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Abstract—In this paper, we present a novel algorithm to auto-
matically determine the relative three-dimensional (3-D) positions
of audio sensors and actuators in an ad-hoc distributed network
of heterogeneous general purpose computing platforms such as
laptops, PDAs, and tablets. A closed form approximate solution
is derived, which is further refined by minimizing a nonlinear
error function. Our formulation and solution accounts for the
lack of temporal synchronization among different platforms. We
compare two different estimators, one based on the time of flight
and the other based on time difference of flight. We also derive
an approximate expression for the mean and covariance of the
implicitly defined estimator using the implicit function theorem
and approximate Taylors’ series expansion. The theoretical per-
formance limits for estimating the sensor 3-D positions are derived
via the Cramér–Rao bound (CRB) and analyzed, with respect to
the number of sensors and actuators, as well as their geometry.
We report extensive simulation results and discuss the practical
details of implementing our algorithms in a real-life system.

Index Terms—Cramér–Rao bound (CRB), distributed sensor
networks, microphone array calibration, multidimensional
scaling, self-localizing sensor networks.

I. INTRODUCTION

ARRAYS OF audio/video sensors and actuators (such as
microphones, cameras, speakers, and displays) along with

array processing algorithms, offer a rich set of new features for
emerging multimedia applications. Until now, array processing
was mostly out of reach for consumer applications, perhaps due
to significant cost of dedicated hardware and the complexity
of processing algorithms. At the same time, recent advances
in mobile computing and communication technologies suggest
a very attractive platform for implementing these algorithms.
Students in classrooms, coworkers at meetings, family mem-
bers at home are nowadays, accompanied by one or several

Manuscript received August 27, 2003; revised January 19, 2004. Portions
of this paper have appeared as conference papers [3] and [4]. This work was
performed while V. Raykar was an Intern at Intel Laboratories, Santa Clara, CA.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Diemer de Vries.

V. C. Raykar is with the Perceptual Interfaces and Reality Laboratory, Insti-
tute of Advanced Computer Studies, University of Maryland, College Park, MD
20742 USA (e-mail: vikas@umiacs.umd.edu).

Igor V. Kozintsev is with Intel Laboratories, Intel Corporation, Santa Clara,
CA 95052-8119 USA (e-mail: igor.v.kozintsev@intel.com).

R. Lienhart was with Architecture Research and Machine Learning, Intel
Laboratories, Santa Clara, CA 9505–8119 USA. He is now with the Computer
Science Department, University of Augsburg, Augsburg, Germany (e-mail:
Rainer.Lienhart@informatik.uni-augsburg.de).

Digital Object Identifier 10.1109/TSA.2004.838540

mobile computing and communication devices like laptops,
personal digital assistants (PDAs), tablets, with multiple audio
and video sensors/actuators onboard. We collectively refer
to such devices as general-purpose computers (GPCs). An
ad-hoc network of GPCs can be used to capture/render different
audio-visual scenes in a distributed fashion leading to novel
emerging applications. A few examples of such applications
include multistream audio/video rendering, smart audio/video
conference rooms, meeting recordings, automatic lecture
summarization, hands-free voice communication, object local-
ization, and speech enhancement. The advantage of such an
approach is that multiple GPCs along with their sensors and
actuators can be converted to a distributed sensor network in
an ad-hoc fashion by just adding appropriate software layers.
No dedicated infrastructure in terms of the sensors, actuators,
multichannel interface cards and computing power is required.
However, there are several important technical and theoretical
problems that need to be addressed before the idea of using
GPCs for array signal processing algorithms can materialize in
real-life applications.

A prerequisite for using distributed audio-visual input/output
(I/O) capabilities is to put sensors and actuators into a common
time and space (coordinate system). In [1], [2] we proposed a
way to provide a common time reference for multiple distributed
GPCs with the precision of ten’s of microseconds. In this paper,
we focus on providing a common space (relative coordinate
system) by means of actively estimating the three-dimensional
(3-D) positions of the sensors and actuators. Many multimicro-
phone audio processing algorithms (like sound source localiza-
tion or conventional beamforming) need to know the positions
of the microphones very precisely. Even relatively small uncer-
tainties in sensor location could make substantial, often dom-
inant, contributions to overall localization error [5]. In ad-hoc
deployed arrays it is rather tedious and very often not accurate
to get the microphone positions manually using a tape or laser
devices. Also the geometry of the array may change over time
frequently, either accidently, or due to redeployment. So auto-
matic position calibration of multiple sensors and actuators is
very essential. In this paper, we propose a method to automati-
cally determine the 3-D positions of multiple microphones and
speakers.

Fig. 1 shows a schematic representation of our proposed dis-
tributed computing platform consisting of GPCs. Each GPC
is assumed to be equipped with audio sensors (microphones),
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Fig. 1. Distributed computing platform consisting ofN GPCs along with their onboard audio/video sensors, actuators, and wireless communication capabilities.

actuators (speakers)1 for performing audio I/O, and wireless
communication capabilities for exchanging data between each
other. In practice, one GPC controls the distributed computing
platform and performs the location estimation.

