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The sparse normal mean problem
With adaptive sparsity

x = (x1, x2, . . . , xp) are p scalar observations satisfying

xi = µi + ǫi ,

where ǫi are independent and identically distributed as ǫi ∼ N (0, 1).

Find a good estimate µ̂ of the unknown parameters
µ = (µ1, µ2, . . . , µp).

µ could be sparse, i.e., a large fraction of µi ’s are 0.

However we do not know the amount of sparsity.

The estimate should adapt to the sparsity.
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Two examples with desired property
Estimator should adapt to the amount of sparsity
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Applications

(1) Shrinkage and feature selection for high-dimensional classification.
(2) Multiple-hypothesis testing.
(3) Genomics and bio-informatics.
(4) Model selection in machine learning.
(5) Signal processing/Astronomical image processing.
(6) Wavelet smoothing.

Raykar and Zhao (Siemens and UPenn) AI & Statistics 2010 May 14, 2010 4 / 20



Commonly used sparsity promoting priors

Parametric shrinkage priors

Normal prior γa(µi ) = (2πa2)
−1/2

exp (−µ2
i /2a

2)

Laplace prior γa(µi ) = 0.5a exp (−a|µi |)

Discrete mixture priors wδ(µi ) + (1− w)γa(µi )

The hyperparameter a (and w) controls the sparsity of the solution.
Chosen by either

Cross-validation.

Evidence Maximization [Type II maximum-likelihood].

Type II maximum-likelihood

How well does the estimated hyperparameter adapt the sparsity ?
Depends on how misspecified the prior is.
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Discrete Mixture Prior

Mixture prior

p(µi |w , γ) = wδ(µi ) + (1− w)γ(µi )

–w ∈ [0, 1] is the mixture parameter–proportion of {µi = 0}.
–We consider w as a hyperparameter.
– γ is the non-zero part of the prior.
– For the nonzero part of the prior γ two commonly used parametric priors
are normal and Laplace.
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Non-parametric Mixture prior

Parametric priors are not very robust because of its specific assumption on
the shape of the prior.
Our simulation results show that the estimate for w is biased and depends
heavily on the mismatch between the distribution of the observation and
shape of the prior used.
In this work we propose to use a completely unspecified density for the
non-zero part of the mixture. The prior is completely nonparametric, i.e.,
there is no specific functional form.

p(µi |w , γ) = wδ(µi ) + (1− w)γ(µi )

(1) We do not specify any functional form for γ.
(2) We do not really need to specify any functional form for γ.
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Posterior
If we know the hyperparameter w

Mixture prior

p(µi |w , γ) = wδ(µi ) + (1− w)γ(µi )

Posterior

p(µi |xi ,w , γ) = p̃iδ(µi ) + (1− p̃i )G (µi)

p̃i = p(µi = 0|xi ,w , γ) =
wN (xi |0, 1)

wN (xi |0, 1) + (1− w)g(xi )
.

G (µi) = p(µi |xi ,w , γ, µi 6= 0) = N (µi |xi , 1)γ(µi )/g(xi ).

where

g(xi ) =

∫
N (µi |xi , 1)γ(µi )dµi

Note that g is the marginal density of the observations corresponding to
those {µi 6= 0}.
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Posterior mean
We will use the mean of the posterior as our point estimate for µ.

So if we know the
(1) mixing parameter w
(2) the marginal g and its derivative g ′

then the proposed estimate for µ is given by

µ̂i = (1 − p̃i )

[
xi +

g ′(xi)

g(xi )

]

where

p̃i =
wN (xi |0, 1)

wN (xi |0, 1) + (1− w)g(xi )
g(xi ) =

∫
N (µi |xi , 1)γ(µi )dµi

The hyperparameter w can be estimated by maximizing the marginal
likelihood and the posterior mean is then computed by plugging in the
estimated ŵ .
But what about g ?
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So what about g?

g(xi ) =

∫
N (µi |xi , 1)γ(µi )dµi .

For example if we use the normal prior γ(µi) = N (µi |0, a
2) then

g(xi ) = N (xi |0, 1 + a2). Hence

µ̂i = (1− p̃i )
a2

1 + a2
xi .

