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ABSTRACT
In this paper, we present a novel approach to automati-
cally determine the positions of sensors and actuators in an
ad-hoc distributed network of general purpose computing
platforms. The formulation and solution accounts for the
limited precision in temporal synchronization among mul-
tiple platforms. The theoretical performance limit for the
sensor positions is derived via the Cramér-Rao bound. We
analyze the sensitivity of localization accuracy with respect
to the number of sensors and actuators as well as their geom-
etry. Extensive Monte Carlo simulation results are reported
together with a discussion of the real-time system. In a test
platform consisting of 4 speakers and 4 microphones, the
sensors’ and actuators’ three dimensional locations could be
estimated with an average bias of 0.08 cm and average stan-
dard deviation of 3.8 cm.
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Distributed applications; G. 3 [Probability and statis-
tics]: Probabilistic algorithms
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Figure 1: Distributed computing platform consist-
ing of N general-purpose computers along with their
onboard audio sensors, actuators and wireless com-
munication capabilities.

1. INTRODUCTION
Many novel emerging multimedia applications use multi-

ple sensors and actuators. A few examples of such applica-
tions include multi-stream audio/video rendering, smart au-
dio/video conference rooms, meeting recordings, automatic
lecture summarization, hands-free voice communication, ob-
ject localization, and speech enhancement. However, much
of the current work has focused on setting up all the sensors
and actuators on a single dedicated computing platform.
Such a setup would require a lot of dedicated infrastructure
in terms of the sensors, multi-channel interface cards and
computing power. For example, to setup a microphone ar-
ray on a single general purpose computer we need expensive
multichannel sound cards and a CPU with huge computa-
tion power to process all the multiple streams.

Computing devices such as laptops, PDAs, tablets, cellu-
lar phones, and camcorders have become pervasive. We col-
lectively refer to such devices as General Purpose Comput-
ers(GPCs). These devices are equipped with audio-visual
sensors (such as microphones and cameras) and actuators
(such as loudspeakers and displays). In [10], we proposed a
setup to use these audio/video sensors on different devices
to form a distributed network of sensors. Such an ad-hoc
sensor network can be used to capture different audio-visual
scenes in a distributed fashion and then use all the multiple



audio-visual streams for novel emerging applications. The
advantage of such a system is that given a set of GPCs along
with their sensors and actuators, it can be converted to a
distributed network of sensors in an ad-hoc fashion by just
adding a software wrapper on each of the GPCs.

A prerequisite for using distributed audio-visual I/O ca-
pabilities is to put the sensors and actuators into a common
time and space (coordinate system). In [10] we consider
the problem of providing a common time reference among
multiple platforms. In this paper we focus on providing a
common space by means of actively estimating the 3D po-
sitions of the sensors and actuators.

Most of the multi-microphone array processing algorithms
require that the position of the microphones are known. For
example in order to localize a moving speaker using a mi-
crophone array the formulation assumes that the positions
of the microphones are known. If we want to beamform
(spatial filtering) to a particular location then we need to
know the actual microphone locations. Current systems ei-
ther place the microphones in known locations or manually
calibrate them. We develop a system in which the positions
of the sensors on different devices are automatically cali-
brated using the actuators present. The solution explicitly
accounts for the errors due to lack of temporal synchroniza-
tion among the various sensors and actuators on different
platforms. Our goal is to get the positions of the micro-
phones and speakers on different laptops. However if the
microphones and speakers are on the GPC itself we can also
get the GPC location, which can be useful for location-aware
computing applications.

Figure 1 shows a schematic representation of our dis-
tributed computing platform consisting of N GPCs. One
of them is configured to be the master and controls and per-
forms the location estimation. Each GPC is equipped with
audio sensors (microphones), actuators (loudspeakers), and
wireless communication capabilities.

1.1 Related work
The problem of self-localization of a network of nodes in-

volves two steps: ranging and multilateration. Ranging in-
volves the estimation of the distance between two nodes in
the network. Multilateration refers to using the estimated
ranges to find the position of different nodes. The rang-
ing technology can be either based on the Time-Of-Arrival
(TOA) or the Received Signal Strength (RSS) of acoustic,
ultrasound or radio frequency (RF) signals. The choice of a
particular technology depends on the environment and the
range for which the sensor network is designed. The GPS
system and long range wireless sensor networks use RF tech-
nology for range estimation. Localization using Global Po-
sitioning System (GPS) is not suitable for our applications
since GPS systems do not work indoors and are very expen-
sive. Also RSS based on RF is very unpredictable [15] and
the RF TOA is very small to be used indoors. [15] discuss
systems based on ultrasound TOA using specialized hard-
ware (like motes) as the nodes. However, our goal is to use
the already available sensors and actuators on the GPCs to
estimate their positions. So our ranging technology is based
on acoustic TOA as in [14, 11, 7].

