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Motivation

Supervised Learning
Learning from examples

Classification [spam/ not spam]

Regression [predicting the amount of snowfall]

Ranking [predicting movie preferences]
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Motivation

Supervised Learning
Learning from examples

Classification [spam/ not spam]

Regression [predicting the amount of snowfall]

Ranking [predicting movie preferences]

Learning can be viewed as function estimation f : X → Y
X = Rd features/attributes.

Classification Y = {−1,+1}.
Regression Y = R

Task X Y
spam filtering word frequencies spam(+1) not spam(-1)

snowfall prediction temperature, humidity inches of snow

movie preferences rating by other users movie 1 � movie 2
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Motivation

Three components of learning

Learning can be viewed as function estimation f : X → Y.

Three tasks

Training → Learning the function f from examples {xi , yi}N
i=1.

Prediction → Given a new x predict y .

Model Selection → What kind on function f to use.
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Motivation

Two approaches to learning
Parametric approach

Assumes a known parametric form for the function to be learnt.

Training ⇔ Estimate the unknown parameters.

Once the model has been trained, for future prediction the training
examples can be discarded.

The essence of the training examples have been captured in the
model parameters.

Leads to erroneous inference unless the model is known a priori.
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Motivation

Two approaches to learning
Non-parametric approach

Do not make any assumptions on the form of the underlying function.

Letting the data speak for themselves.

Perform better than parametric methods.

However all the available data has to be retained while making the
prediction.

Also known as memory based methods.
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Motivation

Scalable machine learning
Say we have N training examples

Many state-of-the-art learning algorithms scale as O(N2) or O(N3).

They also have O(N2) memory requirements.

Huge data sets containing millions of training examples are relatively
easy to gather.

We would like to have algorithms that scale as O(N).
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Motivation

Scalable machine learning
Say we have N training examples

Many state-of-the-art learning algorithms scale as O(N2) or O(N3).

They also have O(N2) memory requirements.

Huge data sets containing millions of training examples are relatively
easy to gather.

We would like to have algorithms that scale as O(N).

Example

A kernel density estimation with 1 million points would take around 2 days.

Previous approaches

Use only a subset of the data.

Online algorithms.
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Motivation

Goals of this dissertation

1 Identify the key computational primitives contributing to the O(N3)
or O(N2) complexity.
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Motivation

Goals of this dissertation

1 Identify the key computational primitives contributing to the O(N3)
or O(N2) complexity.

2 Speedup up these primitives by approximate algorithms that scale as
O(N) and provide high accuracy guarantees.

3 Demonstrate the speedup achieved on massive datasets.

4 Realese the source code for the algorithms developed under LGPL.

Fast matrix-vector multiplication

The key computational primitive at the heart of various algorithms is a
”structured” matrix-vector product (MVP).
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Motivation

Tools and applications

We use ideas and techniques from

Computational physics 7→ fast multipole methods.

Scientific computing 7→ iterative methods

Computational geometry 7→clustering, kd-trees.

to design these algorithms and have applied it to
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Motivation

Tools and applications

We use ideas and techniques from

Computational physics 7→ fast multipole methods.

Scientific computing 7→ iterative methods

Computational geometry 7→clustering, kd-trees.

to design these algorithms and have applied it to

kernel density estimation [59,63,64,67]

optimal bandwidth estimation [60,61]

projection pursuit [60,61]

implicit surface fitting

Gaussian process regression [59,64]

ranking [62,65,66]

collaborative filtering [65,66]
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Key Computational tasks

Outline of the proposal

1 Motivation

2 Key Computational tasks

3 Thesis contributions
Algorithm 1: Sums of Gaussians

Kernel density estimation

Gaussian process regression

Implicit surface fitting

Algorithm 2: Sums of Hermite × Gaussians
Optimal bandwidth estimation

Projection pursuit

Algorithm 3: Sums of error functions
Ranking
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Key Computational tasks

Key Computational tasks

Training Prediction Choosing
(N examples) (at N points) parameters

Kernel regression O(N2) O(N2) O(N2)

Gaussian processes O(N3) O(N2) O(N3)

SVM O(N3
sv ) O(NsvN) O(N3

sv )

Ranking O(N2)

KDE O(N2) O(N2)

Laplacian eigenmaps O(N3)

Kernel PCA O(N3)
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Key Computational tasks

Training Prediction Choosing
(N examples) (at N points) parameters

Kernel regression O(N2) O(N2) O(N2)

Gaussian processes O(N3) O(N2) O(N3)

SVM O(N3
sv ) O(NsvN) O(N3

sv )

Ranking O(N2)

KDE O(N2) O(N2)

Laplacian eigenmaps O(N3)

Kernel PCA O(N3)

The key computational primitives contributing to O(N2) or O(N3).