Both w and a are considered as hyper-parameters and we can estimate
them by maximizing the marginal likelihood. We could also use a Laplace
prior instead of the normal.

A crucial property of our method is that we avoid selecting a specific prior
family for the nonzero part of the mixture prior.
Note that all we need is g(xi ) and not γ(µi ).
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Estimating w–the fraction of zeros
Type II maximum likelihood

w is estimated by maximizing the log-marginal likelihood.

ŵ = argmax
w

logm(x|w).

The log-marginal can be written as

logm(x|w , γ) =

n∑

i=1

log [wN (xi |0, 1) + (1− w)g(xi )]

But to estimate w we need to know g(xi )

Note that γ, the prior for the non-zero part is only involved through the
marginal g(xi ) =

∫
N (µi |xi , 1)γ(µi )dµi . If we can estimate g(xi ) directly

then we do not have to specify any prior for the non-zero part.
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Estimating g–marginal of the non-zero part
Kernel density estimate

Non-parametric kernel density estimate

ĝ(x) =
1

p̃h

p∑

j=1

(1− δj )K

(
x − xj

h

)

where

δj = 1 if µj = 0 and zero otherwise.

K is the kernel.

h is the bandwidth of the kernel.

p̃ =
∑p

j=1(1− δj).

But we do not know δj .
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Estimating both w and g simultaneously
EM algorithm [ See paper for more details ]

Compute pi using the current estimate ŵ and ge(xi) as follows

pi =
ŵN (xi |0, 1)

ŵN (xi |0, 1) + (1− ŵ)ge(xi )
.

Re-estimate ŵ and ĝ(zi) using the current estimate of pi as follows

ŵ =
1

p

p∑

i=1

pi .

ge(xi ) =
1

p̃h

p∑

j=1

(1− pj)K

(
xi − xj

h

)
.
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Simulations
Setup

A sequence µ of length p = 500 is generated with different degree of
sparsity and non-zero distribution.

◮ w–sparsity parameter, the fraction of zeros in the sequence.
◮ V controls the strength of the non-zero part.
◮ The non-zero µ’s are sampled from different distributions.
◮ The observation xi is generated from N (µi , 1).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) UnimodalConstant

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) BimodalConstant

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) UnimodalGaussian

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) BimodalGaussian

Raykar and Zhao (Siemens and UPenn) AI & Statistics 2010 May 14, 2010 14 / 20



Sample Results
Moderately sparse signal
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Simulations
Methods compared

Mixture prior

p(µi |w , γ) = wδ(µi ) + (1− w)γ(µi )

1 Non-parametric [Proposed] γ is unspecified.

2 Parametric normal [Johnstone and Silverman 2005] γ is a normal
density.

3 Parametric laplace [Johnstone and Silverman 2005] γ is a Laplace
density.

4 Non-parametric without mixing [similar to Eitan and Brown 2008] γ is
unspecified but no mixing, i.e., w = 0. In this case w cannot be
estimated.
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Simulation Results
Estimated ŵ
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Simulation Results
Mean squared error

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Less Sparse ...       Sparsity      ... More Sparse

M
S

E
 (a

ve
ra

ge
d 

ov
er

 1
00

 tr
ia

ls
)

p=500 BimodalGaussian V=6

Nonparametric
Nonparametric without mixing
Parametric normal
Parametric laplace
MLE

Raykar and Zhao (Siemens and UPenn) AI & Statistics 2010 May 14, 2010 18 / 20



High dimensional classification
Diagonal Linear Discriminant analysis

f (x) =

p∑

i=1

βi

(
xi − µi

σi

)
, βi =

µ1i − µ0i

σi
.

Use the proposed procedure to shrink βi .
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Conclusions

(1) Non-parametric mixture prior

p(µi |w , γ) = wδ(µi ) + (1− w)γ(µi )

(2) We impose no structural form on γ.
(2) Adaptive sparsity.
(3) Iterative EM algorithm to estimate w .
(4) Estimate of w is more accurate and the MSE much lower than
parametric mixture priors.
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