A. Previous Work

Current audio array processing systems either rely on placing
the microphones in known locations or manual calibration of
their positions. There are some approaches which do position
calibration using speakers in known locations. An experimental
setup for automatic calibration of a large-aperture microphone
array using acoustic signals from transducers whose locations
are known is described in [6]. We follow a more general ap-
proach where we assume that the speaker locations are also un-
known.

A lot of related theoretical work can be found in [5], and
[7]–[9]. Most of the formulations assume that all the sensors and
actuators are on a synchronized setup, i.e., capture and playback
occur simultaneously. However, in a typical distributed setup,
the playback and the capture start time are generally unknown.
A recent paper [10] accounts only for the unknown source emis-
sion time. Our solution explicitly accounts for the errors in local-
ization due to lack of temporal synchronization among different
platforms. The solution turns out to be a nonlinear minimization
problem which requires a good starting point to reach the global
minimum. We derive a closed form approximate solution to be
used as initial guess for the minimization routine.

The problem of self-localization for a network of nodes has
also been dealt in the wireless network and robotics community
[10]–[15]. The problem is essentially the same as in our case,
but the ranging method differ depending on the sensors and ac-
tuators.

1In the rest of the paper, when we refer to speaker we mean a loudspeaker and
not a person speaking. We use the term speaker and loudspeaker interchange-
ably.

B. Contributions

The following are the novel contributions of this paper.

• We propose a novel setup for array processing algorithms
with ad-hoc connected GPCs.

• The position estimation problem has been derived as a
maximum likelihood in several papers [6], [8], [10]. The
solution turns out to be the minimum of a nonlinear cost
function. Iterative nonlinear least square optimization pro-
cedures require a very close initial guess to converge to a
global optimum. We propose to use metric multidimen-
sional scaling (MDS) [16] in order to get an approximate
initial guess for the microphone and speaker locations.

• Most of the previous work on position calibration (except
[12], which describes a setup based on Compaq iPAQs,
and motes) are formulated assuming time synchronized
platforms. However, in an ad-hoc distributed computing
platform consisting of heterogeneous GPCs we need to
explicitly account for errors due to lack of temporal syn-
chronization among the different platforms. We perform
an analysis of the localization errors due to imprecise
synchronization and propose ways to account for the
unknown speaker emission start times and microphone
capture start times.

• Most of the existing localization methods use the time of
flight (TOF) approach for position calibration [6], [10],
[12]. We show that for distributed computing platforms,
the method based on time difference of flight (TDOF) can
outperform the TOF method.

• We derive the approximate mean and covariance of the im-
plicitly defined estimator using the implicit function the-
orem and Taylors’ series expansion as in [17], [18]. We
also derive the Cramér–Rao bound (CRB) and analyze the
localization accuracy with respect to the number of sen-
sors and sensor geometry.



72 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 1, JANUARY 2005

C. Organization

The rest of this paper is organized as follows. In Section II, we
formulate the problem. In Section III we derive the maximum
likelihood (ML) estimator, which turns out to be a solution of
a nonlinear optimization problem. In Section IV we derive an
approximate closed form solution, which can be used as an ini-
tial guess for the nonlinear minimization routine. In Section V
we derive the theoretical mean and covariance of the estimated
parameters. The CRB is derived and analyzed as a function of
the number of sensors and actuators as well as their geometry.
In Section VI, extensive simulation results are reported. Sec-
tion VII gives a discussion of the issues involved in designing
a practical system. Section VIII, concludes with a summary of
the present work.

II. PROBLEM FORMULATION

Given a set of acoustic sensors (microphones) and
acoustic actuators (speakers) in unknown locations, our goal
is to estimate their relative 3-D coordinates. We assume that
each of the GPCs has at least one microphone and one speaker.
We also assume that at any given instant we know the number
of sensors and actuators in the network. Any new node en-
tering/departing the network announces its arrival/departure by
some means, so that the network of sensors and actuators can
be calibrated again.

Each of the speaker is excited using a known calibration
signal such as maximum length sequence or chirp signal and
the signal is captured by each of the acoustic sensors. The
TOF is estimated from the captured audio signal. The TOF
for a given pair of microphone and speaker is defined as the
time taken by the acoustic signal to travel from the speaker
to the microphone.2 We assume that the signals emitted from
each of the speakers do not interfere with each other, i.e., each
signal can be associated with a particular speaker. This can
be achieved by confining the signal at each speaker to disjoint
frequency bands or time intervals. Alternately, we can use
coded sequences such that the signal due to each speaker can
be extracted at the microphones and correctly attributed to
the corresponding speaker. The TOF measurements
constitute our observations, based on which we have to estimate
the microphone and speaker positions.

Let for and for be the 3-D
column vectors representing the spatial coordinates of the th
microphone and th speaker, respectively. We excite one of the

speakers at a time and measure the TOF at each of the mi-
crophones. Let be the actual TOF for the th micro-
phone due to the th source. Assuming a direct path the actual
TOF is

(1)

where is the speed of sound in the acoustical medium3 and
is the Euclidean norm. The TOF, which we estimate based

2In some papers, TOF is referred to as time of arrival (TOA).
3The speed of sound in a given acoustical medium is assumed to be constant.

In air it is given by c = (331 + 0:6T ) m/s, where T is the temperature of the
medium in degrees Celsius.

