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Abstract

We describe a probabilistic approach for su-
pervised learning when we have multiple ex-
perts/annotators providing (possibly noisy)
labels but no absolute gold standard. The
proposed algorithm evaluates the different
experts and also gives an estimate of the ac-
tual hidden labels. Experimental results indi-
cate that the proposed method is superior to
the commonly used majority voting baseline.

1. Introduction

A typical two-class supervised classification scenario
consists of a training set D = {(xi, yi)}N

i=1 containing
N instances, where xi ∈ Rd is an instance (the d-
dimensional feature vector) and yi ∈ Y = {0, 1} is the
corresponding known class label. The task is to learn
a classification function f : Rd → Y which generalizes
well on unseen data.

However, for many tasks, it may not be possible, or
may be too expensive to acquire the actual label yi

(gold standard) for training. Instead, we may have
multiple (possibly noisy) labels y1

i , . . . , yR
i provided by

R different experts or annotators. In practice, there
might be a substantial amount of disagreement among
the experts, and hence it is of great practical interest
to determine the optimal way to learn a classifier.
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Our motivation for this work comes from the area of
computer-aided diagnosis (CAD) (see § 7.1), where
the task is to build a classifier to predict whether a
suspicious region on a medical image is malignant or
benign. In order to train such a classifier, a set of
images is collected from hospitals. The actual gold
standard (whether it is cancer or not) can be obtained
from biopsies, but since it is an expensive and an inva-
sive process, often CAD systems are built from labels
assigned by multiple radiologists who identify the lo-
cations of malignant lesions. Each radiologist visually
examines the medical images and provides a subjective
(possibly noisy) version of the gold standard.

The domain of text classification offers another sce-
nario. In this context the task is to predict the cat-
egory for a token of text. The labels for training are
assigned by human annotators who read the text and
attribute their subjective category. With the advent
of services like Amazon’s Mechanical Turk, it is quite
inexpensive to acquire labels from a large number of
annotators in a short time (Sheng et al., 2008; Snow
et al., 2008; Sorokin & Forsyth, 2008). In situations
like these, the performance of different annotators can
vary widely, and without the actual gold standard, it
may not be possible to evaluate the annotators.

In this work, we provide some principled probabilistic
solutions to the following question: “How do we learn
and evaluate classifiers when we have multiple annota-
tors providing labels but no absolute gold standard?”
A closely related problem–particularly relevant when
there are a large number of annotators– is to estimate
how reliable/trustworthy is each annotator.



Supervised Learning from Multiple Experts

1.1. Majority Voting

For binary classification problems, a common strategy
is to use the majority label, i.e.,

ŷi =
{

1 if (1/R)
∑R

j=1 yj
i ≥ 0.5

0 otherwise
, (1)

as an estimate of the hidden true label and use this
estimate to learn and evaluate classifiers/annotators.
Another strategy is that of considering every pair (in-
stance, label) provided by each expert as a separate
example. Note that this amounts to using a soft prob-
abilistic estimate of the actual ground truth to learn
the classifier, i.e.,

Pr[yi = 1|y1
i , . . . , yR

i ] = (1/R)
R∑

j=1

yj
i . (2)

Majority voting assumes all experts are equally good.
However, for example, if there is only one true expert
and the majority are novices, and if novices give the
same incorrect label to a specific instance, then the
majority voting method would favor the novices since
they are in a majority. One could address this problem
by introducing a weight capturing how good each ex-
pert is. But how would one measure the performance
of an expert when there is no gold standard available?

1.2. Proposed approach

To address the apparent chicken-and-egg problem, we
present a maximum-likelihood estimator (§ 4) that
jointly learns the classifier, the annotator accuracy,
and the actual true label. The performance of each
annotator is measured in terms of the sensitivity and
specificity with respect to the gold standard (§ 2).
The proposed algorithm automatically discovers out
the best experts and assigns a higher weight to them.
In order to incorporate prior knowledge about each an-
notator, we impose a beta prior on the sensitivity and
specificity and derive the maximum-a-posteriori esti-
mate (§ 5). The final estimate is an EM-algorithm that
iteratively establishes a particular gold standard, mea-
sures the performance of the experts given that gold
standard, and refines the gold standard based on the
performance measures. While the proposed approach
is described using logistic regression as the base classi-
fier (§ 3), it is quite general, and can be used with any
black-box classifier (§ 6), and can also handle missing
labels (i.e., each expert is not required to label all the
instances). Furthermore, it can be extended to han-
dle categorical, ordinal, and regression problems (§ 8).
We extensively validate our approach using both sim-
ulated data and real data (§ 7).