Once we have the range estimates the Maximum Likeli-
hood (ML) estimate can be used to get the positions. To
formulate the solution we can either assume that we know
the locations of a few sources (beacons) [14, 15] or design

an completely ad-hoc system, where even the source loca-
tions are unknown [13, 18]. [9] discusses a system for laptop
localization based on wireless ethernet. However our aim is
to localize the microphones and speakers and not the GPCs.
Our algorithm works assuming that all the microphones and
speakers are in the same room. Partitions and walls obstruct
the path of the sound. In such cases RF technology might
be useful.

1.2 Contributions

• We propose a novel setup for multi-microphone array
processing algorithms, using a network of multiple sen-
sors and actuators which can be created using ad-hoc
connected general purpose devices without expensive
hardware or computing power.
• We automatically calibrate the positions of the sensors

using actuators in unknown source locations. To the
best of our knowledge, most of the previous work on
position calibration (except [7] which describes a setup
based on Compaq iPAQs and motes) are formulated
assuming time synchronized platforms. However in
an ad-hoc distributed computing platform consisting
of heterogeneous GPCs we need to account for errors
due to lack of temporal synchronization. The main
contribution of this paper is to formulate and solve
the problem of self-localization for a distributed com-
puting platform. We do an extensive analysis, on the
errors due to lack of synchronization and propose novel
formulations to account for them.
• We also derive the Cramèr-Rao bound and analyze

the localization accuracy with respect to the number
of sensors and sensor geometry.

1.3 Paper Organization
The rest of the paper is organized as follows. In Section

2, we formulate the problem for a conventional synchronized
platform. Section 3 discusses the problems arising on a dis-
tributed computing platform and explicitly accounts for the
limited precision in temporal synchronization. Section 4 dis-
cusses the different issues involved in the non-linear mini-
mization. In Section 5, the Cramér-Rao bound is derived
and analyzed for its sensitivity with respect to the number
of sensors and actuators as well as their geometry. In Sec-
tion 6, extensive simulation results are reported. Section 7
gives a thorough discussion of the real-time system. Section
8, concludes with a summary of the present work, and with
a discussion on possible extensions.

2. PROBLEM FORMULATION
Given a set of M acoustic sensors and S acoustic actu-

ators in unknown locations, our goal is to estimate their
three dimensional coordinates. Each of the acoustic actu-
ators is excited using a known calibration signal such as
Maximum Length (ML) sequences or chirp signals, and the
Time of Arrival (TOA) is estimated for each of the acous-
tic sensors. The TOA for a given pair of microphone and
speaker is defined as the time taken by the acoustic signal
to travel from the speaker to the microphone. Measuring
the TOA and knowing the speed of sound in the acoustical
medium we can calculate the distances between each source
and all microphones. Using all these pairwise distances and
assuming that the TOAs are corrupted by additive white



Gaussian noise of known variance we can derive a Maximum
Likelihood (ML) estimate for the unknown microphone and
speaker locations.

The approach we describe here is a generalization of the
trilateration and multilateration techniques used in GPS po-
sitioning and other localization systems. Such systems as-
sume that the locations of four sources are known. By trilat-
eration a sensor’s position can be determined. At least four
speakers are required to find the position of an omnidirec-
tional microphone. Knowing the distance from one speaker,
the microphone can lie anywhere on a sphere centered at the
speaker. With two speakers the microphone can lie on a cir-
cle, since two spheres intersect at a circle. With three we can
get two points and four speakers can give a unique location.
Since the estimated distances are corrupted by noise, the
intersection in general need not be a unique point. There-
fore we solve the problem in a least square sense by adding
more speakers. We formulate the problem for the general
case where the positions of both the microphones and the
speakers are unknown. The following assumptions are made
in our initial formulation and will be relaxed later:

• At any given instant we know the number of sensors
and actuators in the network.
• The signals emitted from each of the speakers do not

interfere with each other. This can be achieved by
confining the signal at each speaker to disjoint fre-
quency bands or time intervals. Alternately, we can
use coded sequences such that the signal due to each
speaker can be extracted at the microphones and cor-
rectly attributed to the corresponding speaker.
• The emission start time and the capture start time are

zero or they are both equal. The emission start time
is defined as the time after which the sound is actu-
ally emitted from the speaker once the play command
has been issued in software. The capture start time is
defined as the time at which the actual capture starts
once the capture command is issued. This is an un-
realistic assumption. In all practical cases (except on
a perfectly synchronized platform) the emission and
capture start times are never equal and worse it can
vary with time depending on the sound card, the in-
terrupts and the background tasks on the processor.
In the next section we relax this assumption and show
how this uncertainty can be incorporated in our for-
mulation.