Fig. 2. Schematic indicating the unknown speaker emission start time ts and
microphone capture start time tm for the ith microphone and the jth speaker.

on the signal captured confirms to this model only when all the
sensors start capturing at the same instant and we know when the
calibration signal was sent from the speaker. This is generally
the case when we use dedicated hardware or multichannel sound
cards to interface multiple microphones and speakers.4

However in a typical distributed setup of GPCs as shown in
Fig. 1, capture starts at different instants on each GPC and also
the time at which, the calibration signal was emitted from each
loud speaker are not known. As a result, the TOF which we
measure includes both the speaker emission start time and the
microphone capture start time (see Fig. 2 where is what
we measure and is the actual time of flight.).

According to Fig. 2 the speaker emission start time is de-
fined as the time at which the sound is actually emitted from the
speaker. This includes the time when the play back command
was issued (with reference to some time origin), the network
delay involved in starting the playback on a different machine
(if the speaker is on a different GPC), the delay in setting up
the audio buffers, and also the time required for the speaker di-
aphragm to start vibrating. The emission start time is generally
unknown and depends on the particular sound card, speaker, and
the system state such as the processor workload, interrupts, and
the processes scheduled at the given instant. The microphone
capture start time is defined as the time instant at which capture
is started. This includes the time when the capture command
was issued, the network delay involved in starting the capture
on a different machine and the delay in transferring the captured
sample from the sound card to the buffers.

Let be the emission start time for the th source and
be the capture start time for the th microphone with respect to
some origin (Fig. 2). Incorporating these two the actual TOF
now becomes

(2)

4For multichannel sound cards all the channels are synchronized and the time
when the calibration signal was sent can be determined by doing a loop back
from the output to the input. This loopback signal can be used as a reference to
estimate the TOF.



RAYKAR et al.: POSITION CALIBRATION OF MICROPHONES AND LOUDSPEAKER 73

The origin can be arbitrary since depends on the dif-
ference of and . We start the audio capture on each GPC
one by one. We define the microphone on which the audio cap-
ture was started first as our first microphone. In practice, we set

i.e., the time at which the first microphone started cap-
turing as our origin. We define all other times with respect to
this origin.

A. TDOF

In addition to using TOF for localization we propose to use
the TDOF. The TDOF for a given pair of microphones and a
speaker is defined as the time difference between the signal re-
ceived by the two microphones. 5 Let be the actual
TDOF between the th and the th microphone when the th
source is excited. It is given by

(3)

Including the source emission and capture start times, it be-
comes

(4)

In the case of TDOF, the source emission time is the same for
both microphones and thus gets cancelled out. Therefore, by
using TDOF measurements instead of TOF we have reduced the
number of parameters to be estimated.

III. PROBLEM SOLUTION

In this section, we derive the maximum likelihood esti-
mator for the microphone and speaker locations based on the
TDOF/TOF observations.

A. ML Estimate

Assuming an additive Gaussian6 noise model for the TDOF
observations we can derive the ML estimate as follows. Let
be a column vector, representing all the unknown non-
random parameters to be estimated (microphone and speaker
coordinates and microphone capture start times). Let be a

column vector, representing noisy TDOF measurements.
Let , be a column vector, representing the actual
value of the observations. Note that is a function of ,
the parameters to be estimated. Then our model for the obser-
vations is

(5)

where is the zero-mean additive white Gaussian noise vector
of length where each element has the variance . Also let us

5GivenM microphones and S speakers, we can haveMS(M�1)=2 TDOF
measurements as opposed toMS TOF measurements. Of theseMS(M�1)=2
TDOF measurements only (M � 1)S are linearly independent.

6We estimate the TDOF or TOF using generalized cross correlation (GCC)
[19]. The estimated TDOF or TOF is corrupted due to ambient noise and room
reverberation. For high SNR the delays estimated by the GCC can be shown to
be normally distributed with zero mean [19].

define to be the covariance matrix of the noise vector
. The likelihood function of in vector form can be written as

(6)

The log-likelihood function is given by

(7)

The ML estimate of is the one which maximizes the likeli-
hood ratio (or equivalently, the log likelihood ratio) and is given
by

(8)

Assuming that that each of the TDOFs are independently cor-
rupted (in this case is a diagonal matrix) by zero-mean addi-
tive white Gaussian noise of variance the ML estimate be-
comes a nonlinear least squares problem, i.e.,

(9)

is a vector of the parameters to be estimated, i.e., the micro-
phone and the source coordinates and the microphone capture
start times. Note that when use TDOF the speaker emission start
time gets canceled.

Similarly, in case of TOF measurements the ML estimate can
be derived as above and is given by

(10)

In this case includes the speaker emission start times also.

