
Large Scale Kernel Machines

Editors:

Léon Bottou leon@bottou.org

NEC Labs America
Princeton, NJ 08540, USA

Olivier Chapelle chapelle@tuebingen.mpg.de

Max Planck Institure for Biological Cybernetics
72076 Tübingen, Germany

Denis DeCoste decosted@yahoo-inc.com

Yahoo! Research
Burbank, CA 91504, USA

Jason Weston jaseweston@gmail.com

NEC Labs America
Princeton, NJ 08540, USA

This is a draft containing only raykar chapter.tex and an abbreviated front
matter. Please check that the formatting and small changes have been performed
correctly. Please verify the affiliation. Please use this version for sending us future
modifications.

The MIT Press
Cambridge, Massachusetts
London, England

ii

Contents

1 The Improved Fast Gauss Transform with Applications to
Machine Learning 1
1.1 Computational curse of non-parametric methods 1
1.2 Bottleneck computational primitive–Weighted superposition

of kernels . 2
1.3 Structured matrices and ε-exact approximation 4
1.4 Motivating example–polynomial kernel 5
1.5 Sum of Gaussian kernels–the discrete Gauss transform 6
1.6 Bringing computational tractability to the discrete Gauss

transform . 6
1.7 Multi-index notation . 9
1.8 The improved fast Gauss transform 12
1.9 IFGT vs FGT . 16
1.10 Numerical Experiments . 19
1.11 Fast multivariate kernel density estimation 24
1.12 Conclusions . 28

1 The Improved Fast Gauss Transform with

Applications to Machine Learning

Vikas Chandrakant Raykar vikas@umiacs.umd.edu
Ramani Duraiswami ramani@umiacs.umd.edu
Department of Computer Science and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742, USA

In many machine learning algorithms and non-parametric statistics a key
computational primitive is to compute the weighted sum of N Gaussian
kernel functions at M points. The computational cost of the direct evaluation
of such sums scales as O(MN). In this chapter we describe some algorithms
that allows one to compute the same sum in O(M + N) time at the expense
of reduced precision, which however can be arbitrary. Using these algorithms
can significantly reduce the runtime of various machine learning procedures.
In particular we discuss the improved fast Gauss transform algorithm in
detail and compare it with the dual-tree algorithm of Gray and Moore (2003)
and the fast Gauss transform of Greengard and Strain (1991). As an example
we show how these methods can be used for fast multivariate kernel density
estimation.

1.1 Computational curse of non-parametric methods

During the past few decades it has become relatively easy to gather
huge amounts of data, which are often apprehensively called massive data
sets. A few examples include datasets in genome sequencing, astronomi-
cal databases, internet databases, experimental data from particle physics,
medical databases, financial records, weather reports, audio and video data.
A goal in these areas is to build systems which can automatically extract

2 The Improved Fast Gauss Transform with Applications to Machine Learning

useful information from the raw data. Learning is a principled method for
distilling predictive and therefore scientific theories from the data (Poggio
and Smale, 2003).

The parametric approach to learning assumes a functional form for the
model to be learnt, and then estimates the unknown parameters. Once the
model has been trained the training examples can be discarded. The essence
of the training examples have been captured in the model parameters, using
which we can draw further inferences. However, unless the form of the
model is known a priori, assuming it very often leads to erroneous inference.
Nonparametric methods do not make any assumptions on the form of the
underlying model. This is sometimes referred to as ‘letting the data speak
for themselves’ (Wand and Jones, 1995). A price to be paid is that all the
available data has to be retained while making the inference. It should be
noted that nonparametric does not mean a lack of parameters, but rather
that the underlying function/model of a learning problem cannot be indexed
with a finite number of parameters. The number of parameters usually grows
with the size of the training data.

One of the major bottlenecks for successful inference using nonparametric
methods is their computational complexity. Most state-of-the-art nonpara-
metric machine learning algorithms have a computational complexity of ei-
ther O(N2) or O(N3). This has seriously restricted the use of massive data
sets. Current implementations can handle only a few thousands of training
examples.

In the next section we identify the key computational primitive contribut-
ing to the O(N3) or O(N2) complexity. We discuss some algorithms that
use ideas and techniques from computational physics, scientific computing,
and computational geometry to speed up approximate calculation of these
primitives to O(N) and also provide high accuracy guarantees. In particular
in section 1.8 we discuss the improved fast Gauss transform algorithm in de-
tail and compare it with the dual-tree algorithm of Gray and Moore (2003)
and the fast Gauss transform of Greengard and Strain (1991) (section 1.10).
In section 1.11 we show how these methods can be used for fast multivariate
kernel density estimation.

1.2 Bottleneck computational primitive–Weighted superposition of kernels

In most kernel based machine learning algorithms (Shawe-Taylor and Cris-
tianini, 2004), Gaussian processes (Rasmussen and Williams, 2006), and
nonparametric statistics (Izenman, 1991) the key computationally intensive
task is to compute a linear combination of local kernel functions centered

1.2 Bottleneck computational primitive–Weighted superposition of kernels 3

on the training data, i.e.,

f(x) =
N∑

i=1

qik(x, xi), (1.1)

where,

{xi ∈ Rd, i = 1, . . . , N} are the N training data points,

{qi ∈ R, i = 1, . . . , N} are the appropriately chosen weights,

k : Rd × Rd → R is the local kernel function,

and x ∈ Rd is the test point at which f is to be computed.

The computational complexity to evaluate Equation 1.1 at a given test point
is O(N).

For kernel machines (e.g. regularized least squares (Poggio and Smale,
2003), support vector machines (Cristianini and Shawe-Taylor, 2000), ker-
nel regression (Wand and Jones, 1995)) f is the regression/classification
function. This is a consequence of the well known classical representer theo-
rem (Wabha, 1990) which states that the solutions of certain risk minimiza-
tion problems involving an empirical risk term and a quadratic regularizer
can be written as expansions in terms of the kernels centered on the training
examples. In case of Gaussian process regression (Williams and Rasmussen,
1996) f is the mean prediction. For non-parametric density estimation it is
the kernel density estimate (Wand and Jones, 1995).

Training these models scales as O(N3) since most involve solving a linear
system of equations of the form

(K + λI)ξ = y, (1.2)

where, K is the N × N Gram matrix where [K]ij = k(xi, xj), λ is some
regularization parameter or noise variance, and I is the identity matrix.
For specific kernel methods then there are many published techniques for
speeding things up. However a naive implementation would scale as O(N3).

Also many kernel methods in unsupervised learning like kernel principal
component analysis (Smola et al., 1996), spectral clustering (Chung, 1997),
and Laplacian eigenmaps involve computing the eigen values of the Gram
matrix. Solutions to such problems can be obtained using iterative methods,
where the dominant computation is evaluation of f(x).

Recently, such nonparametric problems have been collectively referred to
as N -body problems in learning by Gray and Moore (2001), in analogy with
the coulombic, magnetostatic, and gravitational N -body potential problems
arising in computational physics (Greengard, 1994), where all pairwise

4 The Improved Fast Gauss Transform with Applications to Machine Learning

interactions in a large ensemble of particles must be calculated.

1.3 Structured matrices and ε-exact approximation

In general we need to evaluate Equation 1.1 at M points {yj ∈ Rd, j =
1, . . . ,M}, i.e.,

f(yj) =
N∑

i=1

qik(yj , xi) j = 1, . . . , M, (1.3)

leading to the quadratic O(MN) cost. We will develop fast ε-exact algo-
rithms that compute the sum 1.3 approximately in linear O(M + N) time.
The algorithm is ε-exact in the sense made precise below.

