system?

The geometry of the network plays an important role in CRB. It is possible to analyze how to

place the sensors in order to achieve a lower CRB. In an ad-hoc network, however, such analysis

is of little benefit. In our formulation we assumed that we know the positions of a certain number

of nodes, i.e we fix three of the nodes to lie in the x-y plane. The CRB depends on which of the

sensor nodes are assumed to have known positions. Figure 4.3 shows the 95% uncertainty ellipses

for a regular two dimensional array containing 25 microphones and 25 speakers for different

positions of the known nodes. In Figure 4.3(a) the two known nodes are at one corner of the grid.

It can be seen that the uncertainty ellipse becomes wider as you move away form the known

nodes. The uncertainty in the direction tangential to the line joining the sensor node and the

center of the known nodes is much larger than along the line. The same can be seen in Figure

4.3(b) where the known nodes are at the center of the grid. The reason for this can be explained

for a simple case where we know the locations of two speakers as shown in Figure 4.3(d). Each

circular band represents the uncertainty in the distance estimation. The intersection of the two

annuli corresponding to the two speakers gives the uncertainty region for the position of the

sensor. As can be seen for nodes far away from the two speakers the region widens because of the

decrease in the curvature. It is beneficial if the known nodes are on the edges of the network and

as far away from each other as possible. In Figure 4.3(c) the known sensor nodes are on the edges

of the network. As can be seen there is a substantial reduction in the dimensions of the

uncertainty ellipses. In order to minimize the error due to Gaussian noise we should choose the

three reference nodes (in 3D) as far as possible. In practice, using the TOF matrix we can choose

three nodes such that the area of the triangle formed by these three nodes is maximum. In this

way we can dynamically adapt our coordinate system to minimize the error even though the
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array geometry may change drastically.

4.10 Monte Carlo Simulation Results

We performed a series of Monte Carlo simulations to compare the performance of the different

estimation procedures. 16 microphones and 16 speakers were randomly selected to lie in a room

of dimensions 4.0m× 4.0m× 4.0m. The speaker was chosen to be close to the microphone in

order to simulate a typical laptop. Based on the geometry of the setup the actual TOF between

each speaker and microphones was calculated and then corrupted with zero mean additive white

Gaussian noise of variance σ2 in order to model the room ambient noise and reverberation. The

TOF matrix was also corrupted by known systematic errors, i.e. a known microphone emission

capture start time and speaker emission start time was added. The Levenberg-Marquardt

method was used as the minimization routine. For each noise variance σ2, the results were

averaged over 2000 trials. Figure 4.4(a) and Figure 4.4(b) show the total variance and the total

bias (sum of all the biases in each parameter) of all the unknown microphone coordinates plotted

against the noise standard deviation σ for both the TOF and the TDOF-based approach. The

results are shown both for position estimation and the Joint position and start times estimation

procedures. The Cramér Rao bound for the TDOF-based joint estimation procedure is also

shown. Since we corrupted the TOF with a systematic errors, the position estimation procedure

shows a very high variance and a correspondingly high bias. Hence when the TOFs are corrupted

by systematic errors we need to do joint estimation of the positions as well as the nuisance

parameters. Even though theoretically the TDOF-based joint estimation procedure has the least

variance, experimentally all the joint estimation procedures showed the same variance. The

estimator is unbiased for low noise variances.

34



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X (m)

Y
 (

m
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X (m)

Y
 (

m
)

(b)

Figure 4.2: 95% uncertainty ellipses for a regular 2 dimensional array of (a) 9 speakers and 9

microphones, (b) 25 speakers and 25 microphones. Noise variance in both cases is σ2 = 10−9 for

the TOF-based method and σ2 = 2 × 10−9 for the TDOF-based method. The microphones are

represented as crosses (×) and the speakers as dots (.). The position of one microphone and the x

coordinate of one speaker is assumed to be known (shown in bold). The solid and dotted ellipses

are the uncertainty ellipses for the estimation procedure using the TOF and TDOF-based method

respectively.
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Figure 4.3: 95% uncertainty ellipses for a regular 2 dimensional array of 25 microphones and 25

speakers for different positions of the known microphone and for different x coordinates of the

known speaker. In (a) and (b) the known nodes are close to each other and in (c) they are spread

out one at each corner of the grid. The microphones are represented as crosses (×) and the

speakers as dots (.). Noise variance in all cases was σ2 = 10−9. (d) Schematic to explain the shape

of uncertainty ellipses. 50 TDOF pairs were used for the estimation procedure.
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Figure 4.4: (a) The total variance and (b) total bias of all the microphone coordinates for increasing

TOF noise standard deviation σ. The sensor network consisted of 16 microphones and 16 speakers.