2.1 Maximum Likelihood Estimate
Assume we have M microphones and S sources. Let mi

for i ∈ [1,M ] and sj for j ∈ [1, S] be the three dimensional
vectors representing the spatial coordinates of the ith micro-
phone and jth source, respectively. Let ξ be the (M+S)×3
matrix where each row is formed by the spatial coordinates
of each sensor, i.e. ξ = [m1, ..,mM, s1, .., sS]T

We excite one of the S sources at a time and measure the
TOA at each of theM microphones. Let τij be the estimated
TOA and tij the actual TOA for the ith microphone due to
the jth source. The actual TOA for the ith microphone due
to the jth source is given by

tij =
‖mi − sj ‖

c
(1)

where c the speed of sound in the acoustical medium 1. Let
the measured TOA, τij be corrupted by zero-mean additive
white Gaussian noise 2 nij with known variance σ2

ij , i.e

τij = tij + nij (2)

Assuming that each of the TOAs are independently cor-
rupted by zero-mean additive white Gaussian noise the like-
lihood function of τij given ξ can be written as:

p [ τij , i ∈ [1,M ], j ∈ [1, S] ; ξ ] =

S∏
j=1

M∏
i=1

1√
2πσ2

ij

exp [
−(τij − tij)2

2σ2
ij

] (3)

The log-likelihood function is:

ln( p [ τij , i ∈ [1,M ], j ∈ [1, S] ; ξ ] ) =

−
S∑
j=1

M∑
i=1

[ln(
√

2πσ2
ij) +

(τij − tij)2

2σ2
ij

] (4)

The Maximum Likelihood (ML) estimate ˆξML is the one
which maximizes the log likelihood function, or equivalently
one which minimizes:

FML(ξ) =

S∑
j=1

M∑
i=1

(τij − tij)2

σ2
ij

(5)

ˆξML = argξ min[FML(ξ)] (6)

Since tij depends only on pairwise distance, any trans-
lation and rotation of the global minimum found, will also
be a global minimum. In order to eliminate multiple global
minima we select three arbitrary nodes to lie in a plane such
that the first is at (0, 0, 0), the second at (x1, 0, 0), and the
third at (x2, y2, 0). Basically we are fixing a plane so that
the sensor configuration cannot be translated or rotated. In
two dimensions we select two nodes to lie in a line, the first
at (0, 0) and the second at (x1, 0). To eliminate the ambi-
guity due to reflection along the Z-axis (3D) or Y-axis (2D)
we specify one more node to lie in the positive Z-axis (in
3D) or positive Y-axis (in 2D). Also the reflections along
the X-axis and Y-axis (for 3D) can be eliminated by assum-
ing the nodes, which we fix, to lie on the positive side of the
respective axes, i.e. x1 > 0 and y2 > 0.

3. SYSTEMATIC ERRORS
In the previous section we developed the ML estimate in

a perfectly synchronized distributed sensor network and as-
sumed that the measured TOA is corrupted by zero mean
additive white Gaussian noise due to two reasons: (1) ambi-
ent noise and (2) room reverberation. These kind of errors

1The speed of sound in a given acoustical medium is as-
sumed to be constant. In air it is given by c = (331 +
0.6T )m/s, where T is the temperature of the medium in
degree Celsius. For improved position calibration it is ben-
eficial to integrate a temperature sensor into the system. It
is also possible to include the speed of sound as a parameter
to be estimated, as in [14].
2We estimate the TOA using Generalized Crosscorrela-
tion(GCC) [8]. The estimated TOA is corrupted due to
ambient noise and room reverberation. For high SNR the
delays estimated by the GCC can be shown to be normally
distributed with zero mean and known variance [8]. In gen-
eral the variance depends on the signal spectra.
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Figure 2: Schematic indicating the errors due to
unknown emission start time (tsj) and capture start
time (tmi).

in measurement are called statistical errors. However there
can be certain errors, which are not statistical in nature.
They are called systematic errors. One example is the error
caused by the minimization routine. Other causes of errors,
particularly in distributed platforms, are due the lack of syn-
chronization among different microphones and speakers on
different platforms.

As discussed in the previous section, tij the actual TOA
for the ith microphone due to the jth source is given by
Equation 1. In the previous formulation we assumed that
our estimated TOA, τij was corrupted by additive white
Gaussian noise and so our model was

τij = tij + nij (7)

where nij is normally distributed with mean zero and vari-
ance σ2

ij .
Let us define the estimated TOA that is corrupted by both

the statistical and systematic errors as τ̂ij where

τ̂ij = t̂ij + nij (8)

t̂ij is the version of tij corrupted by systematic errors.
Let tsj be the emission start time for the jth source. (See

Figure 2). The emission start time is defined as the time
after which the sound is actually emitted from the speaker
once the command has been issued. This includes the net-
work delay (if the loudspeaker is on a different GPC), the de-
lay in setting up the audio buffers and also the time required
for the loudspeaker diaphragm to start vibrating. The emis-
sion start time is generally unknown and depends on the
particular sound card and the system state such as the pro-
cessor workload, interrupts, and the processes scheduled at
the given instant. Let tmi be the capture start time for the
ith microphone, i.e. the time instant at which sampling is
started once the command is issued. It can be greater than
or less than tsj

3. Let ∆tij = tsj − tmi. t̂ij is related to tij
as

t̂ij = tij + ∆tij = tij + tsj − tmi (9)

3In a typical setup we first start the audio capture on all the
devices and playback the calibration signal on each of them
one by one. Hence for most cases the capture start time is
less than the emission start time.