Definition 1.1. For any given ε > 0, f̂ is an ε− exact approximation to f

if the maximum absolute error relative to the total weight Q =
∑N

i=1 |qi| is
upper bounded by ε, i.e.,

max
yj

[
|f̂(yj)− f(yj)|

Q

]
≤ ε. (1.4)

The constant in O(M + N), depends on the desired accuracy ε, which
however can be arbitrary. In fact for machine precision accuracy there is no
difference between the results of the direct and the fast methods.

The sum in equation 1.3 can be thought of as a matrix-vector multiplica-
tion f = Kq, where K is a M × N matrix the entries of which are of the
form [K]ij = k(yj , xi) and q = [q1, . . . , qN]T is a N × 1 column vector.

Definition 1.2. A dense matrix of order M × N is called a structured
matrix if its entries depend only on O(M + N) parameters.

Philosophically, the reason we will be able to achieve O(M+N) algorithms
to compute the matrix-vector multiplication is that the matrix K is a
structured matrix, since all the entries of the matrix are determined by
the set of M + N points {xi}N

i=1 and {yj}M
i=1. If the entries of the of the

matrix K were completely random than we could not do any better than
O(MN).

1.4 Motivating example–polynomial kernel 5

1.4 Motivating example–polynomial kernel

We will motivate the main idea using a simple polynomial kernel that is
often used in kernel methods. The polynomial kernel of order p is given by

k(x, y) = (x · y + c)p. (1.5)

Direct evaluation of the sum f(yj) =
∑N

i=1 qik(xi, yj) at M points requires
O(MN) operations. The reason for this is that for each term in the sum the
xi and yj appear together and hence we have to do all pair-wise operations.
We will compute the same sum in O(M + N) time by factorizing the kernel
and regrouping the terms. The polynomial kernel can be written as follows
using the binomial theorem.

k(x, y) = (x · y + c)p =
p∑

k=0

(
p

k

)
(x · y)kcp−k. (1.6)

Also for simplicity let x and y be scalars, i.e., x, y ∈ R. As a result we
have (x · y)k = xkyk. The multivariate case can be handled using multi-
index notation and will be discussed later. So now the sum – after suitable
regrouping – can be written as follows:

f(yj) =
N∑

i=1

qi

[
p∑

k=0

cp−k

(
p

k

)
xk

i y
k
j

]
=

p∑

k=0

cp−k

(
p

k

)
yk

j

[
N∑

i=1

qix
k
i

]

=
p∑

k=0

cp−k

(
p

k

)
yk

j Mk, (1.7)

where Mk =
∑N

i=1 qix
k
i , can be called the moments. The moments M0, . . . ,Mp

can be precomputed in O(pN) time. Hence f can be computed in linear
O(pN + pM) time. This is sometimes known as encapsulating information
in terms of the moments. Also note that for this simple kernel the sum was
computed exactly.

In general any kernel k(x, y) can be expanded in some region as

k(x, y) =
p∑

k=0

Φk(x)Ψk(y) + error, (1.8)

where the function Φk depends only on x and Ψk on y. We call p, the
truncation number–which has to be chosen such that the error is less than
the desired accuracy ε. The fast summation – after suitable regrouping – is

6 The Improved Fast Gauss Transform with Applications to Machine Learning

of the form

f(yj) =
p∑

k=0

AkΨk(y) + error, (1.9)

where the moments Ak can be pre-computed as Ak =
∑N

i=1 qiΦk(xi).
Using series expansions about a single point can lead to large truncation
numbers. We need to organize the datapoints into different clusters using
data-structures and use series expansion about the cluster centers. Also we
need to give accuracy guarantees. So there are two aspects to this problem

1. Approximation theory → series expansions and error bounds.

2. Computational geometry → effective data-structures.

1.5 Sum of Gaussian kernels–the discrete Gauss transform

The most commonly used kernel function is the Gaussian kernel

k(x, y) = e−‖x−y‖2/h2
, (1.10)

where h is called the bandwidth of the kernel. The bandwidth h controls
the degree of smoothing, of noise tolerance, or of generalization. The sum
of multivariate Gaussian kernels is known as the discrete Gauss transform
in the scientific computing literature. More formally, for each target point
{yj ∈ Rd}j=1,...,M the discrete Gauss transform is defined as,

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

, (1.11)

where {qi ∈ R}i=1,...,N are the source weights, {xi ∈ Rd}i=1,...,N are the
source points, i.e., the center of the Gaussians, and h ∈ R+ is the source
scale or bandwidth. In other words G(yj) is the total weighted contribution at
yj of N Gaussians centered at xi each with bandwidth h. The computational
complexity to evaluate the discrete Gauss transform at M target points is
O(MN).

1.6 Bringing computational tractability to the discrete Gauss transform

Various strategies have been proposed to reduce the computational com-
plexity of computing the sum of multivariate Gaussians. To simplify the
exposition, in this section we assume M = N .

1.6 Bringing computational tractability to the discrete Gauss transform 7

1.6.1 Methods based on sparse data-set representation

There are many strategies for specific problems which try to reduce this
computational complexity by searching for a sparse representation of the
data (Williams and Seeger, 2001; Smola and Bartlett, 2001; Fine and
Scheinberg, 2001; Lee and Mangasarian, 2001; Lawrence et al., 2003; Csato
and Opper, 2002; Tresp, 2000; Tipping, 2001; Snelson and Ghahramani,
2006). Most of these methods try to find a reduced subset of the original
data-set using either random selection or greedy approximation. In these
methods there is no guarantee on the approximation of the kernel matrix in
a deterministic sense.

1.6.2 Binned Approximation based on the FFT

If the source points are on a evenly spaced grid then we can compute
the Gauss transform at an even spaced grid exactly in O(N log N) using
the fast Fourier transform (FFT). One of the earliest methods, especially
proposed for univariate fast kernel density estimation was based on this
idea (Silverman, 1982). For irregularly spaced data, the space is divided
into boxes, and the data is assigned to the closest neighboring grid points
to obtain grid counts. The Gauss transform is also evaluated at regular grid
points. For target points not lying on the the grid the value is obtained
by interpolation based on the values at the neighboring grid points. As a
result there is usually no guaranteed error bound for these methods. Also
another problem is that the number of grid points grows exponentially with
dimension.

1.6.3 Dual-tree methods

The dual-tree methods (Gray and Moore, 2001, 2003) are based on space
partitioning trees for both the source and target points. This method first
builds a spatial tree – kd-trees or ball trees – on both the source and target
points. Using the tree data structure distance bounds between nodes can
be computed. The bounds can be tightened by recursing on both trees. An
advantage of the dual-tree methods is that they work for all common kernel
choices, not necessarily Gaussian. The dual-tree methods give good speed
up only for small bandwidths. For moderate bandwidths they end up doing
the same amount of work as the direct summation. These methods do give
accuracy guarantees. The single tree version takes O(N log N) time while
the dual-tree version is postulated to be O(N).

8 The Improved Fast Gauss Transform with Applications to Machine Learning

1.6.4 Fast Gauss transform

The Fast Gauss Transform (FGT) is an ε− exact approximation algorithm
that reduces the computational complexity to O(N), at the expense of
reduced precision. Given any ε > 0, it computes an approximation Ĝ(yj)
to G(yj) such that the maximum absolute error relative to the total weight
Q is upper bounded by ε. The constant depends on the desired precision,
dimensionality of the problem, and the bandwidth.

The FGT is a special case of the more general fast multipole meth-
ods (Greengard and Rokhlin, 1987), adapted to the Gaussian potential. The
fast multipole method has been called one of the ten most significant algo-
rithms (Dongarra and Sullivan, 2000) in scientific computation discovered
in the 20th century, and won its inventors, Vladimir Rokhlin and Leslie
Greengard, the 2001 Steele prize. Originally this method was developed for
the fast summation of the potential fields generated by a large number of
sources (charges), such as those arising in gravitational or electrostatic po-
tential problems, that are described by the Laplace equation in two or three
dimensions (Greengard and Rokhlin, 1987). The expression for the potential
of a source located at a point can be factored in terms of an expansion con-
taining the product of multipole functions and regular functions. This lead
to the name for the algorithm. Since then FMM has also found application
in many other problems, for example, in electromagnetic scattering, radial
basis function fitting, molecular and stellar dynamics, and can be viewed as
a fast matrix-vector product algorithm for particular structured matrices.

