Nonparametric prior for adaptive sparsity

Vikas C. Raykar¹ and Linda H. Zhao²

¹ Siemens Healthcare, Malvern, PA 19355 USA
 ² University of Pennsylvania, Philadelphia, PA 19104, USA

May 14, 2010

The sparse normal mean problem

With adaptive sparsity

 $\mathbf{x} = (x_1, x_2, \dots, x_p)$ are p scalar observations satisfying

$$x_i = \mu_i + \epsilon_i,$$

where ϵ_i are independent and identically distributed as $\epsilon_i \sim \mathcal{N}(0, 1)$.

- Find a good estimate μ̂ of the unknown parameters μ = (μ₁, μ₂, ..., μ_p).
- μ could be *sparse*, *i.e.*, a large fraction of μ_i 's are 0.
- However we do not know the amount of sparsity.
- The estimate should adapt to the sparsity.

< 回 ト < 三 ト < 三 ト

Two examples with desired property

Estimator should adapt to the amount of sparsity

Applications

- (1) Shrinkage and feature selection for high-dimensional classification.
- (2) Multiple-hypothesis testing.
- (3) Genomics and bio-informatics.
- (4) Model selection in machine learning.
- (5) Signal processing/Astronomical image processing.
- (6) Wavelet smoothing.

Commonly used sparsity promoting priors

Parametric shrinkage priors

- Normal prior $\gamma_a(\mu_i) = (2\pi a^2)^{-1/2} \exp(-\mu_i^2/2a^2)$
- Laplace prior $\gamma_a(\mu_i) = 0.5a \exp\left(-a|\mu_i|\right)$
- Discrete mixture priors $w\delta(\mu_i) + (1 w)\gamma_a(\mu_i)$

The hyperparameter a (and w) controls the sparsity of the solution. Chosen by either

- Cross-validation.
- Evidence Maximization [Type II maximum-likelihood].

Type II maximum-likelihood

How well does the estimated hyperparameter adapt the sparsity ? Depends on how misspecified the prior is.

E Sac

イロト イポト イヨト イヨト

Discrete Mixture Prior

Mixture prior

$$p(\mu_i|w,\gamma) = w\delta(\mu_i) + (1-w)\gamma(\mu_i)$$

 $-w \in [0,1]$ is the mixture parameter-proportion of $\{\mu_i = 0\}$.

-We consider w as a hyperparameter.

– γ is the non-zero part of the prior.

– For the nonzero part of the prior γ two commonly used parametric priors are normal and Laplace.

Non-parametric Mixture prior

Parametric priors are not very robust because of its specific assumption on the shape of the prior.

Our simulation results show that the estimate for w is biased and depends heavily on the mismatch between the distribution of the observation and shape of the prior used.

In this work we propose to use a completely unspecified density for the non-zero part of the mixture. The prior is completely nonparametric, i.e., there is no specific functional form.

 $p(\mu_i|w,\gamma) = w\delta(\mu_i) + (1-w)\gamma(\mu_i)$

(1) We do not specify any functional form for γ . (2) We do not really need to specify any functional form for γ .

(日) (周) (三) (三)

Posterior

If we know the hyperparameter w

Mixture prior

$$p(\mu_i|w,\gamma) = w\delta(\mu_i) + (1-w)\gamma(\mu_i)$$

Posterior

$$p(\mu_i|x_i, w, \gamma) = \tilde{p}_i \delta(\mu_i) + (1 - \tilde{p}_i) G(\mu_i)$$

$$\tilde{p}_i = p(\mu_i = 0 | x_i, w, \gamma) = \frac{w \mathcal{N}(x_i | 0, 1)}{w \mathcal{N}(x_i | 0, 1) + (1 - w)g(x_i)}.$$

$$G(\mu_i) = p(\mu_i | x_i, w, \gamma, \mu_i \neq 0) = \mathcal{N}(\mu_i | x_i, 1)\gamma(\mu_i)/g(x_i).$$

where

$$g(x_i) = \int \mathcal{N}(\mu_i | x_i, 1) \gamma(\mu_i) d\mu_i$$

Note that g is the marginal density of the observations corresponding to those $\{\mu_i \neq 0\}$.

Posterior mean

We will use the mean of the posterior as our point estimate for μ .

So if we know the

(1) mixing parameter w

(2) the marginal g and its derivative g'

then the proposed estimate for $\boldsymbol{\mu}$ is given by

$$\hat{u}_i = (1 - \tilde{p}_i) \left[x_i + \frac{g'(x_i)}{g(x_i)} \right]$$

where

$$ilde{
ho}_i = rac{w\mathcal{N}(x_i|0,1)}{w\mathcal{N}(x_i|0,1)+(1-w)g(x_i)} \quad g(x_i) = \int \mathcal{N}(\mu_i|x_i,1)\gamma(\mu_i)d\mu_i$$

The hyperparameter w can be estimated by maximizing the marginal likelihood and the posterior mean is then computed by plugging in the estimated \hat{w} .