Matrix-vector multiplication.

Solving large linear systems.
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Key Computational tasks

Kernel machines

Minimize the regularized empirical risk functional Rreg [f ].

min
f ∈H

Rreg [f ] =
1

N

N∑

i=1

L[f (xi ), yi ] + λ‖f ‖2
H, (1)

where H denotes a reproducing kernel Hilbert space (RKHS).
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Kernel machines

Minimize the regularized empirical risk functional Rreg [f ].

min
f ∈H

Rreg [f ] =
1

N

N∑

i=1

L[f (xi ), yi ] + λ‖f ‖2
H, (1)

where H denotes a reproducing kernel Hilbert space (RKHS).

Theorem (Representer Theorem)

If k : X × X 7→ Y is the kernel of the RKHS H then the minimizer of

Equation 1 is of the form

f (x) =

N∑

i=1

qik(x , xi ). (2)
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Key Computational tasks

f (x) =
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i=1

qik(x , xi ).
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Key Computational tasks

f (x) =
N∑

i=1

qik(x , xi ).

Kernel machines f is the regression/classification function.
[Representer theorem]

Density estimation f is the kernel density estimate

Gaussian processes f is the mean prediction.
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Key Computational tasks

Prediction

Given N training examples {xi}N
i=1, the key computational task is to

compute a weighted linear combination of local kernel functions
centered on the training data, i.e.,

f (x) =
N∑

i=1

qik(x , xi ).

The computation complexity to predict at M points given N training
examples scales as O(MN).
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Key Computational tasks

Training

Training these models scales as O(N3) since most involve solving the
linear system of equation

(K + λI)ξ = y.

K is the dense N × N Gram matrix where [K]ij = k(xi , xj).
I is the identity matrix.
λ is some regularization parameter or noise variance.
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Key Computational tasks

Training

Training these models scales as O(N3) since most involve solving the
linear system of equation

(K + λI)ξ = y.

K is the dense N × N Gram matrix where [K]ij = k(xi , xj).
I is the identity matrix.
λ is some regularization parameter or noise variance.

Direct inversion requires O(N3) operations and O(N2) storage.
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Key Computational tasks

N-body problems in statistical learning

O(N2) because computations involve considering pair-wise elements.

N-body problems in statistical learning in analogy with the Coulombic
N-body problems occurring in computational physics.

These are potential based problems involving forces or charges.

In our case the potential corresponds to the kernel function.
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Key Computational tasks

Fast Matrix Vector Multiplication

We need a fast algorithm to compute

f (yj) =
N∑

i=1

qik(yj , xi ) j = 1, . . . ,M.
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Key Computational tasks

Fast Matrix Vector Multiplication

We need a fast algorithm to compute

f (yj) =
N∑

i=1

qik(yj , xi ) j = 1, . . . ,M.

Matrix Vector Multiplication f = Kq





f (y1)
f (y2)

...
f (yM)




=





k(y1, x1) k(y1, x2) . . . k(y1, xN)
k(y2, x1) k(y2, x2) . . . k(y2, xN)

...
...

. . .
...

k(yM , x1) k(yM , x2) . . . k(yM , xN)









q1

q2
...

qN
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Key Computational tasks

Fast Matrix Vector Multiplication

We need a fast algorithm to compute

f (yj) =
N∑

i=1

qik(yj , xi ) j = 1, . . . ,M.

Matrix Vector Multiplication f = Kq





f (y1)
f (y2)

...
f (yM)




=





k(y1, x1) k(y1, x2) . . . k(y1, xN)
k(y2, x1) k(y2, x2) . . . k(y2, xN)

...
...

. . .
...

k(yM , x1) k(yM , x2) . . . k(yM , xN)









q1

q2
...

qN





Direct computation is O(MN).

Reduce from O(MN) to O(M + N)
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Key Computational tasks

Why should O(M + N) be possible?
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Structured matrix

A dense matrix of order M × N is called a structured matrix if its entries
depend only on O(M + N) parameters.
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Key Computational tasks

Why should O(M + N) be possible?

Structured matrix

A dense matrix of order M × N is called a structured matrix if its entries
depend only on O(M + N) parameters.

K is a structured matrix.