The FGT was first proposed by Greengard and Strain (1991) and applied
successfully to a few lower dimensional applications in mathematics and
physics. It uses a local representation of the Gaussian based on conventional
Taylor series, a far field representation based on Hermite expansion, and
translation formula for conversion between the two representations. However
the algorithm has not been widely used much in statistics, pattern recog-
nition, and machine learning applications where higher dimensions occur
commonly. An important reason for the lack of use of the algorithm in these
areas is that the performance of the proposed FGT degrades exponentially
with increasing dimensionality, which makes it impractical for the statistics
and pattern recognition applications. The constant in the linear asymptotic
cost O(M + N) grows roughly as pd, i.e., exponential in the dimension d.

1.6.5 Improved fast Gauss transform

In this chapter we briefly describe an improved fast Gauss transform (IFGT)
suitable for higher dimensions (See Raykar et al. (2005) for a longer detailed

1.7 Multi-index notation 9

5 10 15 20 25 30
10

0

10
5

10
10

10
15

10
20

10
25

p=5

d

FGT ~ pd

IFGT ~ dp

Figure 1.1: The constant term for the FGT and the IFGT complexity as
a function of the dimensionality d. The FGT is exponential in d, while the
IFGT is polynomial in d.

description). For the IFGT the constant term is asymptotically polynomial
in d, i.e, is grows roughly as dp (see Figure 1.1). The reduction is based on a
new multivariate Taylor series expansion scheme combined with the efficient
space subdivision using the k-center algorithm. The core IFGT algorithm
was first presented in (Yang et al., 2003) and its use in kernel machines was
shown in (Yang et al., 2005). More details of the algorithms including the
automatic choice of the algorithm parameters and a tighter error bound can
be found in (Raykar et al., 2005).

1.7 Multi-index notation

Before we present the IFGT algorithm we will discuss the notion of multi-
indices, which will be useful later.

1. A multi-index α = (α1, α2 . . . , αd) ∈ Nd is a d-tuple of nonnegative
integers.

2. The length of the multi-index α is defined as |α| = α1 + α2 + . . . + αd.

3. The factorial of α is defined as α! = α1!α2! . . . αd!.

4. For any multi-index α ∈ Nd and x = (x1, x2, . . . , xd) ∈ Rd the d-variate
monomial xα is defined as xα = xα1

1 xα2
2 . . . xαd

d .

10 The Improved Fast Gauss Transform with Applications to Machine Learning

5. xα is of degree n if |α| = n.

6. The total number of d-variate monomials of degree n is
(
n+d−1

d−1

)
.

7. The total number of d-variate monomials of degree less than or equal to
n is

rnd =
n∑

k=0

(
k + d− 1

d− 1

)
=

(
n + d

d

)
. (1.12)

8. Let x, y ∈ Rd and v = x·y = x1y1+. . .+xdyd. Then using the multi-index
notation vn can be written as,

vn = (x · y)n =
∑

|α|=n

n!
α!

xαyα. (1.13)

1.7.1 Multivariate polynomial kernel

Using this notation the example which we discussed with polynomial kernel
in section 1.4 can be extended to handle the multivariate case.

f(yj) =

N∑
i=1

qi(xi · yj + c)p =

N∑
i=1

qi

[
p∑

k=0

(
p

k

)
cp−k(xi · yj)

k

]

=

N∑
i=1

qi

p∑

k=0

(
p

k

)
cp−k

 ∑

|α|=k

k!

α!
xα

i yα
j

 =

N∑
i=1

qi

 ∑

|α|≤p

cp−|α|p!

α!(p− |α|!)xα
i yα

j

=
∑

|α|≤p

Cαyα
j

[
N∑

i=1

qix
α
i

]
where, Cα =

cp−|α|p!

α!(p− |α|!)

=
∑

|α|≤p

Cαyα
j Mα where, Mα =

N∑
i=1

qix
α
i . (1.14)

The number of d-variate monomials of degree |α| ≤ p is rpd =
(
p+d

d

)
.

Hence the moments Mα can be computed in O(rpdN) time. Note that the
computation of Mα depends on the xi alone which can be done once and
reused in each evaluation of f(yj). Hence the sum f can be computed at M

points in O(rpd(M + N)) time. Also note that we need rpd space to store
the moments.

Using the Sterling’s formula n! ≈ √
2πne−nnn, the term rpd can be

simplified as follows

rpd =
(

p + d

d

)
=

(p + d)!
d!p!

≈
(

1 +
d

p

)p (
1 +

p

d

)d
. (1.15)

If d À p, rpd is roughly polynomial in d, i.e., dp. While not as bad as
exponential growth in d, still the constant can become large for high d. This
growth of the constant with d is one of the major limitations of series based

1.7 Multi-index notation 11

ab2 abc ac 2 b3 b2c c3

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

a

1

b c

ab ac b2 bc

a b c

a b c

a b c

a b c

a4 a3b a3c a2b2 a2bc a c 22 ab3 ab2c abc 2 ac 3 b4 b3c b2c2 bc3 c

2

4

ca2

bc23a a c2a b2

Figure 1.2: Efficient expansion of multivariate polynomials.

methods, which prevents them from being practical for high dimensional
datasets. For example, when p = 5 and d = 10, rpd = 53, 130.

1.7.2 Efficient expansion of multivariate polynomials–Horner’s rule

Evaluating each d-variate monomial of degree n directly requires n multi-
plications. Hence direct evaluation of all d-variate monomials of degree less
than or equal to n requires

∑n
k=0 k

(
k+d−1

d−1

)
multiplications. The storage re-

quirement is rnd =
(
n+d

d

)
. However, efficient evaluation using Horner’s rule

requires rnd − 1 multiplications. The required storage is rnd.
For a d-variate polynomial of order n, we can store all terms in a vector

of length rnd. Starting from the order zero term (constant 1), we take the
following approach. Assume we have already evaluated terms of order k−1.
We use an array of size d to record the positions of the d leading terms (the
simple terms such as ak−1, bk−1, ck−1, . . . in Figure 1.2) in the terms of
order k − 1. Then terms of order k can be obtained by multiplying each of
the d variables with all the terms between the variables leading term and
the end, as shown in the Figure 1.2 The positions of the d leading terms are
updated respectively. The required storage is rnd and the computations of
the terms require rnd − 1 multiplications.

12 The Improved Fast Gauss Transform with Applications to Machine Learning

1.8 The improved fast Gauss transform

For any point x∗ ∈ Rd the Gauss Transform at yj can be written as,

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

,

=
N∑

i=1

qie
−‖(yj−x∗)−(xi−x∗)‖2/h2

,

=
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2
e2(yj−x∗)·(xi−x∗)/h2

. (1.16)

In Equation 1.16 the first exponential inside the summation e−‖xi−x∗‖2/h2
de-

pends only on the source coordinates xi. The second exponential e−‖yj−x∗‖2/h2

depends only on the target coordinates yj . However for the third exponen-
tial e2(yj−x∗)·(xi−x∗)/h2

the source and target are entangled. The crux of the
algorithm is to separate this entanglement via Taylor series.

1.8.1 Factorization

The p-term truncated Taylor series expansion for e2(yj−x∗)·(xi−x∗)/h2
can be

written as (Raykar et al., 2005, Corollary 2),

e2(yj−x∗)·(xi−x∗)/h2
=

p−1∑
n=0

2n

n!