Thus a systematic error in the order of tsj−tmi is introduced
to the TOA estimate τ̂ij . We assumed that the play and
capture command were issued together. However if they
were issued at different instants than the issue time can also
be included in the emission and capture start times. For
this we need a time reference. Assuming capture is started
before playback we can assume that tm1 = 0 i.e the time at
which the first microphone started capturing is our origin.

We propose two methods to tackle the problem of emission
and capture start times:

• If two audio input and output channels are available on
a single GPC then one of the output channels can be
used to play a reference signal which is RF modulated
and transmitted through the air [10]. This reference
signal can be captured in one of the input channels ,de-
modulated and used to estimate ∆tij , since the trans-
mission time for RF waves can be considered almost
zero. Note that this assumes that all audio channels
on the same I/O device are synchronized, which is gen-
erally true.
• The other solution is to jointly estimate the unknown

source emission and capture start time together with
the microphone and source coordinates. We can in-
corporate both tsj and tmi as additional parameters
to be estimated. Let us redefine ξ to include all un-
known parameters for notational convenience. We can
arrange all the parameters to be estimated as a vector
ξ:

ξ = {m1, ..,mM; s1, .., sS; tm1, ..., tmM; ts1, ..., tsS}
(10)

The ML estimate is same as in the previous case

ˆξML = argξ min[

S∑
j=1

M∑
i=1

(τ̂ij − t̂ij)2

σ2
ij

] (11)

Similar to fixing a reference coordinate system in space
we introduce a reference time line by setting tm1 = 0.

4. NON-LINEAR LEAST SQUARES
The ML estimate for the node coordinates of the micro-

phones and loudspeakers is implicitly defined as the mini-
mum of the non-linear function given in Equation 11. This
function has to be minimized using numerical optimization
methods. Least squares problems can be solved using a gen-
eral unconstrained minimization. However there exist spe-
cialized methods like the Gauss-Newton and the Levenberg-
Marquardt method which are more efficient. The Levenberg-
Marquardt method [5] is a popular method for non-linear
least squares problems. It is a compromise between steepest
descent and Newton’s methods. For more details on nonlin-
ear minimization refer to, for example [5].

The following are the non zero partial derivatives 4 needed
for the minimization routines: 5

4These derivatives form the non-zero elements of the Jaco-
bian matrix. For least squares problems the gradient and
the Hessian can be got from the Jacobian
5Many commercial software solutions are available for the
Levenberg-Marquardt method such as lsqnonlin in MAT-
LAB , mrqmin provided by Numerical Recipes in C , and
the MINPACK-1 routines



∂t̂ij
∂mxi

= − ∂t̂ij
∂sxj

=
∂tij
∂mxi

= − ∂tij
∂sxj

=
mxi − sxj
c‖mi − sj‖

∂t̂ij
∂myi

= − ∂t̂ij
∂syj

=
∂tij
∂myi

= − ∂tij
∂syj

=
myi − syj
c‖mi − sj‖

∂t̂ij
∂mzi

= − ∂t̂ij
∂szj

=
∂tij
∂mzi

= − ∂tij
∂szj

=
mzi − szj
c‖mi − sj‖

∂t̂ij
∂tsj

= − ∂t̂ij
∂tmi

=
∂tij
∂tsj

= − ∂tij
∂tmi

= 1 (12)

The common problem with minimization methods is that
they often get stuck in a local minima. Good initial guesses
of the node locations counteract the problem. The following
are a few points, which can be exploited for a better initial
guess:

• If we have an approximate idea of the microphone and
speaker positions, then we can initialize manually.
• Use the previous geometry as the initial guess, if the

sensor geometry changes and recalibration is needed.
This procedure implicitly assumes that geometry does
not change drastically.
• Minimize the function from different initial guesses and

choose the one with the minimum value.
• Assuming that the microphones and speakers on a

given computing platform are approximately at the
same position and given all the pairwise distances be-
tween the computing platforms, we can use classical
Multidimensional Scaling approach [16] to determine
the coordinates from the Euclidean distance matrix.
This involves converting the symmetric distance ma-
trix to a matrix of scalar products with respect to some
origin and then perform a singular value decomposi-
tion to obtain the matrix of coordinates6. This matrix
of coordinates can be used as our initial guess.
• Use results from video if available. It may be difficult

to find the location of the actual microphone on the
laptop, but an approximate location of the laptop can
be found easily using multiple cameras. This rough
estimate can be used as an initial guess.