[K]ij = k(xi , yj) = e−‖xi−yj‖
2/h2

(Gaussian kernel)
Depends only on xi and yj .
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Key Computational tasks

Why should O(M + N) be possible?

Structured matrix

A dense matrix of order M × N is called a structured matrix if its entries
depend only on O(M + N) parameters.

K is a structured matrix.

[K]ij = k(xi , yj) = e−‖xi−yj‖
2/h2

(Gaussian kernel)
Depends only on xi and yj .

Motivating toy example

Consider

G (yj) =
N∑

i=1

qi (xi − yj)
2 for j = 1, . . . ,M.

Direct summation is O(MN).
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Key Computational tasks

Motivating toy example

Factorize and regroup

G (yj) =
N∑

i=1

qi (xi − yj)
2
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Factorize and regroup

G (yj) =
N∑

i=1

qi (xi − yj)
2

=

N∑

i=1

qi (x
2
i − 2xiyj + y2

j )

=

[
N∑

i=1

qix
2
i

]

− 2yj

[
N∑

i=1

qixi

]

+ y2
j

[
N∑

i=1

qi

]
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Key Computational tasks

Motivating toy example

Factorize and regroup

G (yj) =
N∑

i=1

qi (xi − yj)
2

=

N∑

i=1

qi (x
2
i − 2xiyj + y2

j )

=

[
N∑

i=1

qix
2
i

]

− 2yj

[
N∑

i=1

qixi

]

+ y2
j

[
N∑

i=1

qi

]

= M2 − 2yjM1 + y2
j M0

The moments M2, M1, and M0 can be pre-computed in O(N).

Hence the computational complexity is O(M + N).

Encapsulating information in terms of the moments.
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Key Computational tasks

Direct vs Fast
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Key Computational tasks

In general

For any kernel K (x , y) we can expand as

K (x , y) =

p∑

k=1

Φk(x)Ψk(y) + error .
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Key Computational tasks

In general

For any kernel K (x , y) we can expand as

K (x , y) =

p∑

k=1

Φk(x)Ψk(y) + error .

The fast summation is of the form

G (yj) =

p∑

k=1

AkΨk(y) + error ,

where the moments Ak can be pre-computed as

Ak =

N∑

i=1

qiΦk(xi ).

Organize using data-structures to use this effectively.

Give accuracy guarantees.
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Key Computational tasks

Notion of ǫ-exact approximation

Vikas C. Raykar (Univ. of Maryland) Doctoral dissertation March 8, 2007 22 / 69



Key Computational tasks

Notion of ǫ-exact approximation

Direct computation is O(MN).

We will compute G (yj) approximately so as to reduce the
computational complexity to O(N + M).

Speedup at the expense of reduced precision.
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Key Computational tasks

Notion of ǫ-exact approximation

Direct computation is O(MN).

We will compute G (yj) approximately so as to reduce the
computational complexity to O(N + M).

Speedup at the expense of reduced precision.

User provides a accuracy parameter ǫ.

The algorithm computes Ĝ(yj) such that |Ĝ (yj) − G (yj)| < ǫ.

The constant in O(N + M) depends on the accuracy ǫ.

Smaller the accuracy → Larger the speedup.

ǫ can be arbitrarily small.

For machine level precision no difference between the direct and the
fast methods.
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Key Computational tasks

Two aspects of the problem

1 Approximation theory → series expansions and error bounds.

2 Computational geometry → effective data-structures.

A class of techniques using only good space division schemes called dual
tree methods have been proposed.
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Thesis contributions Algorithm 1: Sums of Gaussians

Algorithm 1: Sums of Gaussians

The most commonly used kernel function in machine learning is the
Gaussian kernel

K (x , y) = e−‖x−y‖2/h2
,

where h is called the bandwidth of the kernel.
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Thesis contributions Algorithm 1: Sums of Gaussians

Discrete Gauss Transform

G (yj) =

N∑

i=1

qie
−‖yj−xi‖

2/h2
.

{qi ∈ R}i=1,...,N are the N source weights.

{xi ∈ Rd}i=1,...,N are the N source points.

{yj ∈ Rd}j=1,...,M are the M target points.

h ∈ R+ is the source scale or bandwidth.
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Thesis contributions Algorithm 1: Sums of Gaussians

Fast Gauss Transform (FGT)

ǫ − exact approximation algorithm.

Computational complexity is O(M + N).

Proposed by Greengard and Strain and applied successfully to a few
lower dimensional applications in mathematics and physics.

