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Abstract—Interpolating scattered data points is a problem of
wide ranging interest. Ordinary kriging is an optimal scat-
tered data estimator, widely used in geosciences and remote
sensing. A generalized version of this technique, called cok-
riging, can be used for image fusion of remotely sensed data.
However, it is computationally very expensive for large data
sets. We demonstrate the time efficiency and accuracy of ap-
proximating ordinary kriging through the use of fast matrix-
vector products combined with iterative methods. We used
methods based on the fast Multipole methods and nearest
neighbor searching techniques for implementations of the fast
matrix-vector products.

Keywords—geostatistics, image fusion, kriging, approximate
algorithms, fast multipole methods, fast Gauss transform,
nearest neighbors, iterative methods.
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1. INTRODUCTION

Scattered data interpolation is a problem of interest in numer-
ous areas such as electronic imaging, smooth surface model-
ing, and computational geometry [1,2]. Our motivation arises
from applications in geology and mining, which often involve
large scattered data sets and a demand for high accuracy. For
such cases, the method of choice isordinary kriging[3]. This
is because it is a best unbiased estimator [3–5]. Also in re-
mote sensing,image fusionof multi-sensor data is often used
to increase either the spectral or the spatial resolution ofthe
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images involved [6,7]. A generalized version of the ordinary
kriging, calledcokriging [3, 5], can be used for image fusion
of multi-sensor data [8, 9]. Unfortunately, ordinary kriging
interpolant is computationally very expensive to compute ex-
actly. Forn scattered data points, computing the value of
a single interpolant involves solving a dense linear system
of ordern × n, which takesO(n3). This is infeasible for
largen. Traditionally, kriging is solved approximately by lo-
cal approaches that are based on considering only a relatively
small number of points that lie close to the query point [3,5].
There are many problems with this local approach, however.
The first is that determining the proper neighborhood size is
tricky, and is usually solved byad hocmethods such as select-
ing a fixed number of nearest neighbors or all the points lying
within a fixed radius. Such fixed neighborhood sizes may not
work well for all query points, depending on local density
of the point distribution [5]. Local methods also suffer from
the problem that the resulting interpolant is not continuous.
Meyer showed that while kriging produces smooth continu-
ous surfaces, it has zero order continuity along its borders
[10]. Thus, at interface boundaries where the neighborhood
changes, the interpolant behaves discontinuously. Therefore,
it is important to consider and solve the global system for
each interpolant. However, solving such large dense systems
for each query point is impractical.

Recently an approximation approach to kriging has been
proposed based on a technique calledcovariance tapering
[11,12]. However, this approach is not efficient when covari-
ance models have relatively large ranges. Also, finding avalid
taper, as defined in [11], for different covariance functions is
difficult and at times impossible (e.g. Gaussian covariance
model).

In this paper, we address the shortcomings of the previous
approaches through an alternative based on Fast Multipole
Methods (FMM). TheFMM was first introduced by Greengard
and Rokhlin for fast multiplication of a structured matrix by
a vector [13, 14]. If the Gaussian function is used for gen-
erating the matrix entries, the matrix-vector product is called
theGauss transform. We use efficient implementations of the
Gauss transform based on theFMM idea (see [15,16]) in com-
bination with theSYMMLQ iterative method [17] for solving
large ordinary kriging systems. Billingset al. [18] had also
suggested the use of iterative methods in combination with
theFMM for solving such systems.

The remainder of this paper is organized as follows. Section
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2 describes the ordinary kriging system and solving it via an
iterative method. In Section 3 we introduce the matrix-vector
products involved in solving such systems. We mention two
existing efficient and approximate implementations of such
products in Section 4. Section 5 describes our data sets. Our
experiments and results are presented in Sections 6 and 7 re-
spectively. Section 8 concludes this paper.

2. ORDINARY K RIGING VIA I TERATIVE
M ETHODS

Kriging is an interpolation method named after Danie Krige,
a South African mining engineer [5]. Kriging and its vari-
ants have been traditionally used in mining and geostatistics
applications [3–5]. Kriging is also referred to as theGaus-
sian process predictorin the machine learning domain [19].
The most commonly used variant is calledordinary kriging,
which is often referred to as a Best Linear Unbiased Esti-
mator (BLUE) [3, 11]. It is considered to bebestbecause it
minimizes the variance of the estimation error. It islinear
because estimates are weighted linear combination of avail-
able data, and isunbiasedsince it aims to have the mean error
equal to zero [3]. Minimizing the variance of the estimation
error forms the objective function of an optimization prob-
lem. Ensuring unbiasedness of the error imposes a constraint
on this function. Formalizing this objective function withits
constraint results in the following system [3,5,12].

(
C L
LT 0

) (
w
µ

)
=

(
C0

1

)
, (1)

whereC is the matrix of points’ pairwise covariances,L is a
column vector of all ones and of sizen, andw is the vector
of weightswi, . . . , wn. Therefore, the minimization prob-
lem for n points reduces to solving a linear system of size
(n + 1)2, which is impractical for very large data sets via di-
rect approaches. It is also important that matrixC be positive
definite [3, 12]. Pairwise covariances are often modeled as
a function of points’ separation. These functions should re-
sult in a positive definite covariance matrix. Christakos [20]
showed necessary and sufficient conditions for such permis-
sible covariance functions. Two of these valid functions are
the Gaussian and Spherical covariance functions [3,5,20].In
this paper, the Gaussian covariance function is used. For two
pointsxi andxj , the Gaussian covariance function is defined
asCij = exp

(
−3‖xi − xj‖2/a2

)
, wherea is the range of

the covariance function.

For large data sets, it is impractical to solve the ordinary krig-
ing system using direct approaches that takeO(n3) time. It-
erative methods generate a sequence of solutions which con-
verge to the true solution inn iterations. In practice, however,
we loop overk ≪ n iterations [21]. In particular, we used
an iterative method calledSYMMLQ which is appropriate for
solving symmetric systems [17]. Note that the coefficient ma-
trix in the ordinary kriging linear system while symmetric is
not positive definite since it has a zero entry on its diagonal.
Therefore, methods such as conjugate gradient are not appli-
cable here [22]. The actual implementation of theSYMMLQ

method requires oneO(n2) matrix-vector multiplicationper
iteration. The storage isO(n) since the matrix-vector multi-
plication can use elements computed on the fly without stor-
ing the matrix. Empirically the number of iterations required,
k, is generally small compared ton leading to a computa-
tional cost ofO(kn2).

3. MATRIX -VECTOR M ULTIPLICATION

The O(kn2) quadratic complexity is still too high for
large data sets. The core computational step in each
SYMMLQ iteration involves the multiplication of a matrix
C with some vector, sayq. For the Gaussian covari-
ance model the entries of the matrixC are of the form
[C]ij = exp

(
−3‖xi − xj‖2/a2

)
. Hence, thejth ele-

ment of the matrix-vector productCq can be written as
(Cq)j =

∑n

i=1 qi exp
(
−3‖xi − xj‖2/a2

)
–which is the

weighted sum ofn Gaussians each centered atxi and eval-
uated atxj .

Discrete Gauss transform (GT)

The sum of multivariate Gaussians is known as thediscrete
Gauss transformin scientific computing. In general, for each
target point{yj ∈ R

d}m
j=1 (which in our case are the same as

thesource pointsxi) the discrete Gauss transform is defined
as

G(yj) =

n∑

i=1

qie
−

‖xi−yj‖2

h2 , (2)

whereh (in our caseh = a/
√

3) is called thebandwidthof
the Gaussian. Evaluating discrete Gauss transforms form
target points due ton different source locations arises in may
applications. In this paper, theGauss transform(GT) refers to
this direct implementation, which takesO(mn) time.

4. FAST APPROXIMATE M ATRIX -VECTOR
M ULTIPLICATION

Various fast approximation algorithms [15,23] have been pro-
posed to compute the discrete Gauss transform inO(m + n)
time. These algorithms compute the sum to any arbitraryǫ

precision. For anyǫ > 0, we defineĜ to be anǫ-exactap-
proximation toG if the maximum absolute error relative to
the total weightQ =

∑n
i=1 |qi| is upper bounded byǫ, i.e.,

max
yj

[
|Ĝ(yj) − G(yj)|

Q

]
≤ ǫ. (3)

The constant inO(m+n) depends on the desired accuracyǫ,
which however can bearbitrary. At machine precision there
is no difference between the direct and the fast methods. The
method relies on retaining only the first few terms of an infi-
nite series expansion for the Gaussian function. These meth-
ods are inspired by the fast multipole methods (FMM), origi-
nally developed for the fast summation of the potential fields
generated by a large number of sources, such as those arising
in gravitational potential problems [13]. The fast Gauss trans-
form (FGT) is a special case whereFMM ideas were used for
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the Gaussian potential [23]. The improved fast Gauss trans-
form (IFGT) is a similar algorithm based on a single different
factorization and data structure. It is suitable for higherdi-
mensional problems and provides comparable performance
in lower dimensions [15].

Improved fast Gauss transform (IFGT)

IFGT is an efficient algorithm for approximating the Gauss
transform. Thefast Gauss transform, first proposed by
Greengard and Strain [23], is anǫ-exact approximation al-
gorithm for the Gauss transform. This algorithm reduces the
Gauss transform’s computational complexity fromO(mn) to
O(m + n). However, this algorithm’s constant factor grows
exponentially with dimensiond. Later improvements, includ-
ing theIFGT algorithm, reduced this constant factor to asymp-
totically polynomial order in terms ofd. The IFGT algorithm
was first introduced by Yanget al. [15]. Their implementa-
tion did not use a sufficiently tight error bound to be useful
in practice. Also, they did not adaptively select the necessary
parameters to achieve the desired error bound. Raykaret al.
later presented an approach that overcame these shortcom-
ings [16, 24]. We used the implementation due to Raykaret
al. We briefly describe some of the key ideas inIFGT. Please
see [16,24] for more details. For any pointx∗ ∈ R

d the Gauss
Transform atyj can be written as,

G(yj) =

n∑

i=1

qie
−

‖yj−xi‖
2

h2

=

n∑

i=1

qie
−

‖(yj−x∗)−(xi−x∗)‖2

h2 ,

=

n∑

i=1

qie
−

‖xi−x∗‖2

h2 e−
‖yj−x∗‖2

h2 e
2(yj−x∗)·(xi−x∗)

h2 .

(4)

In Equation (4) the first exponential inside the summation
e−‖xi−x∗‖

2/h2

depends only on the source coordinatesxi.
The second exponentiale−‖yj−x∗‖

2/h2

depends only on the
target coordinatesyj . However for the third exponential,
e2(yj−x∗)·(xi−x∗)/h2

, the source and target are entangled. The
crux of the algorithm is to separate this entanglement via Tay-
lor series using multi-index notation. Thep-term truncated
Taylor series expansion fore2(yj−x∗)·(xi−x∗)/h2

can be writ-
ten as [16,24],

e2(yj−x∗)·(xi−x∗)/h2

=
∑

|α|≤p−1

2α

α!

(
yj − x∗

h

)α (
xi − x∗

h

)α

+ errorp.

The truncation numberp is chosen based on the prescribed
errorǫ. Ignoring error terms for nowG(yj) can be approxi-
mated as,

Ĝ(yj) =

n∑

i=1

qie
−‖xi−x∗‖

2/h2

e−‖yj−x∗‖
2/h2




∑

|α|≤p−1

2α

α!

(
yj − x∗

h

)α (
xi − x∗

h

)α


 . (5)

Rearranging the terms Equation (5) can be written as

Ĝ(yj) =
∑

|α|≤p−1

[
2α

α!

n∑

i=1

qie
−‖xi−x∗‖

2/h2

(
xi − x∗

h

)α
]

e−‖yj−x∗‖
2/h2

(
yj − x∗

h

)α

=
∑

|α|≤p−1

Cαe−‖yj−x∗‖
2/h2

(
yj − x∗

h

)α

,

where,

Cα =
2α

α!

n∑

i=1

qie
−‖xi−x∗‖

2/h2

(
xi − x∗

h

)α

.

The coefficientsCα can be evaluated separately inO(n).
Evaluation ofĜ(yj) at m points isO(m). Hence the com-
putational cost has reduced from the quadraticO(nm) to the
linearO(n + m). We have omitted the constants in the com-
putational cost. A detailed analysis of the cost can be seen in
[16,24].

Thus far, we have used the Taylor series expansion about a
certain pointx∗. However if we use the samex∗ for all
the points we typically would require very high truncation
number since the Taylor series is valid only in a small open
ball aroundx∗. The IFGT algorithm uses a data adaptive
space partitioning scheme–the farthest point clustering algo-
rithm [25]–to divide then sources intoK spherical clusters–
and then build a Taylor series at the center of each cluster.

The final algorithm has four stages. The first stage involves
determining parameters of the algorithm based on specified
error bounds, bandwidth, and data distribution. Second, the
d-dimensional space is subdivided using ak-center cluster-
ing [25]. Next, a truncated representation of the Gaussian
inside each cluster is built using a set of decaying basis func-
tions. Finally, the influence of all the data in a neighborhood
using coefficients at cluster centers are collected and the ap-
proximateGT is evaluated. Please see [16,24] for details.

GT with nearest neighbors (GTANN)

GTANN is also an efficient algorithm for calculating matrix-
vector products. This method was implemented by
Raykar [26], where it is referred to as the FigTree method.
This method is most effective when the Gaussian models be-
ing used have small ranges, whileIFGT gives good speed-ups
when dealing with large range values.

First, based on the desired error bound, a search radius is cal-
culated. Then, for each target point, source points within that
radius are considered. Since the Gaussian function dissipates
very rapidly, nearby points have the greatest influence. These

3



source points are calculated via fixed-radius nearest neighbor
search routines of theANN library [27]. Finally, for each tar-
get point, their nearest neighbor source points are calculated
in matrix-vector product calculations, involving the covari-
ance matrixC in the ordinary kriging system.

5. DATA SETS

We generated three sets of sparse data sets. For the first set,
the number of sampled points varied from 1000 up to 5000,
while their covariance model had a small range value of12.
For the second set, we varied the number of samples in the
same manner, except that the points’ covariance model had a
larger range equal to100. Finally, we sampled5000 points
from dense grids, where points’ covariance model had ranges
equal toa = 12, 24, 100, 250, and500. For each input data
set we use200 query points which are drawn from the same
dense grid but are not present in the sampled data set. One
hundred of these query points were sampled uniformly from
the original grids. The other100 query points were sampled
from the same Gaussian distributions that were used in the
generation of a small percentage of the sparse data.

6. EXPERIMENTS

We used theSYMMLQ iterative method as our linear solver.
We set the desired solutions’ relative error, or the convergence
criteria for theSYMMLQ method, toǫ2 = 10−3. Thus, if
SYMMLQ is implemented exactly, we expect the relative er-
ror to be less than10−3. The exact error is likely to be higher
than that. We developed three versions of the ordinary krig-
ing interpolator, each of which calculates the matrix-vector
products involved in theSYMMLQ method differently.

Gauss Transform (GT): Computes the matrix-vector prod-
uct exactly.
Improved Fast Gauss Transform (IFGT): Approximates
the matrix-vector product to theǫ precision via theIFGT

method mentioned in Section 4.
Gauss transform with nearest neighbors (GTANN): Ap-
proximates the matrix-vector product using theGTANN

method mentioned in Section 4.

All experiments were run on a Sun Fire V20z running Red
Hat Enterprise release 3, using the g++ compiler version
3.2.3. Our software is implemented in C++ and uses the
Geostatistical Template Library (GsTL) [28] and Approxi-
mate Nearest Neighbor library (ANN) [27]. GsTL is used
for building and solving the ordinary kriging systems, and
ANN is used for finding nearest neighbors when using the
GTANN approach. In all cases, for theIFGT andGTANN ap-
proaches we required the approximate matrix-vector products
to be evaluated withinǫ = 10−4 accuracy. All experiments’
results are averaged over five runs. We designed three experi-
ments to study the effect of covariance ranges and number of
data points on performances of our different ordinary kriging
versions.

Experiment 1: We varied number of scattered data points
from1000 up to5000, with a small fixed Gaussian covariance
model of rangea = 12.
Experiment 2: We varied number of sampled points. This
time, points had a larger range equal toa = 100 for their
covariance model.
Experiment 3: Finally, we examined the effect of different
covariance ranges equal toa = 12, 25, 100, 250, and500 on
a fixed data set of size5000.

7. RESULTS

In this section we compare both the quality of results and the
speed-ups achieved for solving the ordinary kriging system
via iterative methods combined with fast approximate matrix-
vector multiplication techniques.

Figure 1 presents results of the first experiment mentioned.
When utilizing approximate methodsIFGT and GTANN the
exact residuals are comparable to those obtained fromGT.
The IFGT approach gave speed-ups ranging from 1.3–7.6,
while GTANN resulted in speed-ups ranging roughly from 50–
150. This is mainly due to the fact that the covariance func-
tion’s range is rather small. Since there are only a limited
number of source points influencing each target point, collect-
ing and calculating the influence of all source points for each
target point (theIFGT approach) is excessive. TheGTANN

approach works well for such cases by considering only the
nearest source points to each target point. In both cases, the
speed-ups grow with number of data points. Algorithms per-
form similarly for points from the Gaussian distribution to
those from uniform distribution.

Figure 2 shows results of the second experiment. While the
GTANN approach did not result in significant speed-ups, the
IFGT gave constant factor speed-ups ranging roughly from 1.5
to 7.5, as we increased the number of data points. TheIFGT

approach results in larger residuals for small data sets, and
when solving the ordinary kriging system for query points
from the uniform distribution. In particular, forn = 1000
andn = 2000, the performance ofIFGT is not acceptable with
respect to the exact residuals calculated. This poor overall re-
sult for these cases is because theSYMMLQ method did not
meet its convergence criteria and reached maximum number
of iterations. Increasing the required accuracy for theIFGT

algorithm, by changing theǫ = 10−4 to 10−6 resolved this
issue and gave residuals comparable to those obtained from
theGT method. As the number of points increases, the qual-
ity of results approaches those of the exact methods. For the
query points from the Gaussian distribution, the quality of
results are comparable to the exact method, when using the
IFGT approach. TheGTANN approach also results in compa-
rable residuals to the exact methods in all cases.

Figure 3 presents results of the last set of experiments. In all
cases, the quality of results is comparable to those obtained
from exact methods. TheIFGT approach resulted in speed-
ups of 7–15 in all cases. TheGTANN approach is best when
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used for covariance functions with small range values of 12,
and 25. While theGTANN approach is slower than the exact
methods for range values larger than 100, it results in speed-
up factors of 151–153, and 47–49 for range values 12 and 25
respectively. Thus, theGTANN approach is efficient for small
range values, and so is theIFGT approach for large ranges.

8. CONCLUSIONS

We integrated efficient implementations of the Gauss Trans-
form for solving ordinary kriging systems. We examined
the effect of number of points and the covariance functions’
ranges on the running time for solving the system and the
quality of results. TheIFGT is more effective as number of
data points increases. Our experiments using theIFGT ap-
proach for solving the ordinary kriging system demonstrated
speed-up factors ranging from 7–15 when using 5000 points.
Based on our tests on varying number of data points, we
expect even higher speed-up factors compared to the exact
method when using larger data sets. In almost all cases, the
quality of IFGT results are comparable to the exact meth-
ods. TheGTANN approach outperformed theIFGT method
for small covariance range values, resulting in speed-up fac-
tors as high as 153 and 49 respectively. TheGTANN approach
is slower than the exact methods for large ranges (100 and
over in our experiments), and thus is not recommended for
such cases. The quality of results forGTANN was compara-
ble to the exact methods in all cases. Please see [26, 29] for
details of methods used in this work.

Future work involves efficient kriging via fast approximate
matrix-vector products for other covariance functions, where
a factorization exists. We also plan on using precondition-
ers [21] for our iterative solver, so that the approximate ver-
sions converge faster, and we obtain even higher speed-ups.
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Figure 1. Experiment 1, Left: Average absolute errors. Right: Average CPU times
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Figure 2. Experiment 2, Left: Average absolute errors. Right: Average CPU times
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Figure 3. Experiment 3, Left: Average absolute errors. Right: Average CPU times

6



[21] Y. Saad,Iterative methods for sparse linear systems.
SIAM, 2003.

[22] S. G. Nash and A. Sofer,Linear and Nonlinear Pro-
gramming. McGraw-Hill Companies, 1996.

[23] L. Greengard and J. Strain, “The fast Gauss transform,”
SIAM Journal of Scientific and Statistical Computing,,
vol. 12, no. 1, pp. 79–94, 1991.

[24] V. C. Raykar and R. Duraiswami,Large Scale Kernel
Machines. MIT Press, 2007, ch. The Improved Fast
Gauss Transform with applications to machine learning.

[25] T. Feder and D. H. Greene, “Optimal algorithms for ap-
proximate clustering,” inProc. 20th Annual ACM Sym-
posium on Theory of Computing, 1988, pp. 434–444.

[26] V. C. Raykar, “Scalable machine learning for massive
datasets: Fast summation algorithms,” Ph.D. disserta-
tion, University of Maryland, College Park, MD, 20742,
March 2007.

[27] D. M. Mount and S. Arya, “ANN: A library for approx-
imate nearest neighbor searching,” http://www.cs.umd.
edu/˜mount/ANN/, May 2005.

[28] N. Remy, “GsTL: The Geostatistical Template Library
in C++,” Master’s thesis, Department of Petroleum En-
gineering of Stanford University, March 2001.

[29] N. Memarsadeghi, “Efficient algorithms for clustering
and interpolation of large spatial data sets,” Ph.D. dis-
sertation, University of Maryland, College Park, MD,
20742, April 2007.

BIOGRAPHY

Nargess Memarsadeghiis a computer
engineer at the Information Systems Di-
vision (ISD) of the Applied Engineer-
ing and Technology Directorate (AETD)
at NASA Goddard Space Flight Center
(GSFC) since July 2001. She received
her Ph.D. from the University of Mary-
land at College Park in Computer Sci-

ence in May 2007. She is interested in design and devel-
opment of efficient algorithms for large data sets with ap-
plications in image processing, remote sensing, and optics
via computational geometry and scientific computation tech-
niques.

Vikas C. Raykar received the B.E. de-
gree in electronics and communication
engineering from the National Institute
of Technology, Trichy, India, in 2001,
the M.S. degree in electrical engineering
from the University of Maryland, Col-
lege Park, in 2003, and the Ph.D. degree
in computer science in 2007 from the

same university. He currently works as a scientist in Siemens
Medical Solutions, USA. His current research interests in-
clude developing scalable algorithms for machine learning.

Ramani Duraiswami is an associate
professor in the department of computer
science and UMIACS at the Univer-
sity of Maryland, College Park. He di-
rects the Perceptual Interfaces and Re-
ality Lab., and has broad research in-
terests in scientific computing, computa-
tional acoustics and audio, computer vi-

sion and machine learning.

David Mount is a professor in the De-
partment of Computer Science at the
University of Maryland with a joint ap-
pointment in the University’s Institute
for Advanced Computer Studies (UMI-
ACS). He received his Ph.D. from Pur-
due University in Computer Science in
1983, and since then has been at the

University of Maryland. He has written over 100 research
publications on algorithms for geometric problems, partic-
ularly problems with applications in image processing, pat-
tern recognition, information retrieval, and computer graph-
ics. He currently serves as an associate editor for the jour-
nal ACM Trans. on Mathematical Software and served on
the editorial board of Pattern Recognition from 1999 to 2006.
He served as the program committee co-chair for the 19th
ACM Symposium on Computational Geometry in 2003 and
the Fourth Workshop on Algorithm Engineering and Experi-
ments in 2002.

7


