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Abstract—nterpolating scattered data points is a problem ofimages involved [6, 7]. A generalized version of the ordynar
wide ranging interest. Ordinary kriging is an optimal scat-kriging, calledcokriging[3, 5], can be used for image fusion
tered data estimator, widely used in geosciences and remoté multi-sensor data [8, 9]. Unfortunately, ordinary krigi
sensing. A generalized version of this technique, calléd co interpolant is computationally very expensive to compute e
riging, can be used for image fusion of remotely sensed datactly. Forn scattered data points, computing the value of
However, it is computationally very expensive for largeadat a single interpolant involves solving a dense linear system
sets. We demonstrate the time efficiency and accuracy of apf ordern x n, which takesO(n?). This is infeasible for
proximating ordinary kriging through the use of fast matrix largen. Traditionally, kriging is solved approximately by lo-
vector products combined with iterative methods. We usedal approaches that are based on considering only a rdjative
methods based on the fast Multipole methods and nearesmall number of points that lie close to the query point [3, 5]
neighbor searching techniques for implementations ofdbe f There are many problems with this local approach, however.
matrix-vector products. The first is that determining the proper neighborhood size is
tricky, and is usually solved bgd hocmethods such as select-

Keywords—geostatistics, image fusion, kriging, approximatei”_g e_lfixe_d numb(_ar of nearest neigh_bors orall theT points lying
algorithms, fast multipole methods, fast Gauss transform‘,’V'th'” a fixed radius. Such fixed neighborhood sizes may not

nearest neighbors, iterative methods. work well for all query points, depending on local density
of the point distribution [5]. Local methods also sufferrfro

the problem that the resulting interpolant is not contirsiou
TABLE OF CONTENTS Meyer showed that while kriging produces smooth continu-
ous surfaces, it has zero order continuity along its borders
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1. INTRODUCTION

Scattered data interpolation is a problem of interest inenim In this paper, we address the shortcomings of the previous

ous areas such as electronic imaging, smooth surface modelpproaches through an alternative based on Fast Multipole

ing, and computational geometry [1,2]. Our motivationesis Methods €Mm). TheFmMm was firstintroduced by Greengard

from applications in geology and mining, which often inlv and Rokhlin for fast multiplication of a structured matrix b

large scattered data sets and a demand for high accuracy. Feowector [13, 14]. If the Gaussian function is used for gen-

such cases, the method of choiceiidinary kriging[3]. This  erating the matrix entries, the matrix-vector product isech

is because it is a best unbiased estimator [3-5]. Also in retheGauss transformWe use efficient implementations of the

mote sensingmage fusiorof multi-sensor data is often used Gauss transform based on them idea (see [15,16]) in com-

to increase either the spectral or the spatial resolutiche®f bination with thesymmLQ iterative method [17] for solving
large ordinary kriging systems. Billingst al. [18] had also
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2 describes the ordinary kriging system and solving it via ammethod requires on@(n?) matrix-vector multiplicatiorper
iterative method. In Section 3 we introduce the matrix-wect iteration. The storage i©(n) since the matrix-vector multi-
products involved in solving such systems. We mention twaplication can use elements computed on the fly without stor-
existing efficient and approximate implementations of sucting the matrix. Empirically the number of iterations recpair
products in Section 4. Section 5 describes our data sets. O@t is generally small compared to leading to a computa-
experiments and results are presented in Sections 6 and 7 r@nal cost ofO (kn?).

spectively. Section 8 concludes this paper.

3. MATRIX -VECTOR MULTIPLICATION
2. ORDINARY KRIGING VIA |TERATIVE

5 . N . ,
M ETHODS The O(kn®) quadratic complexity is still too high for

large data sets. The core computational step in each
Kriging is an interpolation method named after Danie Krige,SYMMLQ iteration involves the multiplication of a matrix
a South African mining engineer [5]. Kriging and its vari- C with some vector, sayy. For the Gaussian covari-
ants have been traditionally used in mining and geostegisti ance model the entries of the mat® are of the form

applications [3-5]. Kriging is also referred to as Baus-  [C],; = exp (=3|lz; —x,]|?/a®). Hence, thej"" ele-
sian process predicton the machine learning domain [19]. ment of the matrix-vector produdCq can be written as
The most commonly used variant is callediinary kriging ~ (Cq); = Y_i-, qiexp (—3|/x; — x;]?/a?)-which is the

which is often referred to as a Best Linear Unbiased Estiweighted sum o Gaussians each centeredratand eval-
mator (BLUE) [3, 11]. It is considered to b@estbecause it uated atc;.