However the algorithm has not been widely used much in statistics,
pattern recognition, and machine learning applications where higher
dimensions occur commonly.
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Thesis contributions Algorithm 1: Sums of Gaussians

Constants are important

FGT ∼ O(pd(M + N)).

We propose a method Improved FGT (IFGT) which scales as ∼
O(dp(M + N)).
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Thesis contributions Algorithm 1: Sums of Gaussians

Brief idea of IFGT
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Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.
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Brief idea of IFGT
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c
k

Step 0 Determine parameters of algorithm based on specified error
bound, kernel bandwidth, and data distribution.

Step 1 Subdivide the d-dimensional space using a k-center clustering
based geometric data structure (O(N log K )).

Step 2 Build a p truncated representation of kernels inside each
cluster using a set of decaying basis functions (O(Ndp)).

Step 3 Collect the influence of all the the data in a neighborhood
using coefficients at cluster center and evaluate (O(Mdp)).
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Thesis contributions Algorithm 1: Sums of Gaussians

Sample result

For example in three dimensions and 1 million training and test points
[h=0.4]

IFGT – 6 minutes.

Direct – 34 hours.

with an error of 10−8.

FIGTree

We have also combined the IFGT with a kd-tree based nearest neighbor
search algorithm.
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Thesis contributions Algorithm 1: Sums of Gaussians

Speedup as a function of d [h = 1.0]
FGT cannot be run for d > 3
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Thesis contributions Algorithm 1: Sums of Gaussians

Speedup as a function of d [h = 0.5
√

d ]
FIGTree scales well with d .
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Thesis contributions Algorithm 1: Sums of Gaussians

Speedup as a function of ǫ

Better speedup for lower precision.
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Thesis contributions Algorithm 1: Sums of Gaussians

Speedup as a function of h

Scales well with bandwidth.
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Thesis contributions Algorithm 1: Sums of Gaussians

Applications

Direct application

Kernel density estimation.

Prediction in Gaussian process regression, SVM, RLS.
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Applications

Direct application

Kernel density estimation.

Prediction in Gaussian process regression, SVM, RLS.

Embed in iterative or optimization methods

Training of kernel machines and Gaussian processes.

Computing eigen vector in unsupervised learning tasks.
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Thesis contributions Algorithm 1: Sums of Gaussians

Application 1: Kernel density Estimation

Estimate the density p̂ from an i.i.d. sample x1, . . . , xN drawn from p.
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Application 1: Kernel density Estimation

Estimate the density p̂ from an i.i.d. sample x1, . . . , xN drawn from p.

The most popular method is the kernel density estimator (also known
as Parzen window estimator).

p̂(x) = 1
N

∑N
i=1

1
h
K

(
x−xi

h

)
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Application 1: Kernel density Estimation

Estimate the density p̂ from an i.i.d. sample x1, . . . , xN drawn from p.

The most popular method is the kernel density estimator (also known
as Parzen window estimator).

p̂(x) = 1
N

∑N
i=1

1
h
K

(
x−xi

h

)

The widely used kernel is a Gaussian.

p̂(x) =
1

N

N∑

i=1

1

(2πh2)d/2
e−‖x−xi‖

2/2h2
. (3)

The computational cost of evaluating this sum at M points due to N

data points is O(NM),

The proposed FIGTree algorithm can be used to compute the sum
approximately to ǫ precision in O(N + M) time.
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Thesis contributions Algorithm 1: Sums of Gaussians

KDE experimental results
N = M = 44, 484 ǫ = 10−2

SARCOS dataset

d Optimal h Direct time (sec.) FIGTree time (sec.) Speedup

1 0.024730 168.500 0.110 1531.818
2 0.033357 180.156 0.844 213.455
3 0.041688 189.438 6.094 31.0860
4 0.049527 196.375 19.047 10.310
5 0.056808 208.453 97.156 2.146
6 0.063527 221.906 130.250 1.704
7 0.069711 226.375 121.829 1.858
8 0.075400 236.781 106.203 2.230
9 0.080637 247.235 88.250 2.801
10 0.085465 254.547 98.718 2.579
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Thesis contributions Algorithm 1: Sums of Gaussians

KDE experimental results
N = M = 7000 ǫ = 10−2
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Thesis contributions Algorithm 1: Sums of Gaussians

Application 2: Gaussian processes regression
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Thesis contributions Algorithm 1: Sums of Gaussians

Application 2: Gaussian processes regression

Regression problem

Training data D = {xi ∈ R
d , yi ∈ R}N

i=1

Predict y for a new x .