5. CRAMÉR-RAO BOUND
The Cramér-Rao bound gives a lower bound on the vari-

ance of any unbiased estimate [17]. In this section, we first
derive the Cramér-Rao bound (CRB) for the estimate of the
node coordinates, i.e., the matrix ξ, and then discuss the
influence of the number of sensors and actuators and the
sensor geometry on the lower bound. We have not included
the unknown emission and capture start times in our deriva-
tion, however, it can be easily extended by adding them as
extra nuisance parameters.

Let Φ, be a vector of length 3(M + S) × 1, representing
all the unknown non-random parameters to be estimated.

Φ = [ΦmΦs]
T

Φm = [mx1,my1,mz1, ......,mxM ,myM ,mzM ]

Φs = [sx1, sy1, sz1, ......, sxS , syS , szS ] (13)
6Let Bk be the scalar product matrix with respect to the kth

laptop as the origin and X be the matrix of the cartesian
coordinates of the laptops. Then Bk = XXT . So Bk is
positive semidefinite and hence we can calculate X = UΣ1/2

where the singular decomposition of Bk is given by Bk =
UΣUT

where mxi, myi, and mzi are the x, y and z coordinates of
the ith microphone and sxi, syi, and szi are the x, y and z
coordinates of the ith speaker. Let Γ, be a vector of length
MS× 1, representing our noisy measurements of the TOAs:

Γ = [τ11, τ12, . . . , τ1S , . . . . . . , τM1, τM2, . . . , τMS ]T (14)

Let T (Φ), be a vector of length MS × 1, representing the
actual TOAs.

T (Φ) = [t11, t12, . . . , t1S , . . . . . . , tM1, tM2, . . . , tMS ]T (15)

Then according to our Gaussian noise model,

Γ = T (Φ) +N (16)

where N is the zero-mean additive white Gaussian noise
vector of length MS×1 where each element has the variance
σ2
ij . Also let us define Σ to be the MS × MS diagonal

covariance matrix.

Σ = diag[σ2
11 . . . σ

2
1S . . . σ

2
M1 . . . σ

2
MS ] (17)

The variance of any unbiased estimator Φ̂ of Φ is bounded
as [17]

E
[
(Φ̂− Φ)(Φ̂− Φ)T

]
≥ J−1(Φ) (18)

where J(Φ) is called the Fischer’s Information matrix and
is given by

J , E
{[

∂

∂Φ
ln p(Γ/Φ)

] [
∂

∂Φ
ln p(Γ/Φ)

]T}
(19)

Any estimate which satisfies the bound with an equality is
called an efficient estimate. The ML estimate is consistent
and asymptotically efficient[17].

In order to derive the Cramér-Rao bound, we write the
likelihood function in vector form as:

p(Γ/Φ) = (2π)−
MS

2 | Σ |− 1
2 exp

[
−1

2
(Γ− T )TΣ−1(Γ− T )

]

(20)
The derivative of the log-likelihood function can be found
using the generalized chain rule and is given by

∂

∂Φ
ln p(Γ/Φ) =

[
∂

∂Φ
T (Φ)

]T
Σ−1(Γ− T ) (21)

Substituting this in Equation 19 and taking the expectation
the Fishers Information matrix is,

J =

[
∂

∂Φ
T (Φ)

]T
Σ−1

[
∂

∂Φ
T (Φ)

]
(22)

Let us define,

Υ =

[
∂T (Φ)

∂Φ

]
(23)

where Υ is an MS × 3(M + S) matrix of partial derivatives
(see Equation 12). Then

J = ΥTΣ−1Υ (24)

If we assume Σ = σ2I i.e. all the noise components are
independent and have the same variance σ2 then,

J =
1

σ2
ΥTΥ (25)

If we assume that all the microphone and source loca-
tions are unknown, the matrix J is rank deficient and hence



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X (m)

Y 
(m

)

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X (m)

Y 
(m

)

(b)

Figure 3: 95% uncertainty ellipses for a regular 2
dimensional array of (a) 9 speakers and 9 micro-
phones, (b) 36 speakers and 36 microphones. Noise
variance in both cases is σ2 = 10−8. The microphones
are represented as crosses (×) and the speakers as
dots (.). The position of one microphone and the x
coordinate of one speaker is assumed to be known
(shown in bold).

not invertible. This is because the solution to the ML esti-
mation problem as formulated is invariant to rotation and
translation. In order to make the Fisher Information matrix
invertible we remove the rows and columns corresponding to
the known parameters. The diagonal terms of J−1 represent
the lower bound for the error variance for estimating each
of the parameters in Φ.