2. A two-coin model for annotators

Let yj ∈ {0, 1} be the label assigned to the instance
x by the jth annotator/expert. Let y be the actual
(unobserved) label for this instance. Each annotator
provides a version of this hidden true label based on
two biased coins. If the true label is one, she flips a
coin with bias αj (sensitivity). If the true label is zero,
she flips a coin with bias βj (specificity). In each case,
if she gets heads she keeps the original label, otherwise
she flips the label.

If the true label is one, the sensitivity (true positive
rate) for the jth annotator is defined as the probability
that she labels it as one.

αj := Pr[yj = 1|y = 1]. (3)

On the other hand, if the true label is zero, the speci-
ficity (1−false positive rate) is defined as the probabil-
ity that she labels it as zero.

βj := Pr[yj = 0|y = 0]. (4)

The assumption introduced is that αj and βj do not
depend on the instance x. For example, in the CAD
domain, this means that the radiologist’s performance
is consistent across different sub-groups of data. 1

3. Classification model

While the proposed method can be used for any clas-
sifier, for ease of exposition, we consider the family of
linear discriminating functions: F = {fw}, where for
any x, w ∈ Rd , fw(x) = w>x. The final classifier can
be written in the following form: ŷ = 1 if w>x ≥ γ
and 0 otherwise. The threshold parameter θ deter-
mines the operating point of the classifier. The ROC
curve is obtained as γ is swept from −∞ to ∞. The
posterior probability for the positive class is modeled
as a logistic sigmoid acting on fw, i.e.,

Pr[y = 1|x, w] = σ(w>x), (5)

where the logistic sigmoid function is defined as σ(z) =
1/(1 + e−z). This classification model is known as
logistic regression.

Given the training data D consisting of N in-
stances with annotations from R experts, i.e., D =
{xi, y

1
i , . . . , yR

i }N
i=1, the task is to estimate the weight

vector w and also the sensitivity α = [α1, . . . , αR] and
the specificity β = [β1, . . . , βR].

1While this is a reasonable assumption, it is not entirely
true. It is known that some radiologists are good at de-
tecting certain kinds of malignant lesions based on their
training and experience.
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4. Maximum likelihood estimator

Assuming the instances are independently sampled,
the likelihood of the parameters θ = {w, α,β} given
the observations D can be factored as

Pr[D|θ] =
N∏

i=1

Pr[y1
i , . . . , yR

i |xi, θ]. (6)

Conditioning on the true label yi, and also using the
assumption that αj and βj do not depend on the in-
stance xi, the likelihood can be written as

Pr[D|θ] =
N∏

i=1

{
Pr[y1

i , . . . , yR
i |yi = 1, α] · Pr[yi = 1|xi, w]

+ Pr[y1
i , . . . , yR

i |yi = 0, β] · Pr[yi = 0|xi, w]
}

.

(7)

Given the true label yi, we assume that y1
i , . . . , yR

i are
independent, i.e., the annotators make their decisions
independently. Hence,

Pr[y1
i , . . . , yR

i |yi = 1,α] =
R∏

j=1

Pr[yj
i |yi = 1, αj ]

=
R∏

j=1

[αj ]y
j
i [1− αj ]1−yj

i .

Similarly, we have

Pr[y1
i , . . . , yR

i |yi = 0,β] =
R∏

j=1

[βj ]1−yj
i [1− βj ]y

j
i .