B. Reference Coordinate System

Cost function, defined in (9), can have multiple global
minima since the TOF and TDOF depends on pairwise dis-
tances. Any translation and rotation of the coordinate system
does not change the value of the function to be minimized. In
order to eliminate multiple global minima, we need to setup a
reference coordinate system. We select three arbitrary nodes
to lie in a plane such that the first is at , the second at

, and the third at . We are fixing a plane so
that the sensor configuration cannot be translated or rotated.
Similarly, in two dimensions we select two nodes to lie on a
line, the first at and the second at . To eliminate
the ambiguity due to reflection along the -axis (or -axis in
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TABLE I
TOTAL NUMBER OF INDEPENDENT OBSERVATIONS (N) AND PARAMETERS

TO BE ESTIMATED (P ) FOR DIFFERENT ESTIMATION PROCEDURES:
M = Number of Microphones; S = Number of Speakers;D = Dimension

2-D) we specify one more node to lie in the positive -axis (or
positive -axis in 2-D). Also the reflections along the -axis
and -axis (for 3-D) are eliminated by assuming that the nodes
that form the coordinate system lie on the positive side of the
respective axes, i.e., and .

Since the TDOF and TOF depends on time differences (i.e.,
in case of TOF and in case of TDOF) there

are also multiple global minima of the cost function due to shifts
in the time axis. Similar to fixing a reference coordinate system
in space we introduce a reference time line by setting .

C. Nonlinear Least Squares

The ML estimate for the node coordinates of the micro-
phones and speakers is implicitly defined as the minimum of
the nonlinear function (9). This function can be minimized
using generic numerical optimization methods. However, there
exist specialized methods like the Gauss–Newton and the
Levenberg–Marquardt methods that are often more efficient in
practice. The Levenberg–Marquardt method [20] is a popular
method for solving nonlinear least squares problems. For more
details on nonlinear minimization refer to [21]. Appendix I
gives the non zero partial derivatives needed for the minimiza-
tion routines.7

D. Minimum Number of Microphones and Speakers Required

The total number of observations should be greater than or
equal to the total number of parameters to be estimated. This
defines a minimum number of microphones and speakers re-
quired for the position estimation method to work. Assuming
we have microphones and speakers, Table I summarizes
the number of independent observations and the number of
parameters to be estimated in each of the estimation pro-
cedures. In case of the TDOF-based method only

7Many software solutions are available for the Levenberg–Marquardt method
such as lsqnonlin in MATLAB, mrqmin provided by Numerical Recipes in C
[22], and the MINPACK-1 routines [23]

TABLE II
MINIMUM VALUE OF MICROPHONE SPEAKER PAIRS (K) REQUIRED FOR

DIFFERENT ESTIMATION PROCEDURES (D = Dimension)

out of pair of TDOF measurements are linearly
independent. In Table I, TOF/TDOF Position refers to the case
where we are estimating only the positions of the microphones
and speakers, i.e., the TOF/TDOF is not corrupted by the cap-
ture and the emission start times. TOF/TDOF Joint refers to the
case where we are jointly estimating the emission and capture
start times along with the microphone and speaker coordinates.

Assuming , the Table II lists the minimum
required for the estimation procedure. Assuming each GPC

has one microphone and one speaker this gives the minimum
number of GPCs required.

IV. CLOSED FORM APPROXIMATE SOLUTION

The common problem with minimization methods is that they
often get stuck in a local minima. In this section, we derive an
approximate closed form solution, which can be used to ini-
tialize the minimization routine.

A. Initial Guess for Capture and Emission Start Times

Consider two GPCs, and , each having one micro-
phone and one speaker. For these two GPCs we can measure

, and . Assuming no noise, these
are related to the actual TOF as follows:

(11)

Assuming sufficient closeness between the microphone and
speaker on the same GPC compared to the distance between
two GPCs, the following approximations can be made:

(12)

We are making the assumption that the microphone and the
speaker on the same GPC can be considered as one node. Sub-
stituting, we have the following equations:

(13)
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TABLE III
ALGORITHM [M MICROPHONES AND S SPEAKERS]

From the above equations we can solve for as

(14)

Also, we can solve for the microphone capture start time and the
source emission start time as follows:

(15)

Setting the time when the capture on the first microphone is
started as zero (i.e., ), we can solve for all the other
microphone capture start times and the speaker emission start
times. Note that all the above equations are true only approx-
imately. Their values have to be refined further using the ML
estimation procedure.

B. Initial Guess for Microphone and Speaker Positions

Multidimensional Scaling (MDS): Given the pairwise Eu-
clidean distances between nodes their relative positions can
be determined by means of metric MDS [16]. MDS is popular in
psychology and denotes a set of data-analysis techniques for the
analysis of proximity data on a set of stimuli for revealing the
hidden structure underlying the data [24]. The proximity data
refers to some measure of pairwise dissimilarity. Given a set
of stimuli along with their pairwise dissimilarities , MDS
places the stimuli as points in a multidimensional space, such
that the distances between any two points are a monotonic func-
tion of the corresponding dissimilarity. MDS is widely used to
visually study the structure in proximity data.

If proximity data are based on the Euclidean distances, then
classical metric MDS [16] can exactly recreate the configura-
tion. Given a set of GPCs, let be a matrix where
each row represents the 3-D coordinates of each GPC. Then the

matrix is called the dot product matrix. By
definition, is a symmetric positive definite matrix, so the rank
of (i.e., the number of positive eigen values) is equal to the di-
mension of the datapoints, i.e., at most three. Based on the rank
of we can find whether all GPCs are on a plane (or even line)
or distributed in 3-D. Starting with a matrix (in practice cor-
rupted by noise), it is possible to factor it to get the matrix of co-
ordinates . One method to factor is to use singular value de-
composition (SVD) [22], i.e., where is a
diagonal matrix of singular values. The diagonal elements are
arranged as , where

is the rank of the matrix . The columns of are the corre-
sponding singular vectors. We can write . From

we can take the first three columns to get . If the elements
of are exact (i.e., they are not corrupted by noise), then all the
other columns are zero. It can be shown that SVD factorization
minimizes the matrix norm .