5.1 Effect of the number of nodes
As the number of nodes increases in the network, the CRB

decreases i.e. more the number of microphones and speakers
in the network, the lesser the error in estimating their posi-
tions. Figure 3(a) shows the 95% uncertainty ellipses for a
regular two dimensional array consisting of 9 microphones
(shown as crosses (x)) and 9 speakers (shown as dots (.)).
We fixed the position of one microphone and the x coordi-
nate of one speaker. The fixed microphone and speaker are
shown in bold. For the fixed speaker only the variance in y
direction is shown since the x coordinate is fixed. The noise
variance was assumed to be 10−8. For a given noise variance,
we can say with 95% probability the estimated position will

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Noise standard Deviation σ

To
ta

l v
ar

ia
nc

e 
of

 th
e 

un
kn

ow
n 

m
ic

ro
ph

on
e 

co
or

di
na

te
s 

(c
m

   
2 

)

Effect of the varing the number of sensors on the CRB

5 mics + 5 speakers  

10 mics + 10 speakers  

15 mics + 15 speakers  

Figure 4: Cramér-Rao bound on the total variance
of all the unknown microphone coordinates as a
function of noise standard deviation σ for different
number of microphones and speakers given the po-
sitions of 1 microphone and 2 speakers.

lie in the ellipse. Figure 3(b) shows the corresponding 95%
uncertainty ellipses for a two dimensional array consisting
of 36 microphones and 36 speakers. It can be seen that as
the number of sensors in the network increases the dimen-
sions of the uncertainty ellipses decreases. This can also be
seen from Figure 4, where the lower bound on the total vari-
ance of the unknown microphone coordinates is plotted for
different number of nodes in a three dimensional network.

Intuitively this can be explained as follows: Let there be
a total of n nodes in the network whose coordinates are un-
known. Then we have to estimate a total of 3n parameters.
The total number of TOA measurements available is how-
ever n2/4 (assuming that there are n/2 microphones and
n/2 speakers). So if the number of unknown parameters
increases as O(n), the number of available measurements
increases as O(n2). So the linear increase in the number
of unknown parameters, is compensated by the quadratic
increase in the available measurements.

5.2 Effect of sensor geometry
The geometry of the network plays an important role in

CRB. It is possible to analyze how to place the sensors in
order to achieve a lower CRB. In an ad-hoc network, how-
ever, such analysis is of little benefit. In our formulation
we assumed that we know the positions of a certain num-
ber of nodes, i.e we fix three of the nodes to lie in the x-
y plane. The CRB depends on which of the sensor nodes
are assumed to have known positions. Figure 5 shows the
95% uncertainty ellipses for a regular two dimensional array
containing 25 microphones and 25 speakers for different po-
sitions of the known nodes. In Figure 5(a) the two known
nodes are at one corner of the grid. It can be seen that the
uncertainty ellipse becomes wider as you move away form
the known nodes. The uncertainty in the direction tangen-
tial to the line joining the sensor node and the center of the
known nodes is much larger than along the line. The same
can be seen in Figure 5(b) where the known nodes are at
the center of the grid. The reason for this can be explained
for a simple case where we know the locations of two speak-
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Figure 5: 95% uncertainty ellipses for a regular 2 dimensional array of 25 microphones shown in solid lines
and 25 speakers shown in dotted lines for different positions of the known microphone and for different x
coordinates of the known speaker. In (a) and (b) the known nodes are close to each other and in (c) they are
spread out one at each corner of the grid. The microphones are represented as crosses (×) and the speakers
as dots (.). Noise variance in all cases was σ2 = 10−9. (d) Schematic to explain the shape of uncertainty
ellipses

ers as shown in Figure 5(d). Each annulus represents the
uncertainty in the distance estimation. The intersection of
the two annuli corresponding to the two speakers gives the
uncertainty region for the position of the sensor. As can be
seen for nodes far away from the two speakers the region
widens because of the decrease in the curvature. It is bene-
ficial if the known nodes are on the edges of the network and
as faraway from each other as possible. In Figure 5(c) the
known sensor nodes are on the edges of the network. As can
be seen there is a substantial reduction in the dimensions of
the uncertainty ellipses.

6. MONTE CARLO SIMULATIONS
We performed a series of Monte Carlo simulations to com-

pare the experimental performance with the Cramèr Rao
bound (CRB). Ten microphones and ten speakers were ran-
domly selected in a room of dimensions 2.0m×2.0m×2.0m.
Based on the geometry of the setup the actual TOA was cal-
culated and then corrupted with zero mean additive white
Gaussian noise of variance σ2 in order to model the room
ambient noise and reverberation. The TOA matrix was
given as an input to the Levenberg-Marquadrat minimiza-
tion routine. The positions of two microphones and two
speakers were assumed to be known. The starting point
for the minimization procedure was chosen to lie within a
sphere of 50cm for each of the nodes in the network. For
each noise variance σ2, the results were averaged over 2000
trials corresponding to different initial guesses.

Figure 6(a), shows the total variance of all the unknown
microphone coordinates plotted against the noise standard
deviation σ. The corresponding CRB is also shown. It can
be seen that the experimental results match closely with the
theoretical bound. Figure 6(d) shows the average bias. The
estimator shows a slight bias. The bias could be due to
the particular optimization method used or due to the finite
number of trials.

