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Binary Classification
Predict whether an example belongs to class ’1’ or class ’0’

Computer Aided Diagnosis

Given a region in a mammogram predict whether it is cancer(1) or not(0).
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Binary Classification
Predict whether an example belongs to class ’1’ or class ’0’

Computer Aided Diagnosis

Given a region in a mammogram predict whether it is cancer(1) or not(0).

Text Categorization

Given a text predict whether it pertains to a given topic(1) or not(0).

Binary Classifier

Given a feature vector x ∈ Rd predict the class label y ∈ {1, 0}.
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Linear Binary Classifier

Given a feature vector x ∈ Rd and a weight vector w ∈ Rd
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Linear Binary Classifier

Given a feature vector x ∈ Rd and a weight vector w ∈ Rd

y =

{
1 if wT x > θ
0 if wT x < θ

.
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Linear Binary Classifier

Given a feature vector x ∈ Rd and a weight vector w ∈ Rd

y =

{
1 if wT x > θ
0 if wT x < θ

.

The threshold θ determines the operating point of the classifier.

The ROC curve is obtained as θ is swept from −∞ to ∞.

Training/Learning a classifier implies

Given training data D consisting of N examples D = {xi , yi}
N
i=1

Choose the weight vector w .
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Labels for the training data

Single Instance Learning

every example xi has a label yi ∈ {0, 1}
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Labels for the training data

Single Instance Learning

every example xi has a label yi ∈ {0, 1}

Multiple Instance Learning

a group of examples (bag) xi = {xij ∈ Rd}Ki

j=1 share a common label
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Single ’vs’ Multiple Instance Learning
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MIL applications

A natural framework for many applications and often found to be
superior than a conventional supervised learning approach.

Drug Activity Prediction.

Face Detection.

Stock Selection

Content based image retrieval.

Text Classification.

Protein Family Modeling.

Computer Aided Diagnosis.
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Computer Aided Diagnosis as a MIL problem
Digital Mammography
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Computer Aided Diagnosis as a MIL problem
Pulmonary Embolism Detection
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Our notion of Bags

Bag

A bag contains many instances.
All the instances in a bag share the same label.

Vikas C. Raykar (Siemens) ICML 2008 July 8, 2008 10 / 41



Our notion of Bags

Bag

A bag contains many instances.
All the instances in a bag share the same label.

Positive Bag

A bag is labeled positive if it contains at least one positive instance.

For a radiologist

A lesion is detected if at least one of the candidate which overlaps with it
is detected.
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Our notion of Bags

Bag

A bag contains many instances.
All the instances in a bag share the same label.

Positive Bag

A bag is labeled positive if it contains at least one positive instance.

For a radiologist

A lesion is detected if at least one of the candidate which overlaps with it
is detected.

Negative Bag

A negative bag means that all instances in the bag are negative.
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MIL Illustration
Single instance Learning ’vs’ Multiple instance learning

x1

x2

x1

x2
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Proposed algorithm
Key features

MIRVM–Multiple Instance Relevance Vector Machine

Logistic Regression classifier which handles MIL scenario.

Joint feature selection and classifier learning in a Bayesian paradigm.

Extension to multi-task learning.

Very fast.

Easy to use. No tuning parameters.
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Training Data
Consists of N bags

Notation

We represent an instance as a feature vector x ∈ Rd .
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Training Data
Consists of N bags

Notation

We represent an instance as a feature vector x ∈ Rd .

A bag which contains K instances is denoted by boldface
x = {xj ∈ Rd}K

j=1.

The label of a bag is denoted by y ∈ {0, 1}.

Training Data

The training data D consists of N bags D = {xi , yi}
N
i=1, where

xi = {xij ∈ Rd}Ki

j=1 is a bag containing Ki instances

and share the same label yi ∈ {0, 1}.
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Classifier form
We consider linear classifiers

Linear Binary Classifier

Acts on a given instance fw (x) = wT x
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Classifier form
We consider linear classifiers

Linear Binary Classifier

Acts on a given instance fw (x) = wT x

y =

{
1 if wT x > θ
0 if wT x < θ

.
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Single Instance Model
Logistic regression

Link function

The probability for the positive class is modeled as a logistic sigmoid
acting on the linear classifier fw , i.e.,

p(y = 1|x) = σ(w⊤x),

where σ(z) = 1/(1 + e−z).
We modify this for the multiple instance learning scenario.
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Multiple Instance Model
Logistic regression

Positive Bag

A bag is labeled positive if it contains at least one positive instance.

p(y = 1|x) = 1 − p(all instances are negative)

= 1 −
K∏

j=1

[1 − p(y = +1|xj )] = 1 −
K∏

j=1

[
1 − σ(w⊤xj)

]
,

where the bag x = {xj}
K
j=1 contains K examples.
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Multiple Instance Model
Logistic regression

Positive Bag

A bag is labeled positive if it contains at least one positive instance.

p(y = 1|x) = 1 − p(all instances are negative)

= 1 −
K∏

j=1

[1 − p(y = +1|xj )] = 1 −
K∏

j=1

[
1 − σ(w⊤xj)

]
,

where the bag x = {xj}
K
j=1 contains K examples.