The results are shown for both the TOF and TDOF-based Position and Joint Estimation. The

Cramér Rao bound for the TDOF based Joint Estimation is also plotted. For the TDOF-based

method the noise variance was taken as twice that of the TOF variance.
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Chapter 5

Implementation Details

In this section we discuss some of the practical issues of our real-time implementation such as the

type of calibration signal and the TOF estimation procedure used as well as other design choices.

5.1 Calibration Signals

In order to measure the TOF accurately the calibration signal has to be appropriately selected

and the parameters properly tuned. Chirp signals and Maximum Length sequences are the two

most popular sequences for this task. A linear chirp signal is a short pulse in which the frequency

of the signal varies linearly between two preset frequencies. The cosine linear chirp signal of

duration T with the instantaneous frequency varying linearly between f0 and f1 is given by

s(t) = Acos(2π(f0 + (
f1 − f0

T
)t)) 0 ≤ t ≤ T (5.1)

In our system, we used a chirp signal of 512 samples at 44.1kHz (11.61 ms) as our calibration

signal. The instantaneous frequency varied linearly from 5 kHz to 8 kHz. The initial and the

final frequency was chosen to lie in the common pass band of the microphone and the speaker

38



0 20 40 60 80
−1

−0.5

0

0.5

1

Time (ms)

R
ef

er
en

ce
 c

hi
rp

 s
ig

na
l

0 20 40 60 80

−0.2

−0.1

0

0.1

0.2

0.3

Time (ms)

R
ec

ei
ve

d 
ch

irp
 s

ig
na

l
0 5 10 15 20

−40

−20

0

20

40

Frequency (kHz)

dB

0 5 10 15 20
−40

−20

0

20

40

Frequency (kHz)
dB

(a) (b) 

(c) (d) 

Figure 5.1: (a) The loopback reference chirp signal (b) the chirp signal received by one of the

microphones (c) the magnitude of the spectrum of the reference signal and (d) the received chirp

signal

frequency response. The chirp signal sent by the speaker is convolved with the room impulse

response resulting in the spreading of the chirp signal. Figure 5.1(a) shows the chirp signal as

sent out by the soundcard to the speaker. This signal is recorded by looping the output channels

directly back to an input channel. The initial delay corresponds to the source emission time.

Figure 5.1(b) shows the corresponding chirp signal received by a microphone. The chirp signal is

delayed by a certain amount due to the propagation path. The distortion and the spreadout is

due to the speaker, microphone and room response. Figure 5.1(c) and Figure 5.1(d) show the

magnitude of the frequency response of the transmitted chirp signal and the received chirp signal,

respectively.

One of the problems in accurately estimating the TOF is due to the multipath propagation

caused by room reflections. This can be seen in the received chirp signal where the initial part
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corresponds to the direct signal and the rest are the room reflections. We use the Time Division

Multiplexing scheme to send the calibration signal to different speakers. To avoid interference

between the different calibration signals we zeropaded the calibration signal appropriately in

dependence of the room reverberation level and the maximum delay. Alternatively, we could also

use Frequency Division Multiplexing by allocating a frequency band at each channel or spread

spectrum techniques by using different Maximum Length sequences for each channel. The

advantage would be that all the output channels can be played simultaneously. However extra

processing is needed at the input to separate the signals.

5.2 Time Delay Estimation

This is the most crucial part of the algorithm and also a potential source of error. Hence lot of

care has to be taken to get the TOF measurements accurately in noisy and reverberant

environments. The time-delay may be obtained by locating the peak in the cross-correlation

function of the signals received by a pair of microphones. But this method is not robust to

degradations in the signals. Knapp and Carter [18] developed the Maximum Likelihood (ML)

estimator for determining the time-delay between signals received at two spatially separated

microphones when the noise is uncorrelated. In this method, the estimated delay is the time lag

which maximizes the cross-correlation between filtered versions of the received signals [18]. The

cross-correlation of the filtered versions of the signals is called the Generalized Cross Correlation

(GCC) function. The GCC function Rx1x2(τ) is given by [18]

Rx1x2(τ) =
∫ ∞

−∞
W (ω)X1(ω)X∗

2 (ω)ejωτdω (5.2)

where X1(ω) and X2(ω) are the Fourier transforms of the microphone signals x1(t) and x2(t),

respectively, and W (ω) is the weight function. The effect of five different weight functions,

namely, the Roth Impulse Response, the Smoothed Coherence Transform (SCOT), the Phase