6.1 Random vs. intelligent initial guess
The common problem with minimization methods is that

they may get stuck in a local minimum. To avoid this we
need a very good initial guess of the locations. We regard

starting points within 50cm of the node’s true location as in-
telligent initial guesses. Figure 6(b) shows the total variance
of the unknown microphone coordinates plotted against the
noise standard deviation σ for intelligent and random initial
guess. Figure 6(e) shows the corresponding average bias. It
can be seen that even though the bias is not that high, the
variance is substantially higher for the random case. Hence
the choice of initial configuration is very crucial.

6.2 Estimation of source emission time
We also performed a series of simulations where the TOA

was assumed to be corrupted by the unknown source emis-
sion times. Figure 6(c) and 6(f) show the total variance and
average bias of the unknown microphone coordinates plotted
against the source emission time with and without account-
ing the source emission time in the ML estimation proce-
dure. It can be seen that with the increase of unaccounted
source emission times, the bias and variance increase. How-
ever, if the source emission times are estimated, too, then
the bias becomes nearly zero and the variance is also much
lower.

7. SYSTEM DESIGN ISSUES
In this section we discuss some of the practical issues of

our real-time implementation such as the type of calibration
signal and the TOA estimation procedure used as well as
other design choices.

7.1 Calibration signals
In order to measure the TOA accurately the calibration

signal has to be appropriately selected and the parameters
properly tuned. Chirp signals and Maximum Likelihood
(ML) sequences are the two most popular sequences used.
A linear chirp signal is a short pulse in which the frequency
of the signal varies linearly between two preset frequencies.
The cosine linear chirp signal of duration T with the in-
stantaneous frequency varying linearly between f0 and f1 is
given by

s(t) = Acos(2π(f0 + (
f1 − f0

T
)t)) 0 ≤ t ≤ T (26)
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Figure 6: Monte Carlo Simulation results: (a) (b) and (c) Total variance of the error in all the unknown
microphone coordinates and (d)(e) and (f) average bias of the error for a network consisting of 10 microphones
and 10 speakers. The positions of 2 microphones and 2 speakers are assumed to be known.

In our system, we used the chirp signal of 512 samples at
44.1kHz (11.61 ms) as our calibration signal. The instanta-
neous frequency varied linearly from 5 kHz to 10 kHz. The
initial and the final frequency was chosen to lie in the com-
mon passband of the microphone and the speaker frequency
response. The chirp signal send by the speaker is convolved
with the room impulse response resulting in the spreading of
the chirp signal. Figure 7(a) shows the chirp signal as sent
out by the soundcard to the speaker. This signal is recorded
by looping the output channel directly back to an input
channel, on a multichannel sound card. The initial delay is
due to the emission start time and the capture start time.
Figure 7(b) shows the corresponding chirp signal received
by the microphone. The chirp signal is delayed by a certain
amount due to the propagation path. The distortion and
the spreadout is due to the speaker, microphone and room
response. Figure 7(c) and Figure 7(d) show the magnitude
of the frequency response of the transmitted chirp signal and
the received chirp signal, respectively.

One of the problems in accurately estimating the TOA
is due to the multipath propagation caused by room reflec-
tions. This can be seen in the received chirp signal where the
initial part corresponds to the direct signal and the rest are
the room reflections. We use the Time Division Multiplexing
scheme to send the calibration signal to different speakers.
To avoid interference between the different calibration sig-

nals we zeropad the calibration signal appropriately in de-
pendence of the room reverberation level and the maximum
delay. Alternatively, we could also use Frequency Division
Multiplexing by allocating a frequency band at each chan-
nel or spread spectrum techniques by using different ML
sequences for each channel. The advantage would be that
all the output channels can be played simultaneously. How-
ever extra processing is needed at the input to separate the
signals.

7.2 TOA estimation
This is the most crucial part of the algorithm and also a

potential source of error. Hence lot of care has to be taken
to get the TOA accurately in noisy and reverberant environ-
ments. The time-delay may be found by locating the peak in
the cross-correlation of the signals received over the two mi-
crophones. However this method is not robust to noise and
reverberations. Knapp and Carter [8] developed a Maximum
Likelihood (ML) estimator for determining the time delay
between signals received at two spatially separated sensors
in the presence of uncorrelated noise. In this method, the
delay estimate is the time lag which maximizes the cross-
correlation between filtered versions of the received signals
[8]. The cross-correlation of the filtered versions of the sig-
nals is called as the Generalized Cross Correlation (GCC)
function. The GCC function Rx1x2(τ) is computed as [8]
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Figure 7: (a) The loopback reference chirp signal (b)
the chirp signal received by one of the microphones
(c) the magnitude of the frequency response of the
reference signal and (d) the received chirp signal