Hence the likelihood can be written as

Pr[D|θ] =
N∏

i=1

[
aipi + bi(1− pi)

]
, (8)

where we define pi = Pr[yi = 1|xi,w] = σ(w>xi), and

ai =
R∏

j=1

[αj ]y
j
i [1− αj ]1−yj

i , bi =
R∏

j=1

[βj ]1−yj
i [1− βj ]y

j
i .

The maximum-likelihood estimator is found by maxi-
mizing the log-likelihood, i.e.,

θ̂ML = {α̂, β̂, ŵ} = arg max
θ
{ln Pr[D|θ]}. (9)

4.1. The EM algorithm

This maximization problem can be simplified a lot
if we use the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977). The EM algorithm is an

efficient iterative procedure to compute the maximum-
likelihood solution in presence of missing/hidden data.
We will use the unknown hidden true label yi as the
missing data. Let y = [y1, . . . , yN ], be the complete
data log-likelihood can be written as

lnPr[D, y|θ] =
N∑

i=1

yi ln piai+(1−yi) ln(1−pi)bi. (10)

Each iteration of the EM algorithm consists
of two steps: an Expectation(E)-step and a
Maximization(M)-step. The M-step involves maxi-
mization of a lower bound on the log-likelihood that is
refined in each iteration by the E-step.

(1) E-step. Given the observation D and the current
estimate of the model parameters θ, the conditional
expectation (which is a lower bound on the true like-
lihood) is computed as

E {ln Pr[D, y|θ]} =
N∑

i=1

µi ln piai +(1−µi) ln(1− pi)bi,

(11)
where the expectation is with respect to Pr[y|D, θ],
and µi = Pr[yi = 1|y1

i , . . . , yR
i ,xi, θ]. Using Bayes

theorem we can compute

µi ∝ Pr[y1
i , . . . , yR

i |yi = 1, θ] · Pr[yi = 1|xi, θ]

=
aipi

aipi + bi(1− pi)
. (12)

(2) M-step. Based on the current estimate µi and
the observations D, the model parameters θ are then
estimated by maximizing the conditional expectation.
By equating the gradient of (11) to zero we obtain the
following estimates for the sensitivity and specificity:

αj =
∑N

i=1 µiy
j
i∑N

i=1 µi

, βj =
∑N

i=1(1− µi)(1− yj
i )∑N

i=1(1− µi)
.

Due to the non-linearity of the sigmoid, we do not
have a closed form solution for w and we have
to use gradient ascent based optimization meth-
ods. We use the Newton-Raphson update given by
wt+1 = wt − ηH−1g, where g is the gradient vec-
tor, H is the Hessian matrix, and η is the step
length. The gradient vector is given by g(w) =∑N

i=1

[
µi − σ(w>xi)

]
xi. The Hessian matrix is given

by H(w) = −∑N
i=1

[
σ(w>xi)

] [
1− σ(w>xi)

]
xix

>
i .

Essentially, we are solving a regular logistic regression
problem with probabilistic labels µi.

These two steps (the E- and the M-step) can be it-
erated till convergence. We use majority voting µi =
1/R

∑R
j=1 yj

i as the initialization for µi to start the
EM-algorithm.
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5. A Bayesian approach

In some applications we may want to trust a particular
expert more than the others. This can be done by
imposing priors on the sensitivity and specificity of
the experts. Since αj and βj represent the probability
of a binary event, a natural choice of prior is the beta
prior. For any a > 0, b > 0, and δ ∈ [0, 1] the beta
distribution is given by

Beta(δ|a, b) =
δa−1(1− δ)b−1

B(a, b)
, (13)

where B(a, b) =
∫ 1

0
δa−1(1 − δ)b−1dδ is the beta func-

tion. We assume a beta prior for both the sensitivity
and the specificity as Pr[αj |aj

1, a
j
2] = Beta(αj |aj

1, a
j
2)

and Pr[βj |bj
1, b

j
2] = Beta(βj |bj

1, b
j
2). For sake of com-

pleteness we also assume a zero mean Gaussian prior
on the weights w with inverse covariance matrix Γ,
i.e., Pr[w] = N (w|0,Γ−1).