In practice, we can estimate the distance matrix , where
the th element is the Euclidean distance between the th and
the th GPC. This distance matrix must be converted into
a dot product matrix before MDS can be applied. We need
to choose some point as the origin of our coordinate system in
order to form the dot product matrix. Any point can be selected
as the origin, but Togerson [16] recommends the centroid of all
the points. If the distances have random errors then choosing
the centroid as the origin will minimize the errors as they tend
to cancel each other. We can obtain the dot product matrix using
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Fig. 3. Flowchart of the complete algorithm.

the cosine law, which relates the distance between two vectors
to their lengths and the cosine of the angle between them. Refer
to Appendix II for a detailed derivation of how to convert the
distance matrix to the scalar product matrix.

Multidimensional Scaling With Clustering: In our case of
microphones and speakers we cannot use MDS directly

because we cannot measure the distance between two micro-
phones or two speakers. In order to apply MDS, we cluster mi-
crophones and speakers, which are close together. Based on the
approximation discussed in the previous section, the distance

between the th and th GPC is given by

(16)

where is the speed of the sound.
The positions estimated by MDS are obtained with respect

to the centroid as the origin and an arbitrary orientation. They
are therefore converted into the reference coordinate system de-
scribed in Section III-B. The approximate locations of the GPCs
are also slightly perturbed to get the initial guess for the micro-
phone and speaker locations, which are further refined by the
nonlinear-minimization routine. Table III summarizes the com-
plete algorithm and Fig. 3, shows the flowchart.

Fig. 4 shows an example with 10 GPCs each having one mi-
crophone and one speaker. The actual locations of the sensors
and actuators are shown as “x.” The “*”s are the approximate
GPC locations as determined by MDS. As can be seen, the MDS
results are very close to the microphone and speaker locations.
The estimated locations are further refined by ML estimation
and marked as “o”s.

V. ESTIMATOR PERFORMANCE

The properties of the ML estimator can be studied in terms
of the estimator bias and error covariance matrix. The bias and
error variance depends on the noise variance, the number of mi-
crophones and speakers and the geometry of the setup. One way
to study it is to do extensive Monte Carlo simulations for various
geometries and different number of nodes. However if we get
an analytical expression for the bias and the variance of the es-
timator then these simulation studies can be carried out quickly
and the estimator can be studied in depth.

Fig. 4. Results in two dimensions for a network consisting of ten GPCs each
having one microphone and one speaker. The actual locations of the sensors
and actuators are shown as “x.” The “*”s are the approximate GPC locations
as determined by MDS. The estimated locations are further refined by ML
estimation and marked as “o”s.

The ML estimate for the microphone and speaker positions
is defined implicitly as the minimum of a certain error function
[see (8)]. Hence, it is not possible to get exact analytical ex-
pressions for the mean and the variance. However, by using the
implicit function theorem and the Taylors’ series it is possible
to derive approximate expressions for the mean and variance of
implicitly defined estimators. In this section, we derive the ap-
proximate expressions for both the mean and variance of the
estimators. We follow the same approach as in [17], [18].

In further derivation, we need the first and second derivatives
of (8) with respect to and . Using the generalized chain rule
it can be shown that for (8) the vector derivatives are as follows:

(17)

where is a matrix of partial derivatives of called
the Jacobian of

(18)

Refer to Appendix I for the individual derivatives of the Jaco-
bian matrix.

A. Estimator Covariance

In this section we use the Taylors’ series expansion and the
implicit function theorem to derive an approximate expression
for the covariance of the implicity defined estimator. The ML
estimate of is the one which maximizes the log likelihood
ratio defined in (8). The maximum can be found by setting the
first derivative to zero, i.e.,

(19)

where is a zero column vector of length . The implicit func-
tion theorem guarantees that (19) implicitly defines a vector
valued function that
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maps the observation vector to the parameter vector . Equa-
tion (19) can be written as

(20)

However, it is not possible to find an analytical expression for
. But we can approximate the covariance using the first-

order Taylor series expansion for . Let be the mean of
. Then expanding around we get

(21)

where is a
column gradient operator. Taking the covariance on both

sides yields

(22)

Note, we do not know . Differentiating (20), with respect
to and evaluating at yields

(23)

Assuming is invertible, we can write

(24)

Substituting from (17) we get

(25)

Using this in the covariance expression, we finally arrive at

(26)

B. Estimator Mean

Taking the expectation of the first-order Taylors’ series ex-
pansion in (21)

(27)

we see that the mean is the value given by the estimation proce-
dure when applied to the actual noise free measurements . It
is also possible to get the mean using the second-order Taylors’
series expansion, but it involves third-order derivatives and gen-
erally we cannot get simple form as in (26).