[(yj − x∗
h

)
·
(xi − x∗

h

)]n

+ errorp. (1.17)

The truncation number p is chosen based on the prescribed error ε. Using
the multi-index notation (Equation 1.13), this expansion can be written as,

e2(yj−x∗)·(xi−x∗)/h2
=

∑

|α|≤p−1

2α

α!

(yj − x∗
h

)α (xi − x∗
h

)α

+ errorp. (1.18)

Ignoring error terms for now G(yj) can be approximated as,

Ĝ(yj) =

N∑
i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2

 ∑

|α|≤p−1

2α

α!

(yj − x∗
h

)α (xi − x∗
h

)α

 . (1.19)

1.8.2 Regrouping

Rearranging the terms Equation 1.19 can be written as

Ĝ(yj) =
∑

|α|≤p−1

[
2α

α!

N∑
i=1

qie
−‖xi−x∗‖2/h2

(xi − x∗
h

)α
]

e−‖yj−x∗‖2/h2
(yj − x∗

h

)α

,

=
∑

|α|≤p−1

Cαe−‖yj−x∗‖2/h2
(yj − x∗

h

)α

, (1.20)

1.8 The improved fast Gauss transform 13

where,

Cα =
2α

α!

N∑
i=1

qie
−‖xi−x∗‖2/h2

(xi − x∗
h

)α

. (1.21)

The coefficients Cα can be evaluated separately in O(N). Evaluation of
Ĝr(yj) at M points is O(M). Hence the computational complexity has
reduced from the quadratic O(NM) to the linear O(N + M). A detailed
analysis of the computational complexity is provided later.

1.8.3 Space subdivision

Thus far, we have used the Taylor series expansion about a certain point x∗.
However if we use the same x∗ for all the points we typically would require
very high truncation number since the Taylor series is valid only in a small
open ball around x∗. We use an data adaptive space partitioning scheme–the
farthest point clustering algorithm–to divide the N sources into K spherical
clusters, Sk for k = 1, . . . , K with ck being the center of each cluster. The
Gauss transform can be written as,

Ĝ(yj) =
K∑

k=1

∑

|α|≤p−1

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α

, (1.22)

where,

Ck
α =

2α

α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α

. (1.23)

We model the space subdivision task as a k-center problem, which is defined
as follows: Given a set of N points in d dimensions and a predefined number
of the clusters k, find a partition of the points into clusters S1, . . . , Sk, and
also the cluster centers c1, . . . , ck, so as to minimize the cost function-the
maximum radius of clusters, maxi maxx∈Si

‖x− ci‖.
The k-center problem is known to be NP -hard (Bern and Eppstein, 1997).

Gonzalez (1985) proposed a very simple greedy algorithm, called farthest-
point clustering, and proved that it gives an approximation factor of 2. This
algorithm works as follows– Pick an arbitrary point v0 as the center of the
first cluster and add it to the center set C. Then for i = 1 to k do the
following: at step i, for every point v, compute its distance to the set C:
di(v, C) = minc∈C ‖v − c‖. Let vi be the point that is farthest from C, i.e.,
the point for which di(vi, C) = maxv di(v, C). Add vi to set C. Report the
points v0, v1, . . . , vk−1 as the cluster centers. Each point is assigned to its
nearest center.

The direct implementation of farthest-point clustering has running time

14 The Improved Fast Gauss Transform with Applications to Machine Learning

O(Nk). Feder and Greene (1988) gave a two-phase algorithm with optimal
running time O(N log k). Figure 1.3 displays the results of farthest-point
algorithm on a sample two dimensional data-set.

1.8.4 Rapid decay of the Gaussian

Since the Gaussian decays very rapidly a further speed up is achieved if
we ignore all sources belonging to a cluster if the cluster is greater than a
certain distance from the target point, ‖yj − ck‖ > rk

y . The cluster cutoff
radius depends on the desired precision ε. So now the Gauss transform is
evaluated as

Ĝ(yj) =
∑

‖yj−ck‖≤rk
y

∑

|α|≤p−1

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α

, (1.24)

where,

Ck
α =

2α

α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α

. (1.25)

1.8.5 Runtime analysis

1. The farthest point clustering has a running time O(N log K) (Feder and
Greene, 1988).

2. Since each source point belongs to only one cluster computing the cluster
coefficients Ck

α for all the clusters is of O(Nr(p−1)d), where r(p−1)d =
(
p+d−1

d

)
is the total number of d-variate monomials of degree less than or equal to
p− 1.

3. Computing Ĝ(yj) is O(Mnr(p−1)d) where n is the maximum number of
neighbor clusters (depends on the bandwidth h and the error ε) which
influence the target. It does not take into account the cost needed to
determine n. This involves looping through all K clusters and computing
the distance between each of the M test points and each of the K cluster
centers, resulting in an additional O(MK) term. This term can be reduced
to O(M log K) if efficient nearest neighbor search techniques are used, and
this is a matter of current research.

Hence the total time is

O(N log K + Nr(pmax−1)d + Mnr(pmax−1)d + KM). (1.26)

Assuming M = N , the time taken is O(
[
log K + (1 + n)r(pmax−1)d + K

]
N).

The constant term depends on the dimensionality, the bandwidth, and the

1.8 The improved fast Gauss transform 15

accuracy required. The number of terms r(p−1)d is asymptotically polynomial
in d. For d →∞ and moderate p, the number of terms is approximately dp.

For each cluster we need to store r(p−1)d coefficients. Accounting for the
initial data the storage complexity is O(Kr(p−1)d + N + M).

1.8.6 Choosing the parameters

Given any ε > 0, we want to choose the following parameters,

1. K (the number of clusters),

2. p (the truncation number), and

3. {rk
y}K

k=1 (the cut off radius for each cluster),

such that for any target point yj we can guarantee that |Ĝ(yj)−G(yj)|/Q ≤
ε, where Q =

∑N
i=1 |qi|. In order to achieve this we will use a upper bound for

the actual error and choose the parameters based on this bound. Deriving
tight error bounds is one of the trickiest and crucial part for any series based
algorithm. Also the parameters have to be chosen automatically without any
user intervention. The user just specifies the accuracy ε.

A criticism (Lang et al., 2005) of the original IFGT (Yang et al., 2005) was
that the error bound was too pessimistic, and too many computational re-
sources were wasted as a consequence. Further, the choice of the parameters
was not automatic. An automatic way for choosing the parameters along
with tighter error bounds is described in Raykar et al. (2005).

Let us define ∆ij to be the error in Ĝ(yj) contributed by the ith source
xi. We now require that

|Ĝ(yj)−G(yj)| =
∣∣∣∣∣

N∑

i=1

∆ij

∣∣∣∣∣ ≤
N∑

i=1

|∆ij | ≤ Qε =
N∑

i=1

|qi|ε. (1.27)

One way to achieve this is to let |∆ij | ≤ |qi|ε ∀i = 1, . . . , N. Let ck be the
center of the cluster to which xi belongs. There are two different ways in
which a source can contribute to the error.

1. The first is due to ignoring the cluster Sk if it is outside a given radius
rk
y from the target point yj . In this case,

∆ij = qie
−‖yj−xi‖2/h2

if ‖yj − ck‖ > rk
y . (1.28)

2. The second source of error is due to truncation of the Taylor series. For
all clusters which are within a distance rk

y from the target point the error is
due to the truncation of the Taylor series after order p. From Equations 1.16

16 The Improved Fast Gauss Transform with Applications to Machine Learning

and 1.17 we have,

∆ij = qie
−‖xi−ck‖2/h2

e−‖yj−ck‖2/h2
errorp if ‖yj − ck‖ ≤ rk

y . (1.29)

Our strategy for choosing the parameters is as follows. The cutoff radius
rk
y for each cluster is chosen based on Equation 1.28 and the radius of each

cluster rk
x. Given rk

y and rk
x the truncation number p is chosen based on

Equation 1.29 and a bound on errorp. More details can be seen in Raykar
et al. (2005). Algorithm 1 summarizes the procedure to choose the IFGT
parameters. The IFGT is summarized in Algorithm 2.