Assuming that {αj}, {βj}, and w have independent
priors, the maximum-a-posteriori (MAP) estimator is
found by maximizing the log-posterior, i.e., θ̂MAP =
arg maxθ{ln Pr[D|θ]+ ln Pr[θ]}. An EM algorithm can
be derived in a similar fashion for MAP estimation by
relying on the interpretation of (Neal & Hinton, 1998).

(1) Initialize µi = (1/R)
∑R

j=1 yj
i by majority voting.

(2) Given µi, estimate the sensitivity and specificity of
each annotator as follows.

αj =
aj
1 − 1 +

∑N
i=1 µiy

j
i

aj
1 + aj

2 − 2 +
∑N

i=1 µi

.

βj =
bj
1 − 1 +

∑N
i=1(1− µi)(1− yj

i )

bj
1 + bj

2 − 2 +
∑N

i=1(1− µi)
. (14)

The Newton-Raphson update for optimiz-
ing w is given by wt+1 = wt − ηH−1g,
with step length η, gradient vector g(w) =∑N

i=1

[
µi − σ(w>xi)

]
xi − Γw and Hessian matrix

H(w) = −∑N
i=1 σ(w>xi)

[
1− σ(w>xi)

]
xix

>
i − Γ.

(3) Given the sensitivity and specificity of each anno-
tator and the model parameters, update µi as

µi =
aipi

aipi + bi(1− pi)
, (15)

where pi = σ(w>xi), ai =
∏R

j=1[α
j ]y

j
i [1 − αj ]1−yj

i ,

and bi =
∏R

j=1[β
j ]1−yj

i [1− βj ]y
j
i .

Iterate (2) and (3) till convergence.

6. Discussions

6.1. Obtaining actual ground truth

The value of the posterior probability µi is a soft prob-
abilistic estimate of the actual ground truth yi, i.e.,
µi = Pr[yi = 1|y1

i , . . . , yR
i , xi, θ]. The actual hidden

label yi can be estimated by applying a threshold on
µi, i.e., yi = 1 if µi ≥ γ and zero otherwise. We can
use γ = 0.5 as the threshold. By varying γ we can
change the miss-classification costs.

6.2. Insight of the proposed framework

A particularly revealing insight can be obtained in
terms of the log-odds or the logit of the posterior prob-
ability µi. From (15) the logit of µi can be written as

logit(µi) = log
µi

1− µi
= log

Pr[yi = 1|y1
i , . . . , yR

i ,xi, θ]
Pr[yi = 0|y1

i , . . . , yR
i ,xi, θ]

= w>xi + b +
R∑

j=1

yj
i [logit(αj) + logit(βj)].

where b =
∑R

j=1 log 1−αj

βj is a constant term which
does not depend on i. This indicates that the esti-
mated ground truth (in the logit form of the posterior
probability) is a weighted linear combination of the la-
bels from all the experts. The weight of each expert is
the sum of the logit of the sensitivity and specificity.

6.3. Using any other classifier

For ease of exposition we used logistic regression. How-
ever, the proposed algorithm can be used with any
generalized linear model or in fact with any classifier
that can be trained with soft probabilistic labels.

6.4. Obtaining ground truth with no features

In some scenarios we may not have features xi and
we wish to obtain an estimate of the actual ground
truth based only on the labels from multiple annota-
tors. Here instead of learning a classifier we estimate
p which is the prevalence of the positive class, i.e.,
p = Pr[yi = 1]. We further assume a beta prior for the
prevalence, i.e., Pr[p|p1, p2] = Beta(p|p1, p2).

(1) Initialize µi = (1/R)
∑R

j=1 yj
i by majority voting.

(2) Given µi, estimate the sensitivity and specificity
of each annotator using (14). The prevalence of the
positive class is estimated as follows.

p =
p1 − 1 +

∑N
i=1 µi

p1 + p2 − 2 + N
. (16)

(3) Given the sensitivity and specificity of each anno-
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tator and prevalence, refine µi as follows.

µi =
aip

aip + bi(1− p)
. (17)

Iterate (2) and (3) till convergence. This algorithm is
similar to the one proposed in (Dawid & Skeene, 1979;
Smyth et al., 1995).