C. CRB

The CRB gives a lower bound on the variance of any unbiased
estimate [25]. It does not depend on the particular estimation
method used. In this section, we derive the CRB assuming our
estimator is unbiased. The variance of any unbiased estimator

of is bounded as [25]

(28)

Fig. 5. CRB on the total variance of the unknown microphone coordinates as a
function of TOF noise standard deviation � for different estimation procedures.
For the TDOF-based method the noise variance was taken as twice that of the
TOF variance. The network had a total of 16 microphones and 16 speakers.

where is called the Fischer’s Information matrix and is
given by

(29)

The derivative of the log-likelihood function [see (7)] can be
found using the generalized chain rule and is given by [refer
(17)]

where is the Jacobian. Substituting this in (29) and taking the
expectation the Fishers information matrix is

(31)

(32)

Note that this expression is the same as the approximate covari-
ance of the estimator derived in the previous section.

D. Rank of the Fisher Information Matrix

If we assume , i.e., the noise components are inde-
pendent, then the covariance matrix can be simplified as

(33)

where . If we assume that all the microphone and
source locations are unknown, is rank deficient and hence,
not invertible. This is because the solution to the ML estimation
problem as formulated is not invariant to rotation and transla-
tion. In order to make the Fisher information matrix invertible
we remove the rows and columns corresponding to the known
parameters.

The diagonal terms of represent the error vari-
ance for estimating each of the parameters in . In the next few
sections we explore the dependency of the error variance on dif-
ferent parameters. Fig. 5, shows CRB on the total variance (sum
of the individual variances) of the unknown microphone coor-
dinates as a function of TOF noise standard deviation for a
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sensor network consisting of 16 microphones and 16 speakers,
for different estimation procedures.8

E. Effect of Nuisance Parameters

The speaker emission start time and the microphone capture
start time can be considered as the nuisance parameters since
we are interested only in the microphone and speaker coordi-
nates. The effect of the nuisance parameters on the CRB can
be seen from Fig. 5 where the total error variance in the micro-
phone coordinates is plotted against the noise standard deviation

for both normal position estimation and joint position estima-
tion. For both the TOF and TDOF approaches the joint estima-
tion results in a higher variance, which is due to the extra nui-
sance parameters. TOF has more nuisance parameters and hence
it has a higher bound on variance than the TDOF approach. An-
other point to be noted is that in the TDOF approach we need
not use all the pairwise TDOF measurements.
Fig. 5 demonstrates that the bound on the estimation variance
decreases as the number of used TDOF measurements grows.

F. Increasing the Number of Sensors and Actuators

As the number of nodes increases in the network, the CRB
on the covariance matrix decreases. The more microphones
and speakers in the network, the smaller the error in estimating
their positions. Fig. 6(a) shows the 95% uncertainty ellipses for
a regular 2-D array consisting of nine microphones and nine
speakers, for both the TOF and the TDOF-based joint estima-
tion procedures. We fixed the position of one microphone and
the coordinate of one speaker. For the fixed speaker only the
variance in direction is shown since the coordinate is fixed.
For TOF-based method the noise variance was assumed to be

in order to properly visualize the uncertainty ellipses. In
order to give a fair comparison, a noise variance of
was assumed for the TDOF-based method. Fig. 6(b) shows
the corresponding 95% uncertainty ellipses for a 2-D array
consisting of 25 microphones and 25 speakers. It can be seen
that as the number of sensors in the network increases the size
of the uncertainty ellipses decreases.

Intuitively, this can be explained as follows. Let there be a
total of nodes in the network whose coordinates are unknown.
Then we have to estimate a total of parameters. The total
number of TOF measurements available is however,
(assuming that there are microphones and speakers).
So if the number of unknown parameters increases as ,
the number of available measurements increases as .
The linear increase in the number of unknown parameters, is
compensated by the quadratic increase in the available mea-
surements, which suggests that the uncertainty per unknown
variable will decrease.

G. Sensor Geometry—How to Select a Good
Coordinate System?

The geometry of the network plays an important role in CRB.
It is possible to analyze how to place the sensors in order to

8In order to do a fair comparison, the corresponding TDOF noise variance
was approximated to be twice the corresponding TOF noise variance. In the
TOF case only one signal was degraded due to noise and reverberation while the
other was the reference signal. In case of TDOF both the signals are degraded.

Fig. 6. 95% uncertainty ellipses for a regular 2-D array of (a) nine speakers
and nine microphones. (b) 25 speakers and 25 microphones. Noise variance in
both cases is � = 10 for the TOF-based method and � = 2� 10 for
the TDOF-based method. The microphones are represented as crosses (�) and
the speakers as dots ( � ). The position of one microphone and the x coordinate
of one speaker is assumed to be known (shown in bold). The solid and dotted
ellipses are the uncertainty ellipses for the estimation procedure using the TOF
and TDOF-based method, respectively.