Algorithm 1: Choosing the parameters for the IFGT

Input : d (dimension)
h (bandwidth)
ε (error)
N (number of sources)

Output: K (number of clusters)
r (cutoff radius)
p (truncation number)

Define

δ(p, a, b) = 1
p!

(
2ab
h2

)p
e−(a−b)2/h2

, b∗(a, p) =
a+
√

a2+2ph2

2
, and rpd =

(
p−1+d

d

)
;

Choose the cutoff radius r ← min(
√

d, h
√

ln(1/ε)) ;

Choose Klimit ← min
(
d20

√
d/he, N

)
(a rough bound on K);

for k ← 1 : Klimit do

compute an estimate of the maximum cluster radius as rx ← k−1/d;
compute an estimate of the number of neighbors as n ← min

(
(r/rx)d, k

)
;

choose p[k] such that δ(p = p[k], a = rx, b = min [b∗(rx, p[k]), r + rx]) ≤ ε;
compute the constant term c[k] ← k + log k + (1 + n)r(p[k]−1)d

end
choose K ← k∗ for which c[k∗] is minimum. p ← p[k∗].

1.9 IFGT vs FGT

The FGT (Greengard and Strain, 1991) is a special case of the more general
single level fast multipole method (Greengard and Rokhlin, 1987), adapted
to the Gaussian potential. The first step of the FGT is the spatial sub-
division of the unit hypercube into Nd

side boxes of side
√

2rh where r < 1/2.
The sources and targets are assigned to different boxes. Given the sources in
one box and the targets in a neighboring box, the computation is performed
using one of the following four methods depending on the number of sources

1.9 IFGT vs FGT 17

Algorithm 2: The improved fast Gauss transform.

Input :

xi ∈ Rd i = 1, . . . , N /* N sources in d dimensions. */

qi ∈ R i = 1, . . . , N /* source weights. */

h ∈ R+ i = 1, . . . , N /* source bandwidth. */

yj ∈ Rd j = 1, . . . , M /* M targets in d dimensions. */

ε > 0 /* Desired error. */

Output: Computes an approximation Ĝ(yj) to G(yj) =
∑N

i=1 qie
−‖yj−xi‖2/h2

such

that the |Ĝ(yj)−G(yj)| ≤ Qε, where Q =
∑N

i=1 |qi|.

Step 0 Define δ(p, a, b) = 1
p!

(
2ab
h2

)p
e−(a−b)2/h2

and b∗(a, p) =
a+
√

a2+2ph2

2
.

Step 1 Choose the cutoff radius r, the number of clusters K, and the truncation
number p using Algorithm 1.

Step 2 Divide the N sources into K clusters, {Sk}K
k=1, using the Feder and Greene’s

farthest-point clustering algorithm. Let ck and rk
x be the center and radius respectively

of the kth cluster. Let rx = maxk

(
rk

x

)
be the maximum cluster radius.

Step 3 Update the truncation number based on the actual rx, i.e., choose p such that
δ(p, a = rx, min [b∗(rx, p), r + rx]) ≤ ε.

Step 3 For each cluster Sk with center ck compute the coefficients Ck
α.

Ck
α = 2α

α!

∑
xi∈Sk

qie
−‖xi−ck‖2/h2 (

xi−ck
h

)α ∀|α| ≤ p− 1.

Step 4 For each target yj the discrete Gauss transform is evaluated as

Ĝ(yj) =
∑
‖yj−ck‖≤r+rk

x

∑
|α|≤p−1 Ck

αe−‖yj−ck‖2/h2
(

yj−ck

h

)α

.

and targets in these boxes: Direct evaluation is used if the number of
sources and targets are small (in practice a cutoff of the order O(pd−1)
is introduced.). If the sources are clustered in a box then they can are
transformed into a Hermite expansion about the center of the box. This
expansion is directly evaluated at each target in the target box if the number
of the targets is small. If the targets are clustered then the sources or their
expansion are converted to a local Taylor series which is then evaluated at
each target in the box. Since the Gaussian decays very rapidly only a few
neighboring source boxes will have influence on the target box. If boxes are
too far apart than the contribution will be negligible and the computation
is not performed.

There are three reasons contributing to the degradation of the FGT in
higher dimensions:

1. The number of the terms in the Hermite expansion used by the FGT
grows exponentially with dimensionality, which causes the constant factor
associated with the asymptotic complexity O(M + N) to increase exponen-

18 The Improved Fast Gauss Transform with Applications to Machine Learning

y
j

r

r
y
k

r
x
k

c
k

Figure 1.3: Schematic of the evaluation of the improved fast Gauss transform
at the target point yj . For the source points the results of the farthest point
clustering algorithm are shown along with the center of each cluster. A set
of coefficients are stored at the center of each cluster. Only the influential
clusters within radius r of the target point are used in the final summation.

tially with dimensionality.

2. The constant term due to the translation of the far-field Hermite series
to the local Taylor series grows exponentially fast with dimension making it
impractical for dimensions greater than three.

3. The space subdivision scheme used by the fast Gauss transform is a
uniform box subdivision scheme which is tolerable in lower dimensions but
grows exponentially in higher dimensions. The number of nearby boxes will
be large, and the boxes will mostly be empty.

The IFGT differs from the FGT in the following three ways, addressing each
of the issues above.

1. A single multivariate Taylor series expansion for a factored form of the
Gaussian is used to reduce the number of the expansion terms to polynomial
order.

2. The expansion acts both as a far-field and local expansion. As a result
we do not have separate far-field and local expansions which eliminates
the cost of translation (See Figure 1.4), while achieving quickly convergent
expansions in both domains.

1.10 Numerical Experiments 19

−5 0 5
10

−15

10
−10

10
−5

10
0

10
5

y

A
bs

ol
ut

e
E

rr
or

p=5

x
*

FGT Hermite
FGT Taylor
IFGT Taylor

Figure 1.4: The absolute value of the actual error between the one dimen-

sional Gaussian (e−(xi−y)/h2
) and different series approximations. The Gaus-

sian was centered at xi = 0 and h = 1.0. All the series were expanded about
x∗ = 1.0. p = 5 terms were retained in the series approximation.

3. The k-center algorithm is applied to subdivide the space using overlap-
ping spheres which is more efficient in higher dimensions.

1.10 Numerical Experiments

We compare the following four methods
Direct Naive O(N2) implementation of the Gauss transform.

FGT The fast Gauss Transform as described in Greengard and
Strain (1991).

IFGT The improved fast Gauss transform.

Dual-tree The kd-tree dual-tree algorithm of Gray and Moore
(2003).

All the algorithms were programmed in C++ or C with MATLAB bind-
ings and were run on a 1.83 GHz processor with 1 GB of RAM. See Ap-
pendix 1.A for the source of different software.

1.10.1 Speed up as a function of N

We first study the performance as the function of N for d = 3. N points were
uniformly distributed in a unit cube. The Gauss transform was evaluated
at M = N points uniformly distributed in the unit cube. The weights

20 The Improved Fast Gauss Transform with Applications to Machine Learning

10
2

10
4

10
6

10
−5

10
0

10
5

10
10

N

T
im

e
 (

se
c)

Direct
IFGT
FGT
Dual tree

10
2

10
4

10
6

10
−20

10
−15

10
−10

10
−5

N

M
a

x.
 a

b
s.

 e
rr

o
r

/
Q

Desired error
IFGT
FGT
Dual tree

Figure 1.5: Scaling with N The running times and the actual error for the
different methods as a function of N . [ε = 10−6, h = 0.25, and d = 3]

qi were uniformly distributed between 0 and 1. The parameters for the
algorithms were automatically chosen without any user intervention. The
target error was set to 10−6. Figure 1.5 shows the results for all the various
methods as a function of N for bandwidth h = 0.25. For N > 25, 600
the timing results for the direct evaluation were obtained by evaluating the
Gauss transform at M = 100 points and then extrapolating the results. The
following observations can be made.