minimizes the variance of the estimation error. Ifireear

because estimates are weighted linear combination of-avaiDiscrete Gauss transforne()

able data, and ignbiasedsince it aims to have the mean error

equal to zero [3]. Minimizing the variance of the estimation . o .
L . Lo Gauss transfornn scientific computing. In general, for each
error forms the objective function of an optimization prob- : dm oo
target point{y; € R*}'™ , (which in our case are the same as

lem. Ensuring unbiasedness of the error imposes a cortstral{h / J=12 . )
. ; . . o . . esource points:;) the discrete Gauss transform is defined
on this function. Formalizing this objective function wits

constraint results in the following system [3, 5, 12]. as

The sum of multivariate Gaussians is known asdfserete

wi—yy0?

(EO)(5) e R e

: whereh (in our caseh = a/+/3) is called thebandwidthof
whereC'is the matrix of points’ pairwise covariancesjs a  the Gaussian. Evaluating discrete Gauss transformsifor
column vector of all ones and of size andw is the vector  target points due te different source locations arises in may
of weightsw, ..., w,. Therefore, the minimization prob- applications. In this paper, ti@auss transforngcT) refers to
lem for n points reduces to solving a linear system of sizethjs direct implementation, which takemn) time.

(n + 1)2, which is impractical for very large data sets via di-
rect approaches. Itis also important that maffike positive 4. FAST APPROXIMATE MATRIX -VECTOR
definite [3,12]. Pairwise covariances are often modeled as M ULTIPLICATION
a function of points’ separation. These functions shouid re
sult in a positive definite covariance matrix. Christako8][2 Various fast approximation algorithms [15,23] have been pr
showed necessary and sufficient conditions for such permigosed to compute the discrete Gauss transfor@(im + n)
sible covariance functions. Two of these valid functiores ar time. These algorithms compute the sum to any arbiteary
the Gaussian and Spherical covariance functions [3,5)20]. precision. For any > 0, we defineG to be ane-exactap-
this paper, the Gaussian covariance function is used. For twproximation toG if the maximum absolute error relative to
pointsz; andz;, the Gaussian covariance function is definedthe total weight) = """, |¢;| is upper bounded by i.e.,
asC;; = exp (—3||z; — z;||*/a?), wherea is the range of R

1G(y;) — G(y;)|

the covariance function.

Q
For large data sets, it is impractical to solve the ordinaiy-k
ing system using direct approaches that téke?) time. It-  The constant ¥ (m +n) depends on the desired accuragcy
erative methods generate a sequence of solutions which comhich however can barbitrary. At machine precision there
verge to the true solution im iterations. In practice, however, is no difference between the direct and the fast methods. The
we loop overk < n iterations [21]. In particular, we used method relies on retaining only the first few terms of an infi-
an iterative method calleslyMMLQ which is appropriate for  nite series expansion for the Gaussian function. These-meth
solving symmetric systems [17]. Note that the coefficient ma ods are inspired by the fast multipole method=), origi-
trix in the ordinary kriging linear system while symmetric i nally developed for the fast summation of the potential eld
not positive definite since it has a zero entry on its diagonalgenerated by a large number of sources, such as those arising
Therefore, methods such as conjugate gradient are not applh gravitational potential problems [13]. The fast Gauas$r
cable here [22]. The actual implementation of vevmLQ form (FGT) is a special case wheraiM ideas were used for

<e. ()
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the Gaussian potential [23]. The improved fast Gauss trans- 20 oy — 2\ (2 — 20 \©
form (IFGT) is a similar algorithm based on a single different Z ol ( s h > ( h > (5)
factorization and data structure. It is suitable for higter lo]<p—1

mensional problems and provides comparable performance _ _ )
in lower dimensions [15]. Rearranging the terms Equation (5) can be written as