But what about g ?

Raykar and Zhao (Siemens and UPenn)

So what about *g***?**

$$g(x_i) = \int \mathcal{N}(\mu_i | x_i, 1) \gamma(\mu_i) d\mu_i.$$

For example if we use the normal prior $\gamma(\mu_i) = \mathcal{N}(\mu_i|0, a^2)$ then $g(x_i) = \mathcal{N}(x_i|0, 1 + a^2)$. Hence

$$\hat{\mu}_i = (1 - \tilde{p}_i) \frac{a^2}{1 + a^2} x_i.$$

Both w and a are considered as hyper-parameters and we can estimate them by maximizing the marginal likelihood. We could also use a Laplace prior instead of the normal.

A crucial property of our method is that we avoid selecting a specific prior family for the nonzero part of the mixture prior. Note that all we need is $g(x_i)$ and not $\gamma(\mu_i)$.

Estimating *w*-the fraction of zeros

Type II maximum likelihood

w is estimated by maximizing the log-marginal likelihood.

$$\widehat{w} = \arg \max_{w} \log m(\mathbf{x}|w).$$

The log-marginal can be written as

$$\log m(\mathbf{x}|w,\gamma) = \sum_{i=1}^{n} \log \left[w \mathcal{N}(x_i|0,1) + (1-w)g(x_i)\right]$$

But to estimate w we need to know $g(x_i)$

Note that γ , the prior for the non-zero part is only involved through the marginal $g(x_i) = \int \mathcal{N}(\mu_i | x_i, 1) \gamma(\mu_i) d\mu_i$. If we can estimate $g(x_i)$ directly then we do not have to specify any prior for the non-zero part.

(日) (周) (三) (三)

Estimating *g*-marginal of the non-zero part

Kernel density estimate

Non-parametric kernel density estimate

$$\hat{g}(x) = rac{1}{ ilde{p}h}\sum_{j=1}^{p}(1-\delta_j) \mathcal{K}\left(rac{x-x_j}{h}
ight)$$

where

•
$$\delta_j = 1$$
 if $\mu_j = 0$ and zero otherwise.

• K is the kernel.

- *h* is the *bandwidth* of the kernel.
- $\tilde{p} = \sum_{j=1}^{p} (1 \delta_j).$

But we do not know δ_i .

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Estimating both w and g simultaneously

EM algorithm [See paper for more details]

• Compute p_i using the current estimate \hat{w} and $g_e(x_i)$ as follows

$$p_i = \frac{\hat{w}\mathcal{N}(x_i|0,1)}{\hat{w}\mathcal{N}(x_i|0,1) + (1-\hat{w})g_e(x_i)}$$

• Re-estimate \hat{w} and $\hat{g}(z_i)$ using the current estimate of p_i as follows

$$\hat{w}=\frac{1}{p}\sum_{i=1}^{p}p_{i}.$$

n

$$g_e(x_i) = rac{1}{ ilde{p}h} \sum_{j=1}^p (1-p_j) K\left(rac{x_i-x_j}{h}
ight).$$

Simulations

Setup

- A sequence μ of length p = 500 is generated with different degree of sparsity and non-zero distribution.
 - ▶ *w*-sparsity parameter, the fraction of zeros in the sequence.
 - V controls the strength of the non-zero part.
 - The non-zero μ 's are sampled from different distributions.
 - The observation x_i is generated from $\mathcal{N}(\mu_i, 1)$.

Sample Results

Moderately sparse signal

Raykar and Zhao (Siemens and UPenn)

AI & Statistics 2010

May 14, 2010 15 / 20

Simulations

Methods compared

Mixture prior

$$p(\mu_i|w,\gamma) = w\delta(\mu_i) + (1-w)\gamma(\mu_i)$$

- Non-parametric [Proposed] γ is unspecified.
- Parametric normal [Johnstone and Silverman 2005] γ is a normal density.
- Parametric laplace [Johnstone and Silverman 2005] γ is a Laplace density.
- Non-parametric without mixing [similar to Eitan and Brown 2008] γ is unspecified but no mixing, *i.e.*, w = 0. In this case w cannot be estimated.

Simulation Results

Estimated \hat{w}

Simulation Results

Mean squared error

High dimensional classification

Diagonal Linear Discriminant analysis

$$f(\mathbf{x}) = \sum_{i=1}^{p} \beta_i \left(\frac{x_i - \mu_i}{\sigma_i} \right), \quad \beta_i = \frac{\mu_{1i} - \mu_{0i}}{\sigma_i}$$

Use the proposed procedure to shrink β_i .

Conclusions

(1) Non-parametric mixture prior

$$p(\mu_i|w,\gamma) = w\delta(\mu_i) + (1-w)\gamma(\mu_i)$$

- (2) We impose no structural form on γ .
- (2) Adaptive sparsity.
- (3) Iterative EM algorithm to estimate w.

(4) Estimate of w is more accurate and the MSE much lower than parametric mixture priors.