Transform (PHAT), the Eckart filter and the Maximum Likelihood (ML) weighting were studied

in [18].
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The two most commonly used weight functions are the ML and PHAT. The ML weight function

accentuates the signal passed to the correlator at frequencies where the Signal-to-Noise Ratio

(SNR) is high [18]. Brandstein, Adcock and Silverman [9] proposed an approximate ML type

weighting for speech applications. The approximate weight function is given by

ŴML(ω) =
|X1(ω)||X2(ω)|

|N1(ω)|2|X2(ω)|2 + |N2(ω)|2|X1(ω)|2 (5.3)

where |N1(ω)| and |N2(ω)| are the noise power spectra at the two microphones, and are assumed

to be known during the silence interval [9]. We use this weight function in our simulation studies.

This ML weight function performs well when the effect of room reverberation is low. As the

room reverberation increases, this method shows degradations in performance [6]. Since the

spectral characteristics of the received signal are affected by the multipath propagation or

reverberation in a room, the GCC function is made more robust by deemphasizing the frequency

dependent weighting. The Phase Transform is one extreme case where the magnitude spectrum

is flattened. The PHAT weight function WPT (ω) is given by

WPT (ω) =
1

|X1(ω)X∗
2 (ω)| (5.4)

By flattening the magnitude spectrum the resulting peak in the GCC function corresponds to the

dominant delay. However, the disadvantage of the PHAT weighting is that it places equal

emphasis on both the low and high SNR regions, and hence it works well only when the overall

noise level is low. Stéphanne and Champagne [30] proposed cepstral prefiltering to reduce the

effects of reverberation. Benesty [7] proposed a novel method for time-delay estimation based on

eigenvalue decomposition of the covariance matrix.

Our current implementation has the option of selecting between the simple Cross Correlation and

GCC with PHAT weighting. We plan to appropriately combine the ML and the PHAT technique

based on the environment. A more accurate estimate of the peak can be found by doing a

parabolic fit around the peak. Figure 5.2 shows a sample GCC-PHAT function. The TOF is the

position of the peak in the correlation function.
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5.3 Testbed Setup

The real-time setup has been tested in a synchronized as well as a distributed setup using

laptops. Figure 5.3(a) shows the top view of our experimental synchronized setup. Four

omnidirectional microphones (RadioShack) and four loudspeakers (Mackie HR624) were setup in

a room with low reverberation and low ambient noise. The microphones and loudspeakers were

interfaced using an RME DIGI9652 card. For the distributed setup we used 5 laptops (IBM

T-series Thinkpads with Intel Pentium series processors) as shown in Figure 5.4(a). For our

experiments we used the internal microphones and speakers in the laptop. The room also had

multiple PCs which acted as a noise sources. All the five laptops were placed on a flat table so

that we can form a 2D coordinate system 1. The ground truth was measured manually to

validate the results from the position calibration methods.

5.4 Software details

Capture and play back was done using the free, cross platform, open-source, audio I/O library

Portaudio [4]. PortAudio provides a very simple API for recording and/or playing sound using a

simple callback function [4]. Most of the signal processing tasks were implemented using the Intel

1As discussed earlier we need minimum six laptops for the minimization routine. With 5 laptops we need to

know the actual x-coordinate of one of the laptops.
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Integrated Performance Primitives (IPP). IPP is a cross-platform low-level software layer that

abstracts multimedia functionality from the processor underneath and provides highly optimized

code [2]. For the non-linear minimization we used the mrqmin routine from Numerical Recipes in

C [26]. For displaying the calibrated microphones and speakers we used the OpenGL Utility

Toolkit (GLUT) ported to Win32 [5]. For the distributed platform we used the Universal Plug

and Play (UPnP) [1] technology to form an adhoc network and control the audio devices on

different platforms. UPnP technology is a distributed, open networking architecture that employs

TCP/IP and other Internet technologies to enable seamless proximity networking [1]. Each of the

laptops has an UPnP service running for playing the chirp signal and capturing the audio stream.