1. For the IFGT the computational cost is linear in N .

2. For the FGT the cost grows linearly only after a large N when the linear
term O(pdN) dominates the initial cost of Hermite-Taylor translation. This
jump in the performance can also be seen in the original FGT paper (See
Tables 2 and 4 in Greengard and Strain (1991)).

3. The IFGT shows a better speedup than the FGT. However the FGT
finally catches up with IFGT (i.e. the asymptotic performance starts dom-
inating) and shows a speedup similar to that of the IFGT. However this
happens typically after a very large N which increases with the dimension-
ality of the problem.

4. The IFGT error is closer to the target than is the FGT.

5. The kd-tree algorithm appears to be doing O(N2) work. Also it takes
much more time than the direct evaluation probably because of the time
taken to build up the kd-trees. The dual-tree algorithms show good speedups
only at very small bandwidths (See also Figure 1.7).

1.10 Numerical Experiments 21

0 2 4 6 8 10
10

−2

10
−1

10
0

10
1

10
2

10
3

d

T
im

e
 (

se
c)

Direct
FGT
IFGT

2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

d

M
a

x.
 a

b
s.

 e
rr

o
r

/
Q

Desired error
FGT
IFGT

Figure 1.6: Scaling with dimensionality d The running times and the actual
error for the different methods as a function of the dimension d. [ε = 10−3,
h = 1.0, and N = M = 50, 000]

1.10.2 Speed up as a function of d

The main advantage of the IFGT is in higher dimensions where we can no
longer run the FGT algorithm. Figure 1.6 shows the performance for a fixed
N = M = 50, 000 as a function of d for a fixed bandwidth of h = 1.0.

1. The FGT becomes impractical after three dimensions with the cost of
translation increasing with dimensionality. The FGT gave good speedup
only for d ≤ 4.

2. For the IFGT, as d increases the crossover point (i.e, the N after which
IFGT shows a better performance than the direct) increases. For N = M =
50, 000 we were able to achieve good speedups till d = 10.

3. The kd-tree method could not be run for the bandwidth chosen.

1.10.3 Speed up as a function of the bandwidth h

One of the important concerns for N -body algorithms is their scalability
with bandwidth h. Figure 1.7 shows the performance of the IFGT and the
dual-tree algorithm as a function of the bandwidth h. The other parameters
were fixed at N = M = 7, 000, ε = 10−3, and d = 2, 3, 4, and, 5.

1. The general trend is that IFGT shows better speedups for large band-
widths while the dual-tree algorithm performs better at small bandwidths.

2. At large bandwidths the dual-tree algorithms ends up doing the same
amount of work as the direct implementation. The dual-tree appears to take
larger time than the direct probably because of the time taken to build up
the kd-trees.

22 The Improved Fast Gauss Transform with Applications to Machine Learning

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

h

T
im

e
 (

se
c)

 d=2Direct
IFGT
Dual tree

d=5

d=4

d=3 d=2

d=3

10
−2

10
−1

10
0

10
1

10
−15

10
−10

10
−5

h

M
a

x.
 a

b
s.

 e
rr

o
r

/
Q

Desired error
IFGT
Dual tree

Figure 1.7: Scaling with bandwidth h The running times and the actual error
for the different methods as a function of the bandwidth h. [ε = 10−3 and
N = M = 7, 000]

3. There is a cutoff bandwidth hc above which the IFGT performs better
than the dual-tree algorithm. This cutoff increases as the dimensionality of
the datapoints increases.

For small bandwidths the number of clusters and the truncation number
required by the IFGT is high. The space-subdivision employed by the IFGT
algorithm is not hierarchical. As a result nearest influential clusters cannot
be searched effectively. When the number of clusters K is large we end up
doing a brute force search over all the clusters. In such case it may be more
efficient to directly evaluate the contribution from its neighbors within a
certain radius. This is exactly what the dual-tree algorithms do, albeit in a
more sophisticated way. The dual-tree algorithms suffer at large bandwidths
because they do not use series expansions. It would be interesting to combine
the series expansions of the IFGT with the kd-tree data structures to obtain
an algorithm which would perform well at all bandwidths. A recent attempt
using the FGT expansions was made by Lee et al. (2006). Since they used
FGT series expansion the algorithm was not practical for d > 3 due to the
high translation costs.

1.10.4 Bandwidth as a function of d

It should be noted that IFGT and FGT show good speedups especially for
large bandwidths. Figure 1.8 shows the performance for a fixed N = M =
20, 000 as a function of d. In this case for each dimension we set the band-
width h = 0.5

√
d (Note that

√
d is the length of the diagonal of a unit

hypercube). The bandwidth of this order is sometimes used in high dimen-
sional data in some machine learning tasks. With h varying with dimension

1.10 Numerical Experiments 23

0 10 20 30 40 50
10

−1

10
0

10
1

10
2

10
3

d

T
im

e
 (

se
c)

Direct
FGT
IFGT

10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

d

M
a

x.
 a

b
s.

 e
rr

o
r

/
Q

Desired error
FGT
IFGT

Figure 1.8: Effect of bandwidth scaling as h = 0.5
√

d The running times and
the actual error for the different methods as a function of the dimension d.
The bandwidth was h = 0.5

√
d. [ε = 10−3 and N = M = 20, 000]

we were able to run the algorithm for arbitrary high dimensions. The dual-
tree algorithm took more than the direct method for such bandwidths and
could not be run for such large dataset.

1.10.5 Structured data

Until now we showed results for the worst case scenario–data uniformly
distributed in a unit hypercube. However if there is structure in the data,
i.e., the data is either clustered or lie on some smooth lower dimensional
manifold, then the algorithms show much better speed up. Figure 1.9
compares the time taken by the IFGT and dual tree methods as a function
of h for four different scenarios:

1. Both source and target points are uniformly distributed.

2. Source points are clumpy while the target points are uniform.

3. Source points uniformly distributed while the target points are clumpy.

4. Both source and target points are clumpy.

The clumpy data was generated from a mixture of 10 Gaussians. The
following observations can be made:

1. For the dual tree method clumpiness either in source or target points
gives better speedups.

2. For the IFGT clumpiness in source points gives a much better speed up
than uniform distribution. Clumpiness in target points does not matter since
IFGT clusters only the source points.

24 The Improved Fast Gauss Transform with Applications to Machine Learning

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

h

Ti
m

e
(s

ec
)

Direct
IFGT Source−uniform Target−uniform
IFGT Source−clumpy Target−uniform
IFGT Source−uniform Target−clumpy
IFGT Source−clumpy Target−clumpy
Dual tree Source−uniform Target−uniform
Dual tree Source−clumpy Target−uniform
Dual tree Source−uniform Target−clumpy
Dual tree Source−clumpy Target−clumpy

Figure 1.9: Effect of clustered data The running times for the different
methods as a function of the bandwidth h. [ε = 10−3, N = M = 7, 000,
and d = 4]. The source and target points were either uniformly distributed
(uniform) or drawn from mixture of 10 Gaussians (clumpy).