~ 2o s 12/n2 [ Ti — Tx ¢
Improved fast Gauss transfornrGT) Gly;)) = Z laz%e llwi—z.|I*/h <T> ]
IFGT is an efficient algorithm for approximating the Gauss lor|<p—1 =1
transform. Thefast Gauss transformfirst proposed by gy = |2/ (yj —a:*>“
Greengard and Strain [23], is arexact approximation al- €

gorithm for the Gauss transform. This algorithm reduces the Y _\®
Gauss transform’s computational complexity frérmn) to > Coellvimmd/n (M) ,

O(m + n). However, this algorithm’s constant factor grows lee|<p—1 h
exponentially with dimensiod. Later improvements, includ-

ing thelFG T algorithm, reduced this constant factor to asymp-Where,

totically polynomial order in terms af. ThelFGT algorithm o 7 o

was first introduced by Yangt al. [15]. Their implementa- C, = 2_' Zqie*\\rfm\\z/hz (u) _

tion did not use a sufficiently tight error bound to be useful Sy h

in practice. Also, they did not adaptively select the neagss -

parameters to achieve the desired error bound. Ragtkalr ~ 1he coefficientsC’, can be evaluated separately Gh(n).
later presented an approach that overcame these shortcofavaluation ofG/(y;) atm points isO(m). Hence the com-
ings [16, 24]. We used the implementation due to Raytar putational cost has reduced from the quadrétjern) to the

al. We briefly describe some of the key ideasfaT. Please linearO(n + m). We have omitted the constants in the com-
see [16,24] for more details. For any painte R the Gauss putational cost. A detailed analysis of the cost can be seen i

Transform aty; can be written as, [16,24].
n g —el? Thus far, we have used the Taylor series expansion about a
Gly;) = ZQie n? certain pointz,. However if we use the same, for all
. =1 . the points we typically would require very high truncation
_ Zq-e_w number since the Taylor series _is valid only in a small open
P ! ' ball aroundz,.. TheIFGT algorithm uses a data adaptive

" ) o o space partitioning scheme—the farthest point clusterligg-a
= Y e loizgels Mvatoell 20y lazes) rithm [25]to divide then sources intds” spherical clusters—
= and then build a Taylor series at the center of each cluster.

4

) The final algorithm has four stages. The first stage involves
In Equation (4) the first exponential inside the summationdetermining parameters of the algorithm based on specified
e~llzi==II*/h* depends only on the source coordinates  error bounds, bandwidth, and data distribution. Secors, th
The second exponentiat 14 —=-1°/4* depends only on the d-dimensional space is subdivided using-aenter cluster-
target coordinateg;. However for the third exponential, iNg [25]. Next, a truncated representation of the Gaussian
e2(wi—w-)-(@i=2.)/h* the source and target are entangled. ThépSlde e_ach cluste.r is built using a set of dgcaymg basis-fun

tions. Finally, the influence of all the data in a neighborthoo

using coefficients at cluster centers are collected andphe a
proximateGT is evaluated. Please see [16, 24] for details.

crux of the algorithm is to separate this entanglement wa Ta
lor series using multi-index notation. Theterm truncated
Taylor series expansion fa?(¥i—#)-(zi==.)/h* can be writ-
ten as [16,24], GT with nearest neighbors (GTANN)
e2(yi =) (@ima) /1 GTANN is also an efficient algorithm for calculating matrix-
- v 2% (yj - I*)a (xz - x*)a © error.. Vector products. — This method was implemented by
! h h P Raykar [26], where it is referred to as the FigTree method.
This method is most effective when the Gaussian models be-
ing used have small ranges, whikes T gives good speed-ups
The truncation numbep is chosen based on the prescribedwhen dealing with large range values.
errore. Ignoring error terms for nowZ(y;) can be approxi-

la|<p—1

mated as, First, based on the desired error bound, a search radiuk is ca
n culated. Then, for each target point, source points witha t
Gly;) = Z gie~IlzimwelP /02 o=llyj —w.|I*/h* radius are considered. Since the Gaussian function dissipa