6.5. Handling missing labels

The proposed approach can easily handle missing la-
bels. Let Ri be the number of radiologists labeling the
ith instance, and let Nj be the number of instances
labeled by the jth radiologist. Then in the EM algo-
rithm, we just need to replace N by Nj for estimating
the sensitivity and specificity in (14), and replace R
by Ri for updating µi in (15).

6.6. Evaluating a classifier

We can use the probability scores µi directly to eval-
uate classifiers. If zi are the labels obtained from any
other classifier, then sensitivity and specificity can be
estimated as

α =
∑N

i=1 µizi∑N
i=1 µi

, β =
∑N

i=1(1− µi)(1− zi)∑N
i=1(1− µi)

. (18)

7. Experiments

We use two CAD and one text dataset in our experi-
ments. The CAD datasets include a digital mammog-
raphy data and a Breast MRI data, both of which
are biopsy proven, i.e., the gold standard is available.
For the digital mammography dataset we simulate the
radiologists in order to validate our methods. The
Breast MRI data has annotations from four radiolo-
gists. We also report results on a Recognizing Textual
Entailment data collected by (Snow et al., 2008) using
the Amazon’s Mechanical Turk which has annotations
from 164 annotators.

7.1. Digital Mammography

Mammograms are used as a screening tool to detect
early breast cancer. CAD systems search for abnormal
areas (lesions) in a digitized mammographic image. In
classification terms, given a set of descriptive morpho-
logical features for a region in a image, the task is to
predict whether it is potentially malignant (1) or not
(0). In order to train such a classifier, a set of mam-
mograms is collected from hospitals. The ground truth
(whether it is cancer or not) is obtained from biopsy.
We use a proprietary biopsy-proven dataset contain-
ing 497 positive and 1618 negative examples. Each

instance is described by a set of 27 morphological fea-
tures. In order to validate our proposed algorithm,
we simulate the multiple radiologists according to the
two-coin model described in § 2. Based on the labels
from multiple radiologists, we can simultaneously (1)
learn a logistic-regression classifier, (2) estimate the
sensitivity and specificity of each radiologist, and (3)
estimate the golden ground truth. We compare the re-
sults with the classifier trained using the biopsy proved
ground truth as well as the majority-voting baseline.
For the first set of experiments we use 5 radiologists
with sensitivity α = [0.90 0.80 0.57 0.60 0.55] and
specificity β = [0.95 0.85 0.62 0.65 0.58]. In this sce-
nario the first two radiologists are experts and the last
three are novices. The results are as follows:

(1) Classifier performance Figure 1(Left) plots the
ROC of the classifier on the training set. The dotted
(black) line is the ROC for the classifier learnt using
the actual ground truth. The solid (red) line is the
ROC for the proposed algorithm and the dashed (blue)
line is for the majority-voting scheme. The classifier
learnt using the proposed method is as good as the one
learnt using the golden ground truth. The AUC for the
proposed algorithm is around 3.5% greater than that
learnt using the majority-voting scheme.

(2) Radiologist performance The actual sensitivity
and specificity of each radiologist is marked as a black
× in Figure 1(Right). The end of the solid red line
shows the estimates of the sensitivity and specificity
from the proposed method. We used a uniform prior
on all the parameters. The ellipse plots the contour
of one standard deviation as obtained from the beta
posterior estimates. 2 The end of the dashed red line
shows the estimate obtained from the majority- voting
algorithm. We see that the proposed method is much
closer to the actual values of sensitivity and specificity.

(3) Actual ground truth Since the estimates of the
actual ground truth are probabilistic scores, we can
also plot the ROC curves of the estimated ground
truth. From Figure 1(Right) we can see that the ROC
curve for the proposed method dominates the majority
voting ROC curve. Furthermore, the area under the
ROC curve (AUC) is around 3% higher. The estimate
obtained by majority voting is closer to the novices
since they form a majority (3/5). The proposed algo-
rithm appropriately weights each radiologist based on
their estimated sensitivity and specificity.