A program on the master scans the network for all the available UPnP players. First the master

starts the audio capture on each of the laptops one by one. Then the chirp signal is played on

each of the devices one after the other and the signal is captured. The TOF computation is

distributed among all the laptops, in that each laptop computes its own TOF and reports it back

to the master. The master performs the minimization routine once it has the TOF matrix. As

regards to CPU utilization the TOF estimation consumes negligible resources. If we use a good

initial guess via the Multidimensional Scaling technique then the minimization routine converges

within 10 to 30 iterations. For the setup consisting of 5 microphones and 5 speakers, Figure

5.4(b) shows the actual(’X’) and the estimated(’o’) positions of the microphones and speakers.

The locations as got from the closed form approximate solution are shown as ’*’. The localization

error for each microphone or speaker is defined as the euclidean distance between the actual and

the estimated positions. For our setup the average localization error was 8.2 cm. For the

synchronized setup consisting of 4 speakers and 4 microphones, the sensors’ and actuators’ three

dimensional locations could be estimated with an average bias of 0.08 cm and average standard

deviation of 3 cm (results averaged over 100 trials). Figure 5.3(b) shows a snapshot of the

OpenGL display, showing the estimated locations of the speakers and microphones.

Our algorithm assumed that the sampling rate was known for each laptop and the clock does not

drift. However in practice the sampling rate is not as specified and the clock can also drift.
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Hence our real time setup integrates the distributed synchronization scheme using ML sequence

as proposed in [19]. This scheme essentially gives the exact sampling rate on each of the GPCs.

Figure 5.5 shows a schematic of the TOF computation protocol.

5.5 Dealing with Partial Information

In some cases all TOF measurements may not be available. This could be either due to the

presence of a large obstacle in between a microphone and a speaker, or an available TOF

measurement may be an outlier. In such cases we can formulate the ML estimation procedure by

ignoring the unavailable measurement. We can define a weighting function w, which takes the

value 1, if the corresponding measurement is available, and else 0. For example for TOF- based

position estimation, the ML estimate now becomes

ˆξML = argξ min[FML(ξ)] (5.5)

FML(ξ) =
S∑

j=1

M∑

i=1

wij

(TOF estimated
ij − TOF actual

ij )2

σ2
ij

(5.6)

In the case of Multidimensional Scaling it is possible to fill in the missing data when all the

pairwise distances are not available. If we know the distance between one node and at least four

other nodes (three in case of 2 dimensions), then it is possible to find the distance between that

node and all other nodes. First using the available pairwise distances between a subset of nodes,

we can form a coordinate system for the subset of nodes and hence it is possible to know the

locations of the subset of nodes. If the location of four nodes are known then by trilateration the

node’s position can be determined analytically. Knowing the distance from one known node, the

unknown node can lie anywhere on a sphere centered at the first known node. With two nodes

the unknown node can lie on a circle, since two spheres intersect at a circle. With three we can

get two points, and with four nodes we can give a unique location. Since the estimated distances

are corrupted by noise, the intersection in general needs not to be a unique point. If the distance

to more than four nodes are known then we solve the problem in a least square sense. Once the
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node locations are known then the pairwise distances can be computed.

5.6 Robust ML estimation

In practice the TOF measurements may contain outliers (measurements which are in a gross

disagreement with the underlying model). Outlier can have strong influence on the solution, and

completely distort the nonlinear fitting function. In this situation we need to use robust methods

for ML estimation. One method is to discard iteratively the measurement with the largest

residual after the nonlinear least squares fitting. However this method not necessarily removes

the actual outlier. The two other robust methods are the M estimators and the RANSAC

method. In the case of M estimators we use some robust error metric in place of the squared

error. One example is the Lorentzian function which gives less penalty to large errors as

compared to the squared error function. The Lorentzian error function is given by

d(en) = ln(1 + (
en

σ
)2) (5.7)

In RANdom SAmpling Consensus (RANSCAC) method we use the minimum data required to

find a solution (See Table 2.2 for the minimum number required for each estimation procedure).

This process is repeated on different subsets of the data to ensure that there is a high chance of

one of the subsets containing only good data points. The best solution is that which maximizes

the number of points whose residual is below a certain threshold. Once all the outliers are

removed the estimation procedure can be done with only the good data.
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Figure 5.3: (a) Synchronized setup consisting of four microphones and four loudspeakers. (b) A

sample screen shot of the OpenGL display showing the positions of the microphones and loud-

speakers for the synchronized setup.
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Figure 5.4: (a) 2D Distributed setup consisting of 5 laptops placed on a table. (b) Results for the

setup consisting of 5 laptops each having one internal microphone and speakers.

