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Abstract. We propose a novel multiple-instance learning (MIL) algo-
rithm for designing classifiers for use in computer aided detection (CAD).
The proposed algorithm has 3 advantages over classical methods. First,
unlike traditional learning algorithms that minimize the candidate level
misclassification error, the proposed algorithm directly optimizes the
patient-wise sensitivity. Second, this algorithm automatically selects a
small subset of statistically useful features. Third, this algorithm is very
fast, utilizes all of the available training data (without the need for cross-
validation etc.), and requires no human hand tuning or intervention. Ex-
perimentally the algorithm is more accurate than state of the art support
vector machine (SVM) classifier, and substantially reduces the number
of features that have to be computed.

1 Background

Traditionally, in an almost universal architecture, CAD algorithms operate in
a sequence of three stages. In the first stage, a candidate generation (CG) al-
gorithm identifies suspicious regions. In the second stage each suspicious region
is characterized by a set of features. In the third, classification stage, each re-
gion is evaluated in light of the features and a decision is made whether the
region is sufficiently suspicious that it should be highlighted to a radiologist.
This paper focuses largely on the design of the classifier for the third stage of
this architecture.

Many off-the-shelf classifier learning algorithms have been used during the
design of CAD algorithms, e.g. support vector machines (SVM) [1], neural net-
works (NN) [3], etc. However, the derivations behind most of these algorithms
make unwarranted assumptions that are violated in CAD data sets. For ex-
ample, most classifier-learning algorithms assume that the training samples are
independent and identically distributed (i.i.d.). However, there are high levels
of correlations among the suspicious locations from the same region of a breast
(both within a breast image, and across multiple images of the same breast), so
the training samples are clearly not independent.
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Further, these standard algorithms try to maximize classification accuracy
over all candidates. However, this particular accuracy measure is not very rel-
evant for CAD. For example, often several candidates generated from the CG
point to the same underlying lesion in a breast. Even if one of these is highlighted
to the radiologist and other adjacent or overlapping candidates are missed, the
underlying lesion (hence the patient or image) would have been detected. Hence,
CAD system accuracy is measured in terms of Free-Response Operator Char-
acteristic (FROC) curves plotting per-image (or per-patient sensitivity when
multiple images are available for a patient), versus false-alarms (FA) per-case.
This is only loosely related to the accuracy-measure optimized by off-the-shelf
methods.

Previous work presented to the machine-learning community has shown that
modeling CAD classifier learning as a multiple-instance learning (MIL) prob-
lem largely alleviates the above concerns [2]. However, that paper was not tar-
geted to the applied radiology community, and the algorithm was not applied
to mammography. Compared to previous (non-probabilistic) MIL algorithms,
the method proposed in this paper is much faster in terms of run-time, needs
no specialized optimization packages, needs no parameter tuning on validation
sets (or cross validation), and automatically selects a small set of diagnostically
useful features.

2 Method

2.1 Notation

Consider a parametric family of classification functions p(y|x,w) that take a
d-dimensional feature vector x ∈ Rd as input, and produces the probability that
the sample x belongs to one of the two classes y ∈ {0, 1}. This family of func-
tions is parameterized by the weight vector w ∈ Rd. To learn this classification
function we are given N training samples D = {xi, yi}N

i=1.

2.2 Logistic Regression

An example of a parametric family is logistic regression. The posterior probability
for the positive class is modeled as

p(y = 1|x,w) = σ(w>x), (1)

where σ(z) = 1/(1 + e−z) is the logistic sigmoid link function. The notation is
overloaded so that σ(z) of a vector z = [z1, z2, . . . , zN ]> denotes the element
wise application of the sigmoid function to each element of the vector, i.e.,
σ(z) = [σ(z1), σ(z2), . . . , σ(zN )]>. More generally, for example in a two layer
neural network, the weight w could consist of a weight matrix W1 and a weight
vector w2, so that p(y = 1|x,w = {W1,w2}) = σ(w>

2 σ(W>
1 x)). For binary

classification, p(y = 0|x,w) = 1 − p(y = 1|x,w). Learning a classifier implies
choosing the weight vector w given the training data D.
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2.3 Traditional statistical learning of classifiers

The following theory is very general and extends to many non-linear classifier
models p(y|x,w) such as Neural Networks, Gaussian Processes, etc. Though
we have implemented our Multiple-Instance Learning method to extend several
baseline classifiers, for succinct presentation we shall focus on the binary logistic
regression model p(y = 1|x,w) = σ(w>x), in the rest of this paper.