1.11 Fast multivariate kernel density estimation

The IFGT and other N -body algorithms can be used in any scenario where
we encounter sums of Gaussians. A few applications would include kernel
density estimation (Yang et al., 2003), prediction in SVMs, and mean pre-
diction in Gaussian process regression. For training, the IFGT can also be
embedded in a conjugate-gradient or any other suitable optimization proce-
dure (Yang et al., 2005; Shen et al., 2006). In some unsupervised learning
tasks the IFGT can be embedded in iterative methods used to compute the
eigen vectors (De Freitas et al., 2006). While providing experiments for all
applications is beyond the scope of this chapter, as an example we show how
IFGT can be used to speed up multivariate kernel density estimation.

The most popular non-parametric method for density estimation is the
kernel density estimator (KDE). In its most general form , the d-dimensional
KDE is written as (Wand and Jones, 1995)

p̂N (x) =
1
N

N∑

i=1

KH (x− xi) , where KH(x) = |H|−1/2K(H−1/2x). (1.30)

The d-variate function K is called the kernel function and H is a symmetric
positive definite d×d matrix called the bandwidth matrix. In order that p̂N (x)
is a bona fide density, the kernel function is required to satisfy the following
two conditions: K(u) ≥ 0, and

∫
K(u)du = 1. The most commonly used

kernel is the standard d-variate normal density – K(u) = (2π)−d/2e−‖u‖2/2.
In general a fully parameterized d× d positive definite bandwidth matrix

1.11 Fast multivariate kernel density estimation 25

H can be used to define the density estimate. However in high dimensions
the number of independent parameters (d(d + 1)/2) are too large to make a
good choice. Hence the most commonly used choice is H = diag(h2

1, . . . , h
2
d)

or H = h2I. For the case when H = h2I the density estimate can be written
as,

p̂N (x) =
1
N

N∑

i=1

1

(2πh2)d/2
e−‖x−xi‖2/2h2

. (1.31)

The computational cost of evaluating Equation 1.31 at M points is O(NM),
making it prohibitively expensive. For example a KDE with 1 million points
would take around 2 days. The proposed IFGT algorithm can be used
directly to reduce the computational cost to O(N + M).

1.11.1 Bandwidth selection

For a practical implementation of KDE the choice of the bandwidth h

is very important. A small h leads to an estimate with small bias and
large variance, while a large h leads to a small variance at the expense
of an increase in the bias. Various techniques have been proposed for
optimal bandwidth selection (Jones et al., 1996). The plug-in bandwidths
are known to show more stable performance (Wand and Jones, 1995) than
the cross-validation methods. They are based on deriving an expression for
the Asymptotic Mean Integrated Squared Error (AMISE) as a function of
the bandwidth and then choosing the bandwidth which minimizes it. The
simplest among these known as the rules of thumb (ROT) assumes that
the data is generated by a multivariate normal distribution. For a normal
distribution with covariance matrix Σ = diag(σ2

1, . . . , σ
2
d) and the bandwidth

matrix of the form H = diag(h2
1, . . . , h

2
d) the optimal bandwidths are given

by (Wand and Jones, 1995)

hROT
j =

(
4

d + 2

)1/(d+4)

N−1/(d+4)σ̂j , (1.32)

where σ̂j is an estimate of σj . This method is known to provide a quick
first guess and can be expected to give reasonable bandwidth when the data
is close to a normal distribution. It is reported that this tends to slightly
oversmooth the data. So in our experiments we only use this as a guess and
show the speed up achieved over a range of bandwidths around hROT . As a
practical issue we did not prefer cross-validation because we will have to do
the KDE for a range of bandwidths, both small and large. We cannot use the
fast methods here since the IFGT cannot be run for very small bandwidths

26 The Improved Fast Gauss Transform with Applications to Machine Learning

and the dual-tree does the same work as direct summation for moderate
bandwidths.

1.11.2 Experiments

For our experimental comparison we used the SARCOS dataset 1. The
dataset contains 44,484 samples in a 21 dimensional space. The data relates
to an inverse dynamics problem for a seven degrees-of-freedom SARCOS
anthropomorphic robot arm. In order to ease comparisons all the dimensions
were normalized to have the same variance so that we could use only one
bandwidth parameter h.

Figure 1.10 compares the time taken by the direct summation, IFGT,
and the kd-tree method for different dimensions. In each of the plots the
KDE was computed for the first d dimensions. The results are shown for
N = 7, 000 points so that the methods could be compared. The KDE was
evaluated at M = N points. The results are shown for a range of bandwidths
around the optimal bandwidth obtained using the rule of thumb plug-in
method. Accuracy of ε = 10−2 was used for all the methods. The following
observations can be made–

1. The IFGT is faster than the kd-tree algorithm at the optimal bandwidth.

2. As the bandwidth increases the IFGT shows better speedups.

3. The kd-tree algorithm shows good performance at very small bandwidths.

4. We were able to run the IFGT algorithm till d = 6 due to limited memory.

5. As d increases the speedup of the IFGT decreases. The cutoff point, i.e.,
the value of N for which fast algorithm performs better than the direct
summation, increases with dimension.

In the previous plot we used only 7, 000 points in order to compare our
algorithm with the kd-tree method. For the IFGT the cutoff point–N after
which IFGT is faster than the direct method–increases. As result for high
dimensional data better speedups are observed for large N . Table 1.1 shows
the time taken by the IFGT on the entire dataset.

1. This dataset can be downloaded from the website http://www.gaussianprocess.org/

gpml/data/.

1.11 Fast multivariate kernel density estimation 27

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

10
3

h

T
im

e
(s

ec
)

d=1

Direct
IFGT
Dual tree

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

10
3

h

T
im

e
(s

ec
)

d=2

Direct
IFGT
Dual tree

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

10
3

h

T
im

e
(s

ec
)

d=3

Direct
IFGT
Dual tree

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

10
3

h

T
im

e
(s

ec
)

d=4

Direct
IFGT
Dual tree

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

10
3

h

T
im

e
(s

ec
)

d=5

Direct
IFGT
Dual tree

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

10
3

h

T
im

e
(s

ec
)

d=6

Direct
IFGT
Dual tree

Figure 1.10: KDE results The run time in seconds for the direct, IFGT, and
the kd-tree method for varying dimensionality, d. The results are shown for a
range of bandwidths around the optimal bandwidth marked by the straight
line in each of the plots. The error was set to ε = 10−2. The KDE was
evaluated at M = N = 7, 000 points. The IFGT could not be run across all
bandwidths due to limited memory after d > 6.

28 The Improved Fast Gauss Transform with Applications to Machine Learning

Table 1.1: KDE results Time taken by the direct summation and the IFGT
on the entire dataset containing N = 44, 484 source points in d dimensions.
The KDE was evaluated at M = N points. The error was set to ε = 10−2.
The IFGT could not be run due to limited memory after d > 6.

d Optimal bandwidth Direct time (sec.) IFGT time (sec.) speed up

1 0.024730 167.50 0.094 1781.91

2 0.033357 179.38 0.875 205.00

3 0.041688 187.77 6.313 29.74

4 0.049527 195.63 20.563 9.51

5 0.066808 206.49 37.844 5.46

6 0.083527 219.03 65.109 3.36

1.12 Conclusions

We described the improved fast Gauss transform which is capable of com-
puting the sums of Gaussian kernels in linear time in dimensions as high as
tens for small bandwidths and as high as hundreds for large bandwidths.
While different N -body algorithms have been proposed, each of them per-
forms well under different conditions. Table 1.2 summarizes the conditions
under with various algorithms perform better.

1. For very small bandwidths the dual-tree algorithms give the best speed
ups.

2. For very large bandwidths the IFGT is substantially faster than the other
methods.

3. For moderate bandwidths and moderate dimensions IFGT performs bet-
ter than dual-tree algorithms.

4. The FGT performs well only for d ≤ 3.

5. For moderate bandwidths and large dimensions we may still have to resort
to direct summation, and fast algorithms remain an area of active research.

Our current research is focussed on combining the IFGT factorization with
the kd-tree based data structures so that we have an algorithm which gives
good speed up both for small and large bandwidths.

One of the goals when designing these kind of algorithms is to give high
accuracy guarantees. But sometimes because of the loose error bounds we
end up doing much more work than necessary. In such a cause the IFGT
can be used by just choosing a truncation number p and seeing how the
algorithm performs.

1.12 Conclusions 29

Table 1.2: Summary of the better performing algorithms for different
settings of dimensionality d and bandwidth h (assuming data is scaled to a
unit hypercube). The bandwidth ranges are approximate.

Small dimensions Moderate dimensions Large dimensions

d ≤ 3 3 < d < 10 d ≥ 10

Small bandwidth Dual tree Dual tree Dual tree

h / 0.1 [kd-tree] [kd-tree] [probably anchors]

Moderate bandwidth

0.1 / h / 0.5
√

d FGT, IFGT IFGT

Large bandwidth

h ' 0.5
√

d FGT, IFGT IFGT IFGT

Dual tree

Appendix

1.A N-body learning software

The implementation of various N -body algorithms can be a bit tricky.
However some software is available in the public domain.

1. The C++ code with MATLAB bindings for both the FGT and the IFGT
implementation are available at http://www.umiacs.umd.edu/~vikas/
Software/IFGT/IFGT_code.htm.

2. Fortran code for the FGT is available at http://math.berkeley.edu/

~strain/Codes/index.html.

3. The C++ code with MATLAB bindings for the dual-tree algorithms can
be downloaded from the website http://www.cs.ubc.ca/~awll/nbody_
methods.html.

4. MATLAB code for fast kernel density estimation based on N -body
algorithms is also available at http://www.ics.uci.edu/~ihler/.

References

Marshall Bern and David Eppstein. Approximation algorithms for NP-
hard problems, chapter Approximation algorithms for geometric problems,
pages 296–345. PWS Publishing Company, Boston, 1997.

30 The Improved Fast Gauss Transform with Applications to Machine Learning

Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society,
1997.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector
Machines (and other kernel-based learning methods). Cambridge Univer-
sity Press, 2000.

Lehel Csato and Manfred Opper. Sparse on-line Gaussian processes. Neural
Computation, 14(3):641–668, 2002.

Nando De Freitas, Yang Wang, Maryam Mahdaviani, and Dustin Lang.
Fast Krylov methods for N-body learning. In Y. Weiss, B. Schölkopf, and
J. Platt, editors, Advances in Neural Information Processing Systems 18.
MIT Press, Cambridge, MA, 2006.

Jack Dongarra and Francis Sullivan. The top ten algorithms of the century.
Computing in Science and Engineering, 2(1):22–23, 2000.

Tomás Feder and Daniel Greene. Optimal algorithms for approximate
clustering. In Proc. 20th ACM Symp. Theory of Computing, pages 434–
444, 1988.

Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank
kernel representations. Journal of Machine Learning Research, 2:243–264,
2001.

Teofilo Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985.

Alexander G. Gray and Andrew W. Moore. N-body problems in statistical
learning. In Advances in Neural Information Processing Systems, pages
521–527, 2001.

Alexander G. Gray and Andrew W. Moore. Nonparametric density estima-
tion: Toward computational tractability. In SIAM International confer-
ence on Data Mining, 2003.

Leslie Greengard. Fast algorithms for classical physics. Science, 265(5174):
909–914, 1994.

Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle
simulations. Journal of Computational Physics, 73(2):325–348, 1987.

Leslie Greengard and John Strain. The fast Gauss transform. SIAM Journal
of Scientific and Statistical Computing, 12(1):79–94, 1991.

Leslie F. Greengard. The Rapid Evaluation of Potential Fields in Particle
Systems. The MIT Press, 1988.

Alan J. Izenman. Recent developments in nonparametric density estimation.
Journal of American Staistical Association, 86(413):205–224, 1991.

M. Chris Jones, James S. Marron, and Simon J. Sheather. A brief survey

1.12 Conclusions 31

of bandwidth selection for density estimation. Journal of American
Statistical Association, 91(433):401–407, March 1996.

Dustin Lang, Mike Klaas, and Nando de Freitas. Empirical testing of fast
kernel density estimation algorithms. Technical Report UBC TR-2005-03,
Dept. of Computer Science, University of British Columbia, 2005.

Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Advances in Neural
Information Processing Systems 15, chapter Fast Sparse Gaussian Process
methods: The Informative Vector Machine, pages 625–632. MIT Press,
2003.

Dongryeol Lee, Alexander G. Gray and Andrew W. Moore. Dual-tree fast
Gauss transforms. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Ad-
vances in Neural Information Processing Systems 18. MIT Press, Cam-
bridge, MA, 2006.

Yuh-Jye Lee and Olvi L. Mangasarian. RSVM: Reduced support vector
machines. In First SIAM International Conference on Data Mining,
Chicago, 2001.

Tomaso Poggio and Steve Smale. The mathematics of learning: Dealing with
data. Notices of the American Mathematical Society, 50(5):537–544, 2003.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

Vikas C. Raykar, Changjaing Yang, Ramani Duraiswami, and Nail A.
Gumerov. Fast computation of sums of Gaussians in high dimensions.
Technical Report CS-TR-4767, Department of Computer Science, Univer-
sity of Maryland, CollegePark, 2005.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

Yirong Shen, Andrew Ng and Matthias Seeger. Fast Gaussian process
regression using KD-trees. In Y. Weiss, B. Schölkopf, and J. Platt,
editors, Advances in Neural Information Processing Systems 18. MIT
Press, Cambridge, MA, 2006.

Bernard W. Silverman. Algorithm AS 176: Kernel density estimation using
the fast Fourier transform. Journal of Royal Statistical society Series C:
Applied statistics, 31(1):93–99, 1982.

Alexander J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process
regression. In Advances in Neural Information Processing Systems, page
619625. MIT Press, 2001.

Alexander J. Smola, Bernhard Schölkopf, and Klaus-Robert Muller. Non-
linear component analysis as a kernel eigenvalue problem. Technical Re-

32 The Improved Fast Gauss Transform with Applications to Machine Learning

port 44, Max-Planck-Institut fr biologische Kybernetik, Tubingen, 1996.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems 18. MIT Press, Cambridge,
MA, 2006.

Michael E. Tipping. Sparse Bayesian learning and the relevance vector
machine. Journal of machine learning research, 1:211–244, 2001.

Volker Tresp. A Bayesian committee machine. Neural Computation, 12(11):
2719–2741, 2000.

Grace Wabha. Spline Models for Observational data. SIAM, 1990.

M. P. Wand and M. Chris Jones. Kernel Smoothing. Chapman and Hall,
London, 1995.

Christopher K. I. Williams and Carl E. Rasmussen. Gaussian processes
for regression. In Advances in Neural Information Processing Systems,
volume 8, 1996.

Christopher K. I. Williams and Matthias Seeger. Using the Nyström
method to speed up kernel machines. In Advances in Neural Information
Processing Systems, page 682688. MIT Press, 2001.

Changjaing Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel
machines using the improved fast Gauss transform. In L. K. Saul, Y. Weiss,
and L. Bottou, editors, Advances in Neural Information Processing Sys-
tems 17, pages 1561–1568. MIT Press, Cambridge, MA, 2005.

Changjaing Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis.
Improved fast Gauss transform and efficient kernel density estimation. In
IEEE International Conference on Computer Vision, pages 464–471, 2003.

Index

N -body learning, 4

dual-tree methods, 7

farthest point clustering, 13
fast Gauss transform, 8, 16
fast kernel density estimation, 24
fast multipole methods, 8

Gauss transform, 6

Horner’s rule, 11

improved fast Gauss transform, 1,
12

matrix-vector multiplication, 4
multi-index notation, 9

polynomial kernel, 5