2At the end of each EM iteration, a good approxima-
tion to the posterior distribution can be obtained as αj ∼
Beta

(
αj |aj

1 +
∑N

i=1 µiy
j
i , a

j
2 +

∑N
i=1 µi(1− yj

i )
)

and βj ∼
Beta

(
βj |bj

1 +
∑N

i=1(1− µi)(1− yj
i ), b

j
2 +

∑N
i=1(1− µi)y

j
i

)
.
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Figure 1. Results for the digital mammography dataset with annotations from 5 simulated radiologists. (Left) The ROC
curve of the learnt classifier using the golden ground truth (dotted black line), the majority voting scheme (dashed blue
line), and the proposed EM algorithm (solid red line). (Right) The ROC curve for the estimated ground truth. The
actual sensitivity and specificity of each of the radiologist is marked as a ×. The end of the dashed blue line shows the
estimates of the sensitivity and specificity obtained from the majority voting algorithm. The end of the solid red line
shows the estimates from the proposed method. The ellipse plots the contour of one standard deviation.
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Proposed EM algorithm [Joint Estimation] AUC=0.905
Decoupled Estimation AUC=0.884
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Figure 2. ROC curves comparing the proposed algorithm (solid red line) with ’Decoupled Estimation’ procedure (dotted
blue line), which refers to the algorithm where the ground truth is first estimated using just the lables from the five
radiologists (§ 6.4) and then a logistic regression classifier is trained using the soft probabilistic labels. In contrast the
proposed EM algorithm estimates the ground truth and learns the classifier simultaneously during the EM algorithm.
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Figure 3. Breast MRI results. (Left) The leave-one-out cross validated ROC. (Right) ROC for the estimated ground truth.
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Figure 4. The mean and the one standard deviation error
bars for the accuracy of the estimated ground truth for
the Recognizing Textual Entailment task as a function of
the number of annotators. The plot was generated by ran-
domly sampling R annotators 100 times.

(4) Joint Estimation To learn a classifier, Smyth
(1995) proposed to first estimate the golden ground
truth (§ 6.4) and then use the probabilistic ground
truth to learn a classifier. In contrast, our proposed
algorithm learns the classifier and the ground truth
jointly as a part of the EM algorithm. Figure 2 shows
that the classifier and the ground truth learnt obtained
by the proposed algorithm is superior than that ob-
tained by other procedures which first estimates the
ground truth and then learns the classifier.

7.2. Breast MRI

In this example, each radiologist reviews the breast
MRI data and assesses the malignancy of each lesion
on a BIRADS scale of 1 to 5. Our dataset comprises
of 75 lesions with annotations from four radiologists,
and the true labels from biopsy. Based on eight mor-
phological features, we predict whether a lesion is ma-
lignant. We reduce the BIRADS scale to a binary one:
any lesion with a BIRADS > 3 is considered malignant
and benign otherwise. The set included 28 malignant
and 47 benign lesions. Figure 3 summarizes the re-
sults. We show the leave-one-out cross validated ROC
for the classifier. The cross-validated AUC of the pro-
posed method is approximately 6% better than the
majority voting baseline.

7.3. Recognizing Textual Entailment

Finally we report results on Recognizing Textual En-
tailment data collected by (Snow et al., 2008) using the
Amazon’s Mechanical Turk. In this task, the annota-
tor is presented with two sentences and given a choice
of whether the second sentence can be inferred from

the first. The data has 800 tasks and 164 distinct read-
ers. The majority of the entries (94 %) in the 800x164
matrix are missing. Figure 4 plots the accuracy of the
estimated ground truth as a function of the number
of annotators. The proposed EM algorithm achieves a
higher accuracy than majority voting.

8. Extensions

We briefly describe how the proposed approach can be
extended to categorical, ordinal, and continuous data.