Also get uncertainty estimates.
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Thesis contributions Algorithm 1: Sums of Gaussians

Gaussian processes regression

Bayesian non-linear non-parametric regression.
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Bayesian non-linear non-parametric regression.

The regression function is represented by an ensemble of functions, on
which we place a Gaussian prior.
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Thesis contributions Algorithm 1: Sums of Gaussians

Gaussian processes regression

Bayesian non-linear non-parametric regression.

The regression function is represented by an ensemble of functions, on
which we place a Gaussian prior.

This prior is updated in the light of the training data.

As a result we obtain predictions together with valid estimates of
uncertainty.
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Thesis contributions Algorithm 1: Sums of Gaussians

Gaussian process model

Model

y = f (x) + ε
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Gaussian process model

Model

y = f (x) + ε

ε is N (0, σ2).

f (x) is a zero-mean Gaussian process with covariance function
K (x , x

′

).

Most common covariance function is the Gaussian.
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Thesis contributions Algorithm 1: Sums of Gaussians

Gaussian process model

Model

y = f (x) + ε

ε is N (0, σ2).

f (x) is a zero-mean Gaussian process with covariance function
K (x , x

′

).

Most common covariance function is the Gaussian.

Infer the posterior

Given the training data D and a new input x∗ our task is to compute the
posterior p(f∗|x∗,D).
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Thesis contributions Algorithm 1: Sums of Gaussians

Solution

The posterior is a Gaussian.

The mean is used as the prediction.

The variance is the uncertainty associated with the prediction.
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Solution

The posterior is a Gaussian.

The mean is used as the prediction.

The variance is the uncertainty associated with the prediction.
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Thesis contributions Algorithm 1: Sums of Gaussians

Direct Training

ξ = (K + σ2I)−1y

Direct computation of the inverse of a matrix requires O(N3)
operations and O(N2) storage.

Impractical even for problems of moderate size (typically a few
thousands).

For example N=25,600 takes around 10 hours, assuming you have
enough RAM.
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Thesis contributions Algorithm 1: Sums of Gaussians

Iterative methods

(K + λI)ξ = y.

The iterative method generates a sequence of approximate solutions
ξk at each step which converge to the true solution ξ.

Can use the conjugate-gradient method.

Vikas C. Raykar (Univ. of Maryland) Doctoral dissertation March 8, 2007 44 / 69
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Iterative methods

(K + λI)ξ = y.

The iterative method generates a sequence of approximate solutions
ξk at each step which converge to the true solution ξ.

Can use the conjugate-gradient method.

Computational cost of conjugate-gradient

Requires one matrix-vector multiplication and 5N flops per iteration.

Four vectors of length N are required for storage.

Hence computational cost now reduces to O(kN2).

For example N=25,600 takes around 17 minutes (compare to 10
hours).
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Thesis contributions Algorithm 1: Sums of Gaussians

CG+FIGTree

The core computational step in each conjugate-gradient iteration is
the multiplication of the matrix K with a vector, say q.

Coupled with the CG the IFGT reduces the computational cost of GP
regression to O(N).

For example N=25,600 takes around 3 secs. (compare to 10
hours[direct] or 17 minutes[CG]).
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Thesis contributions Algorithm 1: Sums of Gaussians

Results on the robotarm dataset
Training time
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Thesis contributions Algorithm 1: Sums of Gaussians

Results on the robotarm dataset
Test error
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Thesis contributions Algorithm 1: Sums of Gaussians

Results on the robotarm dataset
Test time

256 512 1024 2048 4096 8192

10
−2

10
−1

10
0

m

Te
st

in
g 

tim
e 

(s
ec

s)

robotarm

 

 

Vikas C. Raykar (Univ. of Maryland) Doctoral dissertation March 8, 2007 48 / 69



Thesis contributions Algorithm 1: Sums of Gaussians

How to choose ǫ for inexact CG?

Matrix-vector product may be performed in an increasingly inexact manner
as the iteration progresses and still allow convergence to the solution.
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Thesis contributions Algorithm 1: Sums of Gaussians

Application 3:Implicit surface fitting
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Thesis contributions Algorithm 1: Sums of Gaussians

Implicit surface fitting as regression

negative 
off−surface points 

positive
off−surface points 

on−surface points 

surface normals 
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Thesis contributions Algorithm 1: Sums of Gaussians

Implicit surface fitting as regression

Using the proposed approach we can handle point clouds containing
millions of points.
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Algorithm 2: Sums of Hermite × Gaussians

The FIGTree can be used in any kernel machine where we encounter
sums of Gaussians.
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Algorithm 2: Sums of Hermite × Gaussians

The FIGTree can be used in any kernel machine where we encounter
sums of Gaussians.

Most kernel methods require choosing some hyperparameters (e.g.
bandwidth h of the kernel).

Optimal procedures to choose these parameters are O(N2).

Most of these procedures involve solving some optimization which
involves taking the derivatives of kernel sums.

The derivatives of Gaussian sums involve sums of products of Hermite
polynomials and Gaussians.

Gr (yj) =
∑N

i=1 qiHr

(
yj−xi

h

)
e−(yj−xi )

2/2h2
j = 1, . . . ,M.
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Kernel density estimation

The most popular method for density estimation is the kernel density
estimator (KDE).

p̂(x) =
1

N

N∑

i=1

1

h
K

(
x − xi

h

)

FIGTree can be directly used to accelerate KDE.

Efficient use of KDE requires choosing h optimally.
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

The bandwidth h is a very crucial parameter

As h decreases towards 0, the number of modes increases to the
number of data points and the KDE is very noisy.

As h increases towards ∞, the number of modes drops to 1, so that
any interesting structure has been smeared away and the KDE just
displays a unimodal pattern.

Small bandwidth h=0.01 Large bandwidth h=0.2
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Application 1: Fast optimal bandwidth selection

The state-of-the-art method for optimal bandwidth selection for
kernel density estimation scales as O(N2).

We present a fast computational technique that scales as O(N).

The core part is the fast ǫ − exact algorithm for kernel density
derivative estimation which reduces the computational complexity
from O(N2) to O(N).

Vikas C. Raykar (Univ. of Maryland) Doctoral dissertation March 8, 2007 56 / 69



Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Application 1: Fast optimal bandwidth selection

The state-of-the-art method for optimal bandwidth selection for
kernel density estimation scales as O(N2).

We present a fast computational technique that scales as O(N).

The core part is the fast ǫ − exact algorithm for kernel density
derivative estimation which reduces the computational complexity
from O(N2) to O(N).

For example for N = 409, 600 points.

Direct evaluation → 12.76 hours.
Fast evaluation → 65 seconds with an error of around 10−12.
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Marron Wand normal mixtures
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Speedup for Marron Wand normal mixtures

hdirect hfast Tdirect (sec) Tfast (sec) Speedup Rel. Err.

1 0.122213 0.122215 4182.29 64.28 65.06 1.37e-005
2 0.082591 0.082592 5061.42 77.30 65.48 1.38e-005
3 0.020543 0.020543 8523.26 101.62 83.87 1.53e-006
4 0.020621 0.020621 7825.72 105.88 73.91 1.81e-006
5 0.012881 0.012881 6543.52 91.11 71.82 5.34e-006
6 0.098301 0.098303 5023.06 76.18 65.93 1.62e-005
7 0.092240 0.092240 5918.19 88.61 66.79 6.34e-006
8 0.074698 0.074699 5912.97 90.74 65.16 1.40e-005
9 0.081301 0.081302 6440.66 89.91 71.63 1.17e-005
10 0.024326 0.024326 7186.07 106.17 67.69 1.84e-006
11 0.086831 0.086832 5912.23 90.45 65.36 1.71e-005
12 0.032492 0.032493 8310.90 119.02 69.83 3.83e-006
13 0.045797 0.045797 6824.59 104.79 65.13 4.41e-006
14 0.027573 0.027573 10485.48 111.54 94.01 1.18e-006
15 0.023096 0.023096 11797.34 112.57 104.80 7.05e-007
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Projection pursuit

The idea of projection pursuit is to search for projections from high- to
low-dimensional space that are most interesting.

1 Given N data points in a d dimensional space project each data point
onto the direction vector a ∈ Rd , i.e., zi = aT xi .

2 Compute the univariate nonparametric kernel density estimate, p̂, of
the projected points zi .

3 Compute the projection index I (a) based on the density estimate.

4 Locally optimize over the the choice of a, to get the most interesting

projection of the data.
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Projection index

The projection index is designed to reveal specific structure in the
data, like clusters, outliers, or smooth manifolds.

The entropy index based on Rényi’s order-1 entropy is given by

I (a) =

∫
p(z) log p(z)dz .

The density of zero mean and unit variance which uniquely minimizes
this is the standard normal density.

Thus the projection index finds the direction which is most
non-normal.
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Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Speedup

The computational burden is reduced in the following three instances.