Py very rapidly, nearby points have the greatest influencesd@he



source points are calculated via fixed-radius nearest heigh Experiment 1:  We varied number of scattered data points
search routines of thenN library [27]. Finally, for each tar-  from 1000 up to5000, with a small fixed Gaussian covariance
get point, their nearest neighbor source points are cdtalila model of range: = 12.

in matrix-vector product calculations, involving the cava Experiment 2:  We varied number of sampled points. This

ance matrixC' in the ordinary kriging system. time, points had a larger range equaldto= 100 for their
covariance model.
5. DATA SETS Experiment 3:  Finally, we examined the effect of different

~covariance ranges equaldo= 12,25, 100, 250, and500 on
We generated three sets of sparse data sets. For the first sgkived data set of size000.

the number of sampled points varied from 1000 up to 5000,
while their covariance model had a small range valug¢2of 7 R
For the second set, we varied the number of samples in the - RESULTS

same manner, except that the points’ covariance model had|a this section we compare both the quality of results and the
larger range equal t600. Finally, we sampled000 points  speed-ups achieved for solving the ordinary kriging system

from dense grids, where points’ covariance model had rangega iterative methods combined with fast approximate rmatri
equal toa = 12,24, 100,250, and500. For each input data vector multiplication techniques.

set we us€00 query points which are drawn from the same

dense grid but are not present in the sampled data set. Oggure 1 presents results of the first experiment mentioned.
hundred of these query points were sampled uniformly fromyhen utilizing approximate methodsGT and GTANN the

the original grids. The other00 query points were sampled exact residuals are comparable to those obtained fsam
from the same Gaussian distributions that were used in thghe IFGT approach gave speed-ups ranging from 1.3-7.6,

generation of a small percentage of the sparse data. while GTANN resulted in speed-ups ranging roughly from 50—
150. This is mainly due to the fact that the covariance func-
6. EXPERIMENTS tion’s range is rather small. Since there are only a limited

number of source points influencing each target point, ctlle
ing and calculating the influence of all source points fortheac
target point (theFGT approach) is excessive. TErANN
approach works well for such cases by considering only the
nearest source points to each target point. In both cases, th
speed-ups grow with number of data points. Algorithms per-
form similarly for points from the Gaussian distribution to
those from uniform distribution.

We used thesYymMLQ iterative method as our linear solver.
We set the desired solutions’ relative error, or the convecg
criteria for thesymMmMmLQ method, toes = 102, Thus, if
SYMMLQ is implemented exactly, we expect the relative er-
ror to be less tham0~3. The exact error is likely to be higher
than that. We developed three versions of the ordinary krig
ing interpolator, each of which calculates the matrix-eect
products involved in theymMMLQ method differently.

Figure 2 shows results of the second experiment. While the
Gauss Transform (GT):  Computes the matrix-vector prod- GTANN approach did not result in significant speed-ups, the

uct exactly. IFGT gave constant factor speed-ups ranging roughly from 1.5
Improved Fast Gauss Transform (IFGT): Approximates to 7.5, as we increased the number of data points. IFQ&

the matrix-vector product to the precision via thelFGT approach results in larger residuals for small data set$, an
method mentioned in Section 4. when solving the ordinary kriging system for query points
Gauss transform with nearest neighbors (GTANN): Ap- from the uniform distribution. In particular, for = 1000
proximates the matrix-vector product using tGEANN andn = 2000, the performance ofGT is not acceptable with
method mentioned in Section 4. respect to the exact residuals calculated. This poor dveral

