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The sparse normal mean problem
With adaptive sparsity

x = (X1, X2,...,Xp) are p scalar observations satisfying
Xi = pi+ €

where €; are independent and identically distributed as ¢; ~ N(0,1).

@ Find a good estimate & of the unknown parameters
M= (”17”27 s 7MP)'
@ p could be sparse, i.e., a large fraction of u;'s are 0.

@ However we do not know the amount of sparsity.

@ The estimate should adapt to the sparsity.
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Two examples with desired property

Estimator should adapt to the amount of sparsity
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Applications

(1) Shrinkage and feature selection for high-dimensional classification.
(2) Multiple-hypothesis testing.

(3) Genomics and bio-informatics.

(4) Model selection in machine learning.

(5) Signal processing/Astronomical image processing.

(6) Wavelet smoothing.
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Commonly used sparsity promoting priors

Parametric shrinkage priors

@ Normal prior v,(ui) = (277‘92)_1/2 exp (—u?/2a%)
o Laplace prior v,(u;) = 0.5aexp (—a|ui|)
@ Discrete mixture priors wd(u;) + (1 — w)ya(ui)

The hyperparameter a (and w) controls the sparsity of the solution.
Chosen by either

@ Cross-validation.

@ Evidence Maximization [Type Il maximum-likelihood].

Type Il maximum-likelihood

How well does the estimated hyperparameter adapt the sparsity ?
Depends on how misspecified the prior is.
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Discrete Mixture Prior

Mixture prior

p(uilw,v) = wo(pi) + (1 — w)y(pi)

-w € [0,1] is the mixture parameter—proportion of {u; = 0}.

—We consider w as a hyperparameter.

— 7 is the non-zero part of the prior.

— For the nonzero part of the prior v two commonly used parametric priors
are normal and Laplace.

v

normal mixture prior w=0.60 a=1.41 laplace mixture prior w=0.60 a=1.00
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Non-parametric Mixture prior

Parametric priors are not very robust because of its specific assumption on
the shape of the prior.

Our simulation results show that the estimate for w is biased and depends
heavily on the mismatch between the distribution of the observation and
shape of the prior used.

In this work we propose to use a completely unspecified density for the
non-zero part of the mixture. The prior is completely nonparametric, i.e.,
there is no specific functional form.

plpilw, 1) = wé(yus) + (1 = w)y(su) )

(1) We do not specify any functional form for .
(2) We do not really need to specify any functional form for ~.
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Posterior

If we know the hyperparameter w

Mixture prior

p(uilw,v) = wo(pui) + (1 — w)y(ui)

Posterior

p(pilxi, w,y) = pid(pi) + (1 — pi) G(pi)

wN (x;|0,1)
xi0,1) + (1 — w)g(x)’
G (1) = p(pilxi, w, vy, pi 7 0) = N (wilxi, 1)y (pi) /g (xi)-

bi = p(pi = 0|xi, w, ) W

where
g(x) = / N (it 1))

Note that g is the marginal density of the observations corresponding to

those {u; # 0}.
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Posterior mean

We will use the mean of the posterior as our point estimate for .
So if we know the

(1) mixing parameter w

(2) the marginal g and its derivative g’

then the proposed estimate for y is given by

fii = (1= pi) [Xi o+ gg’((;,))] J

where

P = e T a) = [ Al 02l

The hyperparameter w can be estimated by maximizing the marginal
likelihood and the posterior mean is then computed by plugging in the
estimated W.

But what about g ?
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So what about g?

g(xi) = /N(u;\x,-,l)’y(u;)dﬂi-

For example if we use the normal prior y(u;) = N(1|0, a®) then
g(xi) = N(xi0,1 + a?). Hence

82

i = (1= pj)——=xi-
fi = (1= Pi)y

Both w and a are considered as hyper-parameters and we can estimate
them by maximizing the marginal likelihood. We could also use a Laplace
prior instead of the normal.

A crucial property of our method is that we avoid selecting a specific prior
family for the nonzero part of the mixture prior.
Note that all we need is g(x;) and not ~(f;).
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Estimating w—the fraction of zeros

Type Il maximum likelihood

w is estimated by maximizing the log-marginal likelihood.

w = arg maxlog m(x|w).
w

The log-marginal can be written as

log m(x|w, ) = > _ log [wA(xi[0,1) + (1 — w)g(x;)]
i=1

But to estimate w we need to know g(x;) )

Note that -y, the prior for the non-zero part is only involved through the
marginal g(x;) = [ N (uilxi, 1)y(pi)dpi. If we can estimate g(x;) directly
then we do not have to specify any prior for the non-zero part.
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Estimating g—marginal of the non-zero part

Kernel density estimate

Non-parametric kernel density estimate

800 = 3 >k ()

j=1

where
@ 0; = 1 if u; = 0 and zero otherwise.
@ K is the kernel.
@ h is the bandwidth of the kernel.

°p= Zf:1(1 — 4j).-

But we do not know ;. J
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Estimating both w and g simultaneously
EM algorithm [ See paper for more details |

@ Compute p; using the current estimate W and ge(x;) as follows

o WA (xi]0,1)
PI= N (al0,1) + (1 — w)ga(x)

@ Re-estimate w and g(z;) using the current estimate of p; as follows

1 P
I?V:—E Pi-
pi:l
() = =301 — pyyic (8
e\Xi) = =7 —
g Phj:1 pJ h
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Simulations
Setup

@ A sequence p of length p = 500 is generated with different degree of
sparsity and non-zero distribution.
» w-—sparsity parameter, the fraction of zeros in the sequence.
» V controls the strength of the non-zero part.
> The non-zero p's are sampled from different distributions.
» The observation x; is generated from N (u;, 1).

N R UV

(a) UnimodalConstant (b) BimodalConstant (C) UnimodalGaussian (d) BimodalGaussian
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Sample Results
Moderately sparse signal

Parameters N=100 w=0.80 V=5 BimodalConstant
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Simulations
Methods compared

Mixture prior J

p(uilw,v) = wo(ui) + (1 — w)y(ui)

© Non-parametric [Proposed] v is unspecified.

@ Parametric normal [Johnstone and Silverman 2005] ~y is a normal
density.

© Parametric laplace [Johnstone and Silverman 2005] v is a Laplace
density.

@ Non-parametric without mixing [similar to Eitan and Brown 2008]  is
unspecified but no mixing, i.e., w = 0. In this case w cannot be
estimated.
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Simulation Results

Estimated w

p=500 BimodalGaussian V=6
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Simulation Results

Mean squared error

p=500 BimodalGaussian V=6
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High dimensional classification

Diagonal Linear Discriminant analysis

o

p
X — 1 1 — Hoi
f(x)ZE Bi ’T'u’ , @.ZM_
i=1 !

Use the proposed procedure to shrink j;.

True Positive Rate (sensitivity)
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Conclusions

(1) Non-parametric mixture prior

p(uilw,v) = wo(ui) + (1 — w)y(ui)

2) We impose no structural form on 7.
2) Adaptive sparsity.
) lterative EM algorithm to estimate w.
4) Estimate of w is more accurate and the MSE much lower than
parametric mixture priors.
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