achieve a lower CRB. In an ad-hoc network, however, such anal-
ysis is of little benefit. In our formulation, we assumed that we
know the positions of a certain number of nodes, i.e., we fix three
of the nodes to lie in the - plane. The CRB depends on which
of the sensor nodes are assumed to have known positions. Fig. 7
shows the 95% uncertainty ellipses for a regular 2-D array con-
taining 25 microphones and 25 speakers for different positions
of the known nodes. In Fig. 7(a) the two known nodes are at
one corner of the grid. It can be seen that the uncertainty ellipse
becomes wider as you move away form the known nodes. The
uncertainty in the direction perpendicular to the line joining the
sensor node and the center of the known nodes is much larger
than along the line. The same can be seen in Fig. 7(b) where the
known nodes are at the center of the grid. The reason for this
can be explained for a simple case where we know the locations
of two speakers as shown in Fig. 7(d). Each circular band repre-
sents the uncertainty in the distance estimation. The intersection
of the two annuli corresponding to the two speakers gives the un-
certainty region for the position of the sensor. As can be seen for
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Fig. 7. 95% uncertainty ellipses for a regular 2-D array of 25 microphones and 25 speakers for different positions of the known microphone and for different
x coordinates of the known speaker. In (a) and (b) the known nodes are close to each other and in (c) they are spread out one at each corner of the grid. The
microphones are represented as crosses (�) and the speakers as dots ( � ). Noise variance in all cases was � = 10 . (d) Schematic to explain the shape of
uncertainty ellipses. 50 TDOF pairs were used for the estimation procedure.

nodes far away from the two speakers the region widens because
of the decrease in the curvature. It is beneficial if the known
nodes are on the edges of the network and as far away from
each other as possible. In Fig. 7(c) the known sensor nodes are
on the edges of the network. As can be seen there is a substantial
reduction in the dimensions of the uncertainty ellipses. In order
to minimize the error due to Gaussian noise we should choose
the three reference nodes (in 3-D) as far as possible. In practice,
using the TOF matrix we can choose three nodes such that the
area of the triangle formed by these three nodes is maximum.
In this way we can dynamically adapt our coordinate system to
minimize the error even though the array geometry may change
drastically.

VI. MONTE CARLO SIMULATION RESULTS

We performed a series of Monte Carlo simulations to com-
pare the performance of the different estimation procedures. 16
microphones and 16 speakers were randomly selected to lie in
a room of dimensions 4.0 m 4.0 m 4.0 m. The speaker was
chosen to be close to the microphone in order to simulate a typ-
ical laptop. Based on the geometry of the setup, the actual TOF
between each speaker and microphones was calculated and then

corrupted with zero mean additive white Gaussian noise of vari-
ance in order to model the room ambient noise and reverber-
ation. The TOF matrix was also corrupted by known systematic
errors, i.e., a known microphone emission capture start time and
speaker emission start time was added. The Levenberg–Mar-
quardt method was used as the minimization routine. For each
noise variance , the results were averaged over 2000 trials.
Fig. 8(a) and (b) show the total variance and the total bias (sum
of all the biases in each parameter) of all the unknown micro-
phone coordinates plotted against the noise standard deviation

for both the TOF and the TDOF-based approach. The results
are shown both for position estimation and the Joint position and
start times estimation procedures. The CRB for the TDOF-based
joint estimation procedure is also shown. Since we corrupted the
TOF with a systematic errors, the position estimation procedure
shows a very high variance and a correspondingly high bias.
Hence, when the TOFs are corrupted by systematic errors, we
need to do joint estimation of the positions as well as the nui-
sance parameters. Even though theoretically the TDOF-based
joint estimation procedure has lower bound on estimation vari-
ance, experimentally all the joint estimation procedures showed
almost the same variance. The estimator is unbiased for low
noise variances.
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Fig. 8. (a) Total variance. (b) Total bias of all the microphone coordinates for
increasing TOF noise standard deviation �. The sensor network consisted of
16 microphones and 16 speakers. The results are shown for both the TOF and
TDOF-based position and joint estimation. The CRB for the TDOF-based joint
estimation is also plotted. For the TDOF-based method the noise variance was
taken as twice that of the TOF variance.

VII. IMPLEMENTATION DETAILS

In this section, we discuss some of the practical issues of our
real-time implementation such as the type of calibration signal
and the TOF estimation procedure used, as well as other design
choices.

A. Calibration Signals

In order to measure the TOF accurately, the calibration signal
has to be appropriately selected and the parameters properly
tuned. Chirp signals and maximum length sequences are the two
most popular sequences for this task. A linear chirp signal is a
short pulse in which the frequency of the signal varies linearly
between two preset frequencies. The cosine linear chirp signal
of duration with the instantaneous frequency varying linearly
between and is given by

(34)

(a) (b)

Fig. 9. (a) Loopback reference chirp signal. (b) Chirp signal received by one
of the microphones.

In our system, we used the chirp signal of 512 samples at 44.1
kHz (11.61 ms) as our calibration signal. The instantaneous fre-
quency varied linearly from 5 kHz to 10 kHz. The initial and
the final frequency was chosen to lie in the common passband
of the microphone and the speaker frequency response. The
chirp signal send by the speaker is convolved with the room
impulse response resulting in the spreading of the chirp signal.
Fig. 9(a) shows the chirp signal as sent out by the soundcard
to the speaker. This signal is recorded by looping the output
channel directly back to an input channel, on a multichannel
sound card. The initial delay is due to the emission start time and
the capture start time. Fig. 9(b) shows the corresponding chirp
signal received by the microphone. The chirp signal is delayed
by a certain amount due to the propagation path. The distortion
and the spread is due to the speaker, microphone and room re-
sponse.