Negative Bag

A negative bag means that all instances in the bag are negative.

p(y = 0|x) =

K∏

j=1

p(y = 0|xj) =

K∏

j=1

[
1 − σ(w⊤xj)

]
.
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Maximum Likelihood (ML) Estimator

ML estimate

Given the training data D the ML estimate for w is given by

ŵML = arg max
w

[log p(D|w)] .
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Maximum Likelihood (ML) Estimator

ML estimate

Given the training data D the ML estimate for w is given by

ŵML = arg max
w

[log p(D|w)] .

Log-likelihood

Assuming that the training bags are independent

log p(D|w) =

N∑

i=1

yi log pi + (1 − yi ) log(1 − pi ).

where pi = 1 −
∏Ki

j=1

[
1 − σ(w⊤xij)

]
is the probability that the i th bag xi

is positive.
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MAP estimator
Regularization

ML estimator can exhibit severe over-fitting especially for high-dimensional
data.
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MAP estimator
Regularization

ML estimator can exhibit severe over-fitting especially for high-dimensional
data.

MAP estimator

Use a prior on w and then find the maximum a-posteriori (MAP) solution.

ŵMAP = arg max
w

p(w/D)

= arg max
w

[log p(D/w) + log p(w)] .
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Our prior

Gaussian Prior

Zero mean Gaussian with inverse variance (precision) αi .

p(wi |αi ) = N (wi |0, 1/αi ).

We assume that individual weights are independent.

p(w) =

d∏

i=1

p(wi |αi ) = N (w |0,A−1).

A = diag(α1 . . . αd)-also called hyper-parameters.
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The final MAP Estimator

The optimization problem

Substituting for the log likelihood and the prior we have

ŵMAP = arg max
w

L(w).

where

L(w) =

[
N∑

i=1

yi log pi + (1 − yi ) log(1 − pi )

]
−

w⊤Aw

2
,
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The final MAP Estimator

The optimization problem

Substituting for the log likelihood and the prior we have

ŵMAP = arg max
w

L(w).

where

L(w) =

[
N∑

i=1

yi log pi + (1 − yi ) log(1 − pi )

]
−

w⊤Aw

2
,

Newton-Raphson method

w t+1 = w t − ηH−1g,

where g is the gradient vector, H is the Hessian matrix, and η is the step
length.
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Feature Selection
Choosing the hyper-parameters

We imposed a prior of the form p(w) = N (w |0,A−1), parameterized
by d hyper-parameters A = diag(α1 . . . αd).
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Vikas C. Raykar (Siemens) ICML 2008 July 8, 2008 23 / 41



Feature Selection
Choosing the hyper-parameters

We imposed a prior of the form p(w) = N (w |0,A−1), parameterized
by d hyper-parameters A = diag(α1 . . . αd).

If we know the hyper-parameters we can compute the MAP estimate.

As the precision αk → ∞, i.e, the variance for wk tends to zero (thus
concentrating the prior sharply at zero).

posterior ∝ likelihood × prior

Hence, regardless of the evidence of the training data, the posterior
for wk will also be sharply concentrated on zero.
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Thus that feature will not affect the classification result-hence, it is
effectively removed out via feature selection.

Vikas C. Raykar (Siemens) ICML 2008 July 8, 2008 23 / 41



Feature Selection
Choosing the hyper-parameters

We imposed a prior of the form p(w) = N (w |0,A−1), parameterized
by d hyper-parameters A = diag(α1 . . . αd).

If we know the hyper-parameters we can compute the MAP estimate.

As the precision αk → ∞, i.e, the variance for wk tends to zero (thus
concentrating the prior sharply at zero).

posterior ∝ likelihood × prior

Hence, regardless of the evidence of the training data, the posterior
for wk will also be sharply concentrated on zero.

Thus that feature will not affect the classification result-hence, it is
effectively removed out via feature selection.

Therefore, the discrete optimization problem corresponding to feature
selection, can be more easily solved via an easier continuous
optimization over hyper-parameters.

Vikas C. Raykar (Siemens) ICML 2008 July 8, 2008 23 / 41



Feature Selection
Choosing the hyper-parameters

We imposed a prior of the form p(w) = N (w |0,A−1), parameterized
by d hyper-parameters A = diag(α1 . . . αd).

If we know the hyper-parameters we can compute the MAP estimate.

As the precision αk → ∞, i.e, the variance for wk tends to zero (thus
concentrating the prior sharply at zero).

posterior ∝ likelihood × prior

Hence, regardless of the evidence of the training data, the posterior
for wk will also be sharply concentrated on zero.

Thus that feature will not affect the classification result-hence, it is
effectively removed out via feature selection.

Therefore, the discrete optimization problem corresponding to feature
selection, can be more easily solved via an easier continuous
optimization over hyper-parameters.