8.1. Categorical labels

Suppose there are K ≥ 2 categories. An example for
categorical data from the CAD domain is in Lung-
CAD, where the radiologist needs to label whether a
nodule (known to be precursors of cancer) is a solid, a
part-solid, or a ground glass opacity. We can extend
the previous model and introduce a multinomial pa-
rameter αj

c = (αj
c1, . . . , α

j
cK) for each annotator, where

αj
ck := Pr[yj = k|y = c] and

∑K
k=1 αj

ck = 1. Here αj
ck

denotes the probability that the annotator j assigns
class k to an instance given the true class is c. When
K = 2, αj

11 and αj
00 are sensitivity and specificity, re-

spectively. A similar EM algorithm can be derived.

8.2. Ordinal labels

In some situations, the outputs have an ordering
among the labels. Let yj

i ∈ {1, . . . ,K} be the label
assigned to the ith instance by the jth expert. Note
that there is an ordering in the labels 1 < . . . < K. A
simple approach is to convert the ordinal data into a
series of binary data (Frank & Hall, 2001). Specifically
the K class ordinal labels are transformed into K − 1
binary class labels as follows: For c = 1, . . . , K − 1,
yjc

i = 1 if yj
i > c and 0 otherwise. Applying the

same procedure used for binary labels we can esti-
mate Pr[yi > c] for c = 1, . . . ,K − 1. The proba-
bility of the actual class values can then be obtained
as Pr[yi = c] = Pr[yi > c− 1]− Pr[yi > c].

8.3. Continuous labels

As a part of the annotation process a task for a radiol-
ogist is also to measure the diameter of a nodule. This
constitutes an example where the labels are real num-
bers. This situation can be handled as follows: Let
yj

i ∈ R be the target value assigned to the ith instance
by the jth annotator. The annotator provides a noisy
version of the actual value yi. We will assume a Gaus-
sian noise model with mean yi and inverse-variance
(precision) τ j , i.e., Pr[yj

i |yi, τ
j ] ∼ N (yj

i |yi, 1/τ j). The
unknown precision τ j is a measure of the accuracy
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of each annotator. A similar EM algorithm can be
derived– (1) Given yi learn a regression function and
estimate the precision for each annotator. (2) Given
the precision for each annotator refine yi.

9. Related work

There has been some work in the biostatistics
community–see (Dawid & Skeene, 1979; Hui & Zhou,
1998) and references therein–on latent variable mod-
els where the task is to get an estimate of the error
rates based on the results from multiple diagnostic
tests without a gold standard. In the machine learn-
ing community (Smyth et al., 1995) first addressed
the same problem in the context of labeling volca-
noes. There has been recent interest in the natural
language processing (Sheng et al., 2008; Snow et al.,
2008) and computer vision (Sorokin & Forsyth, 2008)
communities where they show that using annotations
from many people can be potentially as good as that
provided by an expert. There is also some theoretical
work (see (Lugosi, 1992) and reference therein) dealing
with multiple experts.

We differ from the previous body of work in the fol-
lowing aspects–(1) Unlike (Dawid & Skeene, 1979;
Smyth et al., 1995) which just focused on estimating
the ground truth, we specifically address the issue of
learning a classifier. Estimating the ground truth and
the expert/classifer performance is a byproduct of our
proposed algorithm. (2) To learn a classifier (Smyth,
1995) propose to first estimate the ground truth and
then use the probabilistic ground truth to learn a clas-
sifier. In contrast, our proposed algorithm learns the
classifier and the ground truth jointly. Our experi-
ments (see Figure 2) show that the classifier learnt
and ground truth obtained by the proposed algorithm
is superior to that obtained by other procedures which
first estimates the ground truth and then learns the
classifier. (3) Our solution is more general and can
be easily extended to categorical, ordinal, and contin-
uous data. It can also used in conjunction with any
supervised learning algorithm.

10. Conclusions and future work

In this paper we proposed a Bayesian framework for
supervised learning in the presence of multiple an-
notators providing labels but no absolute gold stan-
dard. The proposed algorithm iteratively establishes
a particular gold standard, measures the performance
of the annotators given that gold standard, and then
refines the gold standard based on the performance
measures. The proposed algorithm can handle bi-

nary/categorical/ordinal classification and regression.
We made two key assumptions–(1) the experts perfor-
mance does not depend on the feature vector and (2)
the experts are independent. We are currently explor-
ing strategies to relax these two assumptions.
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