B. Time-Delay Estimation

This is the most crucial part of the algorithm and also a po-
tential source of error. Hence, a lot of care has to be taken
to get the TOF accurately in noisy and reverberant environ-
ments. The time-delay may be found by locating the peak in
the cross-correlation of the signals received over the two micro-
phones. However, this method is not robust to noise and rever-
berations. Knapp and Carter [19] developed an ML estimator for
determining the time-delay between signals received at two spa-
tially separated sensors in the presence of uncorrelated noise. In
this method, the delay estimate is the time lag which maximizes
the cross-correlation between filtered versions of the received
signals [19]. The cross-correlation of the filtered versions of
the signals is called as the generalized cross correlation (GCC)
function. The GCC function is computed as [19]

(35)

where are the Fourier transforms of the mi-
crophone signals , respectively, and is
the weighting function. The two most commonly using
weighting functions are the ML and the phase transform
(PHAT) weighting. The ML weighting function, accentuates
the signal passed to the correlator at frequencies for which
the signal-to-noise ratio is the highest and, simultaneously
suppresses the noise power [19]. This ML weighting function
performs well for low room reverberation. As the room re-
verberation increases, this method shows severe performance
degradations. Since the spectral characteristics of the received
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Fig. 10. (a) Our experimental setup. (b) Results for a setup consisting of five
laptops each having one internal microphone and speakers.

signal are modified by the multipath propagation in a room,
the GCC function is made more robust by deemphasizing the
frequency dependent weightings. The phase transform is one
extreme where the magnitude spectrum is flattened. The PHAT
weighting is given by

(36)

By flattening out the magnitude spectrum the resulting peak in
the GCC function corresponds to the dominant delay. However,
the disadvantage of the PHAT weighting is that it places equal
emphasizes on both the low and high SNR regions, and hence,
it works well only when the noise level is low. For low noise
rooms the PHAT method performs moderately well.

C. Testbed Setup and Results

The algorithm has been tested in a real time distributed
setup using five laptops (IBM T-series Thinkpads with Intel
Pentium series processors). Fig. 10(a) shows our experimental
setup. The room also had multiple PCs which acted as a noise
sources. All the five laptops were placed on a flat table so that
we can form a 2-D coordinate system.9 The ground truth was

9As discussed earlier, we need minimum six laptops for the minimization
routine. With five laptops we need to know the actual x-coordinate of one of the
laptops.

measured manually to validate the results from the position
calibration methods. For our experiments we used the internal
microphones and speakers in the laptop. Capture and play back
was done using the free, cross platform, open-source, audio I/O
library Portaudio [26]. Most of the signal processing tasks were
implemented using the Intel Integrated Performance Primitives
(IPPs). For the nonlinear minimization we used the mrqmin
routine from Numerical Recipes in C [22]. For the distributed
platform we used the Universal Plug and Play (UPnP) [27]
technology to form an ad hoc network and control the audio de-
vices on different platforms. UPnP technology is a distributed,
open networking architecture that employs TCP/IP and other
Internet technologies to enable seamless proximity networking
[27]. For the setup consisting of five microphones and five
speakers, Fig. 10(b) shows the actual (“X”) and the estimated
(“o”) positions of the microphones and speakers. The locations
as got from the closed form approximate solution are shown
as “*.” The localization error for each microphone or speaker
is defined as the Euclidean distance between the actual and
the estimated positions. For our setup the average localization
error was 6.2 cm. We also implemented the same system on a
synchronized platform for which the error was 3.8 cm.

VIII. CONCLUSION

In this paper, we described the problem of position calibra-
tion of acoustic sensors and actuators in a network of distributed
general-purpose computing platforms. Our approach allows
putting laptops, PDAs, and tablets into a common 3-D coordi-
nate system. Together with time synchronization this creates
arrays of audio sensors and actuators enabling a rich set of
new multistream A/V applications on platforms that are avail-
able virtually anywhere. We also derived important bounds
on performance of spatial localization algorithms, proposed
optimization techniques to implement them and extensively
validated the algorithms on simulated and real data.

APPENDIX I
DERIVATIVES

Following are the derivatives which are needed for the mini-
mization routine and calculation of the covariance matrix. These
derivatives form the nonzero elements of the Jacobian matrix

(37)
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(38)

APPENDIX II
CONVERTING THE DISTANCE MATRIX TO A DOT

PRODUCT MATRIX

Let us say we choose the th GPC as the origin of our coor-
dinate system. Let and be the distance and dotproduct
respectively, between the th and the th GPC. Referring to
Fig. 11, using the cosine law

The dot product is defined as

(40)

Combining the above two equations

(41)

However, this is with respect to the th GPC as the origin of
the coordinate system. We need to get the dot product matrix
with the centroid as the origin. Let be the dot product matrix
with respect to the th GPC as the origin and let be the dot
product matrix with the centroid of the data points as the origin.
Let be to matrix of coordinates with the origin shifted to the
centroid

(42)

where is an matrix who’s all elements are 1. So
now can be written in terms of as follows:

Hence, the th element in is given by

(43)

Fig. 11. Law of cosines.

Substituting (41) we get

This operation is also known as double centering i.e., subtract
the row and the column means from its elements and add the
grand mean and then multiply by .
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