Maximum-Likelihood estimator Traditional learning methods assume that
the samples are drawn i.i.d., so the overall log-likelihood for the entire training
data set factorizes as

l(w) = log p(y1, y2 . . . , yN |x1,x2, . . . ,xN ,w) =
N∑

i=1

log p(yi|xi,w)

=
∑

∀i|yi=1

log σ(w>xi) +
∑

∀i|yi=0

log(1− σ(w>xi)). (2)

Most training algorithms maximize this log-likelihood. However the maximum-
likelihood solution in practice can exhibit severe over-fitting especially for high-
dimensional data. This is addressed by using a prior on w and then finding the
maximum a-posteriori (MAP) solution.

Maximum a-posteriori estimator Using Bayes’s rule the log-posterior L can
be written as

L(w) = l(w) + log p(w)− log p(y1, y2 . . . , yN |x1,x2, . . . ,xN ). (3)

Since the last term is independent of w the MAP estimate is given by

ŵMAP = arg max
w

[l(w) + log p(w)] . (4)

Often one uses a zero mean Gaussian prior (N (w|0,A−1)) on the weights w
with inverse-covariance (precision) matrix A = diag(α1 . . . αd) (also referred to
as the hyper-parameters).

p(w) = (2π)−d/2|A−1|−1/2
exp

(
−w>Aw

2

)
. (5)

As αi → 0, the prior becomes diffuse-i.e. more or less uniform-resulting in
maximum-likelihood estimate. However, as αi →∞, the prior is sharply concen-
trated around 0, preventing the magnitude of ‖w‖2 from growing large regardless
of the training data, reducing the risk of over-fitting to the training set.
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Fig. 1. An MLO view of the right breast illustrating the concept of multiple candidates
pointing to the same ground truth. The red ellipse is the lesion as marked by the
radiologist (ground truth). The blue contours are the candidates generated by our
algorithm. All the blue contours which overlap with the red ellipse share the same
ground truth and constitute our notion of a positive bag.

2.4 Multiple Instance Learning for classifiers

During the development of a training set, a CG runs on a set of cases, and then
features are extracted for the candidates identified in this stage. Next, we iden-
tify which of these candidates overlaps with a radiologist marked ground-truth
(lesion), and label these as positive candidates, and the rest are labeled as nega-
tive. During this process, we obtain information about which candidates point to
the same underlying ground-truth lesion (See Fig. 1). While this information is
typically discarded during the development of traditional classifiers, we propose
to utilize this information to extract more statistical power from the data.

In particular we rely on the notion that all the positive candidates (with
label yi = 1) that point to the same radiologist marked ground-truth belong to
the same positive bag (See Fig. 1); the training set consists of a large number
of such bags corresponding to the number of lesions in the ground truth. In our
notation, xj

i refers to the ith candidate in the jth bag. All other candidates in
the training data set are negative (i.e. they have a class label yi = 0). Even if
one candidate in a positive bag is declared positive by a classifier and displayed
to a radiologist, the underlying lesion would be detected.

Thus, we want the classifier to reject as many negative candidates as possible,
but instead of insisting that every positive candidate be labeled as positive by
the classifier, we only want the classifier to label at least one sample in a bag as a
positive (leading to the detection of the lesion). This mirrors the CAD objective.

This can be accomplished by using a noisy-or model for assigning a proba-
bility that a positive bag is correctly identified by the classifier. In this model,
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the probability that a positive bag is incorrectly classified is the probability that
every sample individual in that bag is incorrectly labeled as a negative. Hence,
the jth bag is correctly classified with probability

p(ybag j = 1|{xj
i}i,w) = 1−

∏

i

(
1− σ(w>xj

i )
)

. (6)

Hence, the log-likelihood function is changed to

l(w) =
∑

bags j

log

[
1−

∏

i

(
1− σ(w>xj

i )
)]

+
∑

∀i|yi=0

log(1− σ(w>xi)). (7)

The log-posterior L(w) resulting from the above l(w) may also be optimized for
any fixed set of hyper-parameters A.

2.5 Feature selection for optimizing MIL-classifiers

We imposed a prior of the form p(w) = N (w|0,A−1), parameterized by d hyper-
parameters A = diag(α1 . . . αd). Clearly, as the precision αk →∞, i.e, the vari-
ance for wk tends to zero (thus concentrating the prior sharply at zero). Hence,
regardless of the evidence of the training data, the posterior for wk will also be
sharply concentrated on zero, thus that feature will not affect the classification
result-hence, it is effectively removed out via feature selection. Therefore, the
discrete optimization problem corresponding to feature selection (should each
feature be included or not?), can be more easily solved via an easier continuous
optimization over hyper-parameters. If one could maximize the marginal like-
lihood p(D|A) = p(y1, y2 . . . , yN |x1,x2, . . . ,xN ,A) this would perform optimal
feature selection. We choose the hyper-parameters to maximize the marginal
likelihood.