47



Initialization phase Scan the network 

and find the number of GPC’s and the 

UPnP services available

Master
GPC 1 GPC 2 GPC M

•GPC 1 (Speaker) GPC 2 (Mic)

•Calibration signal parameters

TOA Computation

TOA

TOA matrix

Position estimation

Play Calibration 

Signal

Play ML Sequence

Figure 5.5: Schematic showing the distributed control scheme.
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Chapter 6

Conclusions

In this thesis we described the problem of position calibration of acoustic sensors and actuators

in a network of distributed general-purpose computing platforms. Our approach allows putting

laptops, PDAs and tablets into a common 3D coordinate system. Together with time

synchronization this creates arrays of audio sensors and actuators enabling a rich set of new

multistream A/V applications on platforms that are available virtually anywhere. We also

derived important bounds on performance of spatial localization algorithms, proposed

optimization techniques to implement them and extensively validated the algorithms on

simulated and real data.
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Appendix A

Derivatives

Following are the derivatives which are needed for the minimization routine. These derivatives

form the non-zero elements of the Jacobian matrix.

∂ ˆTOF
actual

ij

∂mxi
= −∂ ˆTOF

actual

ij

∂sxj
=

mxi − sxj

c‖mi − sj‖
∂ ˆTOF

actual

ij

∂myi
= −∂ ˆTOF

actual

ij

∂syj
=

myi − syj

c‖mi − sj‖
∂ ˆTOF

actual

ij

∂mzi
= −∂ ˆTOF

actual

ij

∂szj
=

mzi − szj

c‖mi − sj‖
∂ ˆTOF

actual

ij

∂tsj
= −∂ ˆTOF

actual

ij

∂tmi
= 1 (A.1)
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∂ ˆTDOF
actual

ikj

∂mxi
=

mxi − sxj

c‖mi − sj‖
∂ ˆTDOF

actual

ikj

∂mxk
= − mxk − sxj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂myi
=

myi − syj

c‖mi − sj‖
∂ ˆTDOF

actual

ikj

∂myk
= − myk − syj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂mzi
=

mzi − szj

c‖mi − sj‖
∂ ˆTDOF

actual

ikj

∂mzk
= − mzk − szj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂sxj
= − mxi − sxj

c‖mi − sj‖ +
mxk − sxj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂syj
= − myi − syj

c‖mi − sj‖ +
myk − syj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂szj
= − mzi − szj

c‖mi − sj‖ +
mzk − szj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂tmk
= −∂ ˆTDOF

actual

ikj

∂tmi
= 1 (A.2)
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Appendix B

Distance matrix to a dot product matrix

Let us say we choose the kth GPC as the origin of our coordinate system. Let dij and bij be the

distance and dotproduct respectively, between the ith and the jth GPC. Referring to Figure B.1,

using the cosine law,

d2
ij = d2

ki + d2
kj − 2dkidkjcos(α) (B.1)

The dot product bij is defined as

bij = dkidkjcos(α) (B.2)

Combining the above two equations,

bij =
1
2
(d2

ki + d2
kj − d2

ij) (B.3)

However this is with respect to the kth GPC as the origin of the coordinate system. We need to

get the dot product matrix with the centroid as the origin. Let B be the dot product matrix with

respect to the kth GPC as the origin and let B∗ be the dot product matrix with the centroid of

the data points as the origin. Let X∗ be to matrix of coordinates with the origin shifted to the
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Figure B.1: Law of cosines

centroid.

X∗ = X − 1
N

1N×NX (B.4)

where 1N×N is an N ×N matrix who’s all elements are 1. So now B∗ can be written in terms of

B as follows:

B∗ = X∗X∗T = (X − 1
N

1N×NX)(X − 1
N

1N×NX)T (B.5)

= XXT − 1
N

XXT 1N×N − 1
N

1N×NXXT +
1

N2
1N×NXXT 1N×N (B.6)

= B − 1
N

B1N×N − 1
N

1N×NB +
1

N2
1N×NB1N×N (B.7)

Hence the ijth element in B∗ is given by

b∗ij = bij − 1
N

N∑

l=1

bil − 1
N

N∑
m=1

bmj +
1

N2

N∑
o=1

N∑
p=1

bop (B.8)

Substituting Equation B.3 we get

b∗ij = −1
2

[
d2

ij −
1
N

N∑

l=1

d2
il −

1
N

N∑
m=1

d2
mj +

1
N2

N∑
o=1

N∑
p=1

d2
op

]
(B.9)

This operation is also known as double centering i.e. subtract the row and the column means

from its elements and add the grand mean and then multiply by − 1
2 .
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