Rx1x2(τ) =
∫∞
−∞W (ω)X1(ω)X∗2 (ω)ejωτdω, where X1(ω),

X2(ω) are the Fourier transforms of the microphone signals
x1(t), x2(t), respectively and W (ω) is the weighting func-
tion. The two most commonly using weighting functions
are the ML and the Phase Transform (PHAT) weighting.
The ML weighting function, accentuates the signal passed
to the correlator at frequencies for which the signal-to-noise
ratio is the highest and, simultaneously suppresses the noise
power [8]. This ML weighting function performs well for low
room reverberation. As the room reverberation increases
this method shows severe performance degradations. Since
the spectral characteristics of the received signal are modi-
fied by the multipath propagation in a room, the GCC func-
tion is made more robust by deemphasizing the frequency
dependent weightings. The Phase Transform is one extreme
where the magnitude spectrum is flattened. The PHAT
weighting is given by WPHAT (ω) = 1

|X1(ω)X∗2 (ω)| . By flat-

tening out the magnitude spectrum the resulting peak in the
GCC function corresponds to the dominant delay. However,
the disadvantage of the PHAT weighting is that it places
equal emphasizes on both the low and high SNR regions,
and hence it works well only when the noise level is low.
For low noise rooms the PHAT method performs moder-
ately well. For a practical room we can estimate the room
noise, and use the combined ML and PHAT weighting by
appropriately emphasizing each weighting function based on
the noise levels [6]. A more accurate estimate of the peak
can be found by upsampling the GCC function.

7.3 Testbed Setup
The real-time setup has been tested in a synchronized as

well as a distributed setup using laptops. Figure 8 shows the
top view of our experimental setup. Four omnidirectional
microphones (RadioShack) and four loudspeakers (Mackie
HR624) were setup in a room with low reverberation and
low ambient noise. The ground truth was measured man-
ually to validate the results from the position calibration
methods. In a synchronized setup, the microphones and
loudspeakers were interfaced using an RME DIGI9652 card.
For a distributed implementation the loudspeakers and the
microphones were connected to four laptops (3 IBM T-series
Thinkpads and one Dell laptop). All the laptops had Intel
Pentium series processors.
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Figure 8: Top view of the whisper room containing
4 microphones and 4 speakers
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Figure 9: Schematic showing the distributed control
scheme.

7.4 Software details
Capture and play back was done using the free, cross plat-

form, open-source, audio I/O library Portaudio [3]. Most
of the signal processing tasks were implemented using the
Signal Processing Library in Intelr Integrated Performance
Primitives (IPP). IPP is a cross-platform low-level software
layer that abstracts multimedia functionality from the pro-
cessor underneath providing highly optimized code [2]. For
the non-linear minimization we used the mrqmin routine
from Numerical Recipes in C [12]. For displaying the cali-
brated microphones and speakers we used the OpenGL Util-
ity Toolkit (GLUT) ported to Win32 [4].

For the distributed platform we used the UPnP [1] tech-
nology to form an adhoc network and control the audio
devices on different platforms. UPnP technology is a dis-
tributed, open networking architecture that employs TCP/IP
and other Internet technologies to enable seamless proxim-
ity networking [1]. The real time setup integrates the dis-
tributed synchronization scheme using ML sequence as pro-
posed in [10]. Figure 9 shows a schematic of the TOA
computation protocol. Each of the laptops has an UPnP
service running for playing the chirp signal and capturing
the audio stream. One of the GPC’s is configured to be the
master which plays the ML sequence as described in [10]. A



Figure 10: A sample screen shot of the OpenGL
display.

program on the master scans the network for all the avail-
able UPnP players. Then the chirp signal is played on each
of the devices one after the other and the signal is captured.
The TOA computation is distributed among all the laptops,
in that each laptop computes its own TOA and reports it
back to the master. The master performs the minimization
routine once it has the TOA matrix.

As regards to CPU utilization the TOA estimation con-
sumes negligible resources. If we use a good initial guess via
the Multidimensional Scaling technique then the minimiza-
tion routine converges within 8 to 10 iterations.

7.5 Results
For the setup consisting of 4 speakers and 4 microphones,

the sensors’ and actuators’ three dimensional locations could
be estimated with an average bias of 0.08 cm and average
standard deviation of 3.8 cm (results averaged over 100 tri-
als). In order to display the microphones and speakers in
context of the room, the positions of two speakers and one
microphone was assumed to be known. Figure 10 shows
a snapshot of the OpenGL display, showing the estimated
locations of the speakers and microphones.

8. SUMMARY AND FURTHER STUDIES
In this paper we described the problem of localization of

acoustic sensors and actuators in a network of distributed
general-purpose computing platforms. Our approach allows
putting laptops, PDAs and tablets into a common 3D co-
ordinate system. Together with time synchronization this
creates arrays of audio sensors and actuators and enables
a rich set of new multistream A/V applications on plat-
forms that available virtually anywhere. We also derived
important bounds on performance of spatial localization al-
gorithms, proposed optimization techniques to implement
them and extensively validated the algorithms on simulated
and real data. There are a number of ways to improve lo-
calization in the future. The one we are currently pursuing
is targeted at using Time Difference Of Arrival instead of
Time Of Arrival and getting closed form approximations to
be used as initial guess for the minimization routine.
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