Vikas C. Raykar (Siemens) ICML 2008 July 8, 2008 23 / 41



Feature Selection
Choosing the hyper-parameters to maximize the marginal likelihood

Type-II marginal likelihood approach for prior selection

Â = arg max
A

p(D|A) = arg max
A

∫
p(D|w)p(w |A)dw .
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Â = arg max
A

p(D|A) = arg max
A

∫
p(D|w)p(w |A)dw .

What hyper-parameters best describe the observed data?

Vikas C. Raykar (Siemens) ICML 2008 July 8, 2008 24 / 41



Feature Selection
Choosing the hyper-parameters to maximize the marginal likelihood

Type-II marginal likelihood approach for prior selection

Â = arg max
A

p(D|A) = arg max
A

∫
p(D|w)p(w |A)dw .

What hyper-parameters best describe the observed data?

Not easy to compute.

We use an approximation to the marginal likelihood via the Taylor
series expansion around the MAP estimate.
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Feature Selection
Choosing the hyper-parameters to maximize the marginal likelihood

Type-II marginal likelihood approach for prior selection

Â = arg max
A

p(D|A) = arg max
A

∫
p(D|w)p(w |A)dw .

What hyper-parameters best describe the observed data?

Not easy to compute.

We use an approximation to the marginal likelihood via the Taylor
series expansion around the MAP estimate.

Approximation to log marginal likelihood log p(D|A)

log p(D|ŵMAP) −
1

2
ŵ⊤

MAPAŵMAP +
1

2
log |A| −

1

2
log | − H(ŵMAP,A)|.
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Feature Selection
Choosing the hyper-parameters

Update Rule for hyperparameters

A simple update rule for the hyperparameters can be written by equating
the first derivative to zero.

αnew
i =

1

w2
i + Σii

,

where Σii is the i th diagonal element of H−1(ŵMAP,A)I.
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Feature Selection
Choosing the hyper-parameters

Update Rule for hyperparameters

A simple update rule for the hyperparameters can be written by equating
the first derivative to zero.

αnew
i =

1

w2
i + Σii

,

where Σii is the i th diagonal element of H−1(ŵMAP,A)I.

Relevance vector Machine for MIL

In an outer loop we update the hyperparameters A.

In an inner loop we find the MAP estimator ŵMAP given A.

After a few iterations we find that the hyperparameters for several
features tend to infinity.

This means that we can simply remove those irrelevant features.
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Benchmark Experiments

Datasets

Dataset Features positive negative
examples bags examples bags

Musk1 166 207 47 269 45

Musk2 166 1017 39 5581 63

Elephant 230 762 100 629 100

Tiger 230 544 100 676 100
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Experiments

Methods compared

MI RVM Proposed method.

MI Proposed method without feature selection.

RVM Proposed method without MIL.

MI LR MIL variant of Logistic Regression. (Settles et al., 2008)

MI SVM MIL variant of SVM. (Andrews et al., 2002)

MI Boost MIL variant of AdaBoost. (Xin and Frank, 2004)
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Experiments

Evaluation Procedure

10-fold stratified cross-validation.

We plot the Receiver Operating Characteristics (ROC) curve for
various algorithms.

The True Positive Rate is computed on a bag level.

The ROC curve is plotted by pooling the prediction of the algorithm
across all folds.

We also report the area under the ROC curve (AUC).
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AUC Comparison

Area under the ROC Curve

Set MIRVM RVM MIBoost MILR MISVM MI

Musk1 0.942 0.951 0.899 0.846 0.899 0.922

Musk2 0.987 0.985 0.964 0.795 - 0.982

Elephant 0.962 0.979 0.828 0.814 0.959 0.953

Tiger 0.980 0.970 0.890 0.890 0.945 0.956

Observations

(1) The proposed method MIRVM and RVM clearly perform better.
(2) For some datasets RVM is better, i.e, MIL does not help.
(3) Feature selection helps (MIRVM is better than MI).
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ROC Comparison
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Features selected

The average number of features selected

Dataset Number selected by selected by selected by
of features RVM MI RVM MI Boost

Musk1 166 39 14 33

Musk2 166 90 17 32

Elephant 230 42 16 33

Tiger 230 56 19 37

Observation

Multiple instance learning (MIRVM) selects much less features than single
instance learning (RVM).
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PECAD Experiments
Selected 21 out of 134 features.
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Multi-task Learning

Learning multiple related classifiers.
May have a shortage of training data for learning classifiers for a task.
Multi-task learning can exploit information from other datasets.
The classifiers share a common prior.
A separate classifier is trained for each task.
However the optimal hyper-parameters of the shared prior are estimated
from all the data sets simultaneously.
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Multi-task Learning
LungCAD nodule (solid and GGOs) detection
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Multi-task Learning Experiments
The bag level FROC curve for the solid validation set.
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Conclusion

MIRVM–Multiple Instance Relevance Vector Machine

Joint feature selection and classifier learning in the MIL scenario.

MIL selects much sparser models.

More accurate and faster than some competing methods.

Extension to multi-task learning.
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