sult for these cases is because $vamLQ method did not
meet its convergence criteria and reached maximum number
All experiments were run on a Sun Fire V20z running Redof iterations. Increasing the required accuracy for itheT
Hat Enterprise release 3, using the g++ compiler versiomlgorithm, by changing the = 10~ to 10~ resolved this
3.2.3. Our software is implemented in C++ and uses théssue and gave residuals comparable to those obtained from
Geostatistical Template Library (GsTL) [28] and Approxi- the GT method. As the number of points increases, the qual-
mate Nearest Neighbor library (ANN) [27]. GsTL is used ity of results approaches those of the exact methods. For the
for building and solving the ordinary kriging systems, andquery points from the Gaussian distribution, the quality of
ANN is used for finding nearest neighbors when using theesults are comparable to the exact method, when using the
GTANN approach. In all cases, for theGT andGTANN ap-  IFGT approach. Th&TANN approach also results in compa-
proaches we required the approximate matrix-vector prisduc rable residuals to the exact methods in all cases.
to be evaluated withia = 10~* accuracy. All experiments’
results are averaged over five runs. We designed three expeFigure 3 presents results of the last set of experimentd! In a
ments to study the effect of covariance ranges and number afises, the quality of results is comparable to those olataine
data points on performances of our different ordinary kmggi  from exact methods. TheGT approach resulted in speed-
versions. ups of 7-15 in all cases. Th&erANN approach is best when



used for covariance functions with small range values of 12,

and 25. While thesTANN approach is slower than the exact
methods for range values larger than 100, it results in spee

up factors of 151-153, and 47-49 for range values 12 and 25

respectively. Thus, theTANN approach is efficient for small
range values, and so is thies T approach for large ranges.

We integrated efficient implementations of the Gauss Trans-

8. CONCLUSIONS

form for solving ordinary kriging systems. We examined

the effect of number of points and the covariance functions
ranges on the running time for solving the system and the

quality of results. TherFGT is more effective as number of
data points increases. Our experiments usingitlea ap-

proach for solving the ordinary kriging system demonsttate [11]
speed-up factors ranging from 7—15 when using 5000 points.
Based on our tests on varying humber of data points, we
expect even higher speed-up factors compared to the exact

method when using larger data sets. In almost all cases, t
quality of IFGT results are comparable to the exact meth
ods. TheGTANN approach outperformed thecT method
for small covariance range values, resulting in speed-ap fa
tors as high as 153 and 49 respectively. GiaNN approach

is slower than the exact methods for large ranges (100 and
over in our experiments), and thus is not recommended for

such cases. The quality of results feTANN was compara-

ble to the exact methods in all cases. Please see [26, 29] for

details of methods used in this work.

Future work involves efficient kriging via fast approximate
matrix-vector products for other covariance functionsereh

a factorization exists. We also plan on using precondition-
ers [21] for our iterative solver, so that the approximate ve [15]
sions converge faster, and we obtain even higher speed-ups.

[1]

(2]

(3]

[4]

[5]

[6]

[7]

REFERENCES

[. Amidror, “Scattered data interpolation methods for
electronic imaging systems: A surveygurnal of Elec-
tronic Imaging vol. 11, no. 2, pp. 157-176, April 2002.

P. Alfeld, “Scattered data interpolation in three or mor
variables,” Mathematical methods in computer aided
geometric desigmpp. 1-33, 1989.

E. H. Isaaks and R. M. SrivastavAn Introduction to
Applied Geostatistics New York, Oxford: Oxford Uni-
versity Press, 1989.

A. G. Journeland C. J. Huijbregtslining Geostatistics
New York: Academic Press Inc, 1978.

P. GoovaertsGeostatistics for Natural Resources Eval-
uation New York, Oxford: Oxford University Press,
1997.

D. L. Hall, Mathematical techniques in multisensor data
fusion Norwood: Artech House Inc, 1992.

Y. Zhang, “Understanding image fusior?hotogram-
metric Engineering and Remote Sensipg. 657-661,

5

2

June 2004.

N. Memarsadeghi, J. L. Moigne, D. M. Mount, and
J. Morisette, “A new approach to image fusion based
on cokriging,” inthe Eighth International Conference
on Information Fusionvol. 1, July 2005, pp. 622—629.

N. Memarsadeghi, J. L. Moigne, and D. M. Mount, “Im-
age fusion using cokriging,” ifFEEE International Geo-
science and Remote Sensing Symposium (IGARS$SS’06)
July 2006, pp. 2518 — 2521.

T. H. Meyer, “The discontinuous nature of kriging in-
terpolation for digital terrain modelingCartography
and Geographic Information Sciengeol. 31, no. 4, pp.
209-216, 2004.

R. Furrer, M. G. Genton, and D. Nychka, “Covari-
ance tapering for interpolation of large spatial datasets,
Journal of Computational and Graphical Statistics

vol. 15, no. 3, pp. 502-523, September 2006.

N. Memarsadeghi and D. M. Mount, “Efficient imple-
mentation of an optimal interpolator for large spatial
data sets,” irProceedings of the International Confer-
ence on Computational Science (ICCS'0ggr. Lec-
ture Notes in Computer Science, vol. 4488. Springer—
Verlag, May 2007, pp. 503-510.

L. Greengard and V. Rokhlin, “A fast algorithm for
particle simulation,'Journal of Computational Physics
vol. 73, no. 2, pp. 325-348, 1987.

4] L. Greengard, “The rapid evaluation of potential fields

in particle systems,” Ph.D. dissertation, Yale, NYU,
1987.

C. Yang, R. Duraiswami, and L. Davis, “Efficient ker-
nel machines using the improved fast Gauss transform.”
in Advances in Neural Information Processing Systems
L. K. Saul, Y. Weiss, and L. Bottou, Eds., vol. 17. MIT
Press, 2005, pp. 1561-1568.

V. C. Raykar, C. Yang, R. Duraiswami, and
N. Gumerov, “Fast computation of sums of Gaussians
in high dimensions,” Department of Computer Science,
University of Maryland, College Park, MD, 20742,
Tech. Rep., 2005, CS-TR-4767.

C. C. Paige and M. A. Saunders, “Solution of sparse
indefinite systems of linear equation§IAM Journal

on Numerical Analysisvol. 12, no. 4, pp. 617-629,
September 1975.

S. D. Billings, R. K. Beatson, and G. N. Newsam, “In-
terpolation of geophysical data using continuous global
surfaces,"Geophysicsvol. 67, no. 6, pp. 1810-1822,
November-December 2002.

C. E. Rasmussen and C. K. I. WillianSaussian Pro-
cesses for Machine Learning MIT Press, 2006.

[20] G. Christakos, “On the problem of permissible co-

variance and variogram model&flater Resources Re-
searchvol. 20, no. 2, pp. 251-265, February 1984.



Average Exact Residuals
Over 200 Query Points

Average CPU Time for Solving the System
Over 200 Query Points

15E-4 T ~ 20 T k
© 100
L
8 (V]
E E
2 = 10
& 1E-3 £
5 c
g E ,
A i 5 1.0
g o
g o
C SE-4- . )
2 g o1
GT 5 T
IFGT > IFGT
3 GTAN < i GTAN
1E-4 I I I 0.01= I I I 4
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Number of Scattered Data Points (n) Number of Scattered Data Points (n)
Figure 1. Experiment 1, Left: Average absolute errors. Right: Ager&€PU times
Average Exact Residuals Average CPU Time for Solving the System
Over 200 Query Points Over 200 Query Points
0.04 ‘ _.270r ‘
8 2500 1
o) 5 | ]
g e_ I ¥
S 0.03- N = 2001 g
[ . i
4] =2 ]
14 g [ ]
3 S 150+ .
3 0.02+ B o [ ]
o z | ]
g r3d g 100 .
IFGT [ i
> [o))
< 0.01- CTANN ] e 1 = 1
> 501 IFGT 1
- < [ GTAN 1
.= T ! ! X PN | ! ]
1000 2000 3000 4000 5000 Jl 00 2000 3000 4000 5000
Number of Scattered Data Points (n) Number of Scattered Data Points (n)
Figure 2. Experiment 2, Left: Average absolute errors. Right: Ager&€PU times
Average Exact Residuals Average CPU Time for Solving the System
Over 200 Query Points Over 200 Query Points
0.02 T T — 2500r T T
[S)] | 4
& 1000 -
° Py
S £ 500 B
2 =
& 2
P S 100k El
¢ 0.0l 2 sol/ E
i 5 ]
2] o 1
2 O
5] o 10 B
:% 5E-3- 2
GT ) 5H =
IFGT > T —
2E-3 GTANN < IFGT ]
1E- ! ! ! ! | 1 ! ! ! GTAN
QLZ 100 200 300 400 500 12 100 200 300 400 500

Range of the Gaussian Covariance Function

Figure 3. Experiment 3, Left:

Range of the Gaussian Covariance Function

Average absolute errors. Right: Ager&PU times



[21] V. Saad, Iterative methods for sparse linear system:
SIAM, 2003.