Â = arg max
A

p(D|A) = arg max
A

∫
p(D|w)p(w|A)dw. (8)

Since this integral is not easy to compute for our MIL model we use an ap-
proximation to the marginal likelihood via the Taylor series expansion. The
marginal likelihood p(D|A) can be written as p(D|A) =

∫
eΨ(w)dw, where

Ψ(w) = l(w) + log p(w|A). Approximating Ψ using a second order Taylor series
around ŵMAP, Ψ(w) ≈ Ψ(ŵMAP) + 1

2 (w − ŵMAP)H(ŵMAP,A)(w − ŵMAP)>, we
have the following approximation to the marginal likelihood

p(D|A) ≈ p(D|ŵMAP)p(ŵMAP|A)(2π)d/2| −H−1(ŵMAP,A)|1/2. (9)

Using the prior p(w|A) = N (w|0,A−1), the log marginal likelihood can be
written as

log p(D|A) ≈ l(ŵMAP)− 1
2
ŵ>

MAPAŵMAP +
1
2

log |A| − 1
2

log | −H(ŵMAP,A)|.
(10)
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The hyper-parameters A are found by maximizing this approximation to the log
marginal likelihood. There is no closed-form solution for this. Hence we use a
iterative re-estimation method by setting the first derivative to zero. The deriva-
tive can be written as

∂ log p(D|A)
∂αi

= −1
2
ŵ2

i +
1

2αi
− 1

2
Σii, (11)

where Σii is the ith diagonal element of H−1(ŵMAP,A). Assuming Σii does not
depend on A a simple update rule for the hyper-parameters can be written by
equating the first derivative to zero.

αnew
i =

1
w2

i + Σii
. (12)

The final algorithm has two levels of iterations: in an outer loop we update the
hyper-parameters αi and in an inner loop we find the MAP estimator ŵMAP given
the hyper-parameters. After a few iterations we find that the hyper-parameters
for several features tend to infinity causing numerical problems in implemen-
tation. This means that we can simply remove those irrelevant features from
further consideration in future iterations.

3 Results

3.1 Run-time efficiency

We converge upon the optimal feature subset within about 10 iterations of the
outer loop. Using a simple Newton-Raphson optimizer, for a fixed the inner loop
finds the MAP estimator in about 5-8 iterations. On a 1 GHz laptop, the entire
algorithm including automatic feature selection converges in under a minute even
on training data sets with over 10,000 patients. The system needs absolutely no
human intervention or tuning even to decide on the number of features to be
used in the eventual classifier.

3.2 Accuracy

We compared the proposed algorithm against a state-of-the-art linear SVM clas-
sifier and against the proposed feature selection approach to non-MIL baseline
logistic-regression. Each system was trained using a small proprietary digital
mammography (FFDM) data set with 144 biopsy proven malignant-mass cases
and 2005 normal cases from BI-RADSr 1 and 2 categories. The CG and feature
extraction algorithms produced 127,509 candidates in total, each described by
a set of 81 numerical features. The systems were evaluated on a held out set
of 108 biopsy proven malignant cases and 1513 BI-RADSr 1 and 2 cases. The
FROC curves on the held out set are produced below in Fig. 2. The proposed
MIL algorithm automatically performed feature selection and only selected 40
features out of the original set of 81 features, while the non-MIL variant selected
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56 features. No human intervention or cross-validation tuning was necessary for
our algorithm. The regularization parameter of the SVM was tuned using 10-fold
cross validation on the training set, and the optimal parameter was used to train
a single SVM on the entire data.

4 Discussion

As seen in Fig. 2, the proposed algorithm was indeed more accurate when mea-
sured in terms of per-patient (and although not shown, per-image) FROCs.
As expected, this statistically significant improvement on per-patient statistics
comes at the cost of deteriorating the per-candidate statistics. This underscores
the point of the paper: in CAD we care about a different set of performance
metrics that are not optimized in conventional methods, and our algorithm op-
timizes them. Note that the code can optimize either per-lesion or per-patient
or per-image statistics: one simply describes the unique bag-ID of a candidate
in terms of the ID of the lesion, patient or image using the same code to accom-
plish this. The proposed method is fast, easy to implement, very general and
broad in terms of CAD applicability, and it can support many different baseline
learning algorithms such as (potentially non-linear and/or multi-class) Neural
Nets, kernel classifiers, etc. We have already implemented such variations, but
did not report them here due to space considerations.
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Fig. 2. The proposed MIL classifier (solid black) with automatic feature selection im-
proves per-patient statistics at the cost of deteriorating per-candidate statistics. Com-
peting methods: linear SVM (blue dashed) and the proposed feature selection approach
without MIL (dotted red).