[22] S. G. Nash and A. Sofetinear and Nonlinear Pro-
gramming McGraw-Hill Companies, 1996.

Vikas C. Raykar received the B.E. de-
gree in electronics and communication
engineering from the National Institute
of Technology, Trichy, India, in 2001,
the M.S. degree in electrical engineering
from the University of Maryland, Col-

[23] L. Greengard and J. Strain, “The fast Gauss transforr
SIAM Journal of Scientific and Statistical Computing | lege Park, in 2003, and the Ph.D. degree

vol. 12, no. 1, pp. 79-94, 1991. in computer science in 2007 from the

[24] V. C. Raykar and R. Duraiswami,arge Scale Kernel same unlverS| y. He currently works as a scientist in Siesnen
Machines MIT Press, 2007, ch. The Improved Fast Medical Solutions, USA. His current research interests in-

Gauss Transform with applications to machine learningclude developing scalable algorithms for machine learning

[25] T. Feder and D. H. Greene, “Optimal algorithms for ap-
proximate clustering,” ifProc. 20th Annual ACM Sym- [
posium on Theory of Computing988, pp. 434-444.

Ramani Duraiswami is an associate
professor in the department of computer
science and UMIACS at the Univer-
| sity of Maryland, College Park. He di-
rects the Perceptual Interfaces and Re-
ality Lab., and has broad research in-

[26] V. C. Raykar, “Scalable machine learning for massive
datasets: Fast summation algorithms,” Ph.D. disserta-| %
tion, University of Maryland, College Park, MD, 20742, 5 :

March 2007. . terests in scientific computing, computa-
[27] D. M. Mount and S. Arya, “ANN: A library for approx- _ 4 tional acoustics and audio, computer vi-

imate nearest neighbor searching,” http://www.cs.umdsion and machine learning.

edu/"mount/ANN/, May 2005.

[28] N. Remy, “GSTL: The Geostatistical Template Library
in C++,” Master’s thesis, Department of Petroleum En-
gineering of Stanford University, March 2001.

David Mount is a professor in the De-
partment of Computer Science at the
University of Maryland with a joint ap-
pointment in the University’s Institute
for Advanced Computer Studies (UMI-
ACS). He received his Ph.D. from Pur-
due University in Computer Science in
1983, and since then has been at the
University of Maryland. He has written over 100 research
BIOGRAPHY publications on algorithms for geometric problems, partic
ularly problems with applications in image processing; pat
tern recognition, information retrieval, and computergra
ics. He currently serves as an associate editor for the jour-
o ; : nal ACM Trans. on Mathematical Software and served on
;ﬁ;‘c;:: d(l'l'sel?:)hr? (l;l(t)g? éirr)gzl:l'?odraltzen ?X:Ee-%) the editorial board of Pattern Recognition from _1999 to 2006
at NASA Goddard Space Flight Center He served as.the program commntee co—chalr_ for the 19th
(GSFC) since July 2001. She received ACM Symposium on Computa_monal Ggome_try in 2003 an_d
the Fourth Workshop on Algorithm Engineering and Experi-
ments in 2002.

[29] N. Memarsadeghi, “Efficient algorithms for clustering
and interpolation of large spatial data sets,” Ph.D. dis-
sertation, University of Maryland, College Park, MD,
20742, April 2007.

Nargess Memarsadeghis a computer
engineer at the Information Systems Di-

her Ph.D. from the University of Mary-

land at College Park in Computer Sci-
ence in May 2007. She is interested in design and devel-
opment of efficient algorithms for large data sets with ap-
plications in image processing, remote sensing, and optics
via computational geometry and scientific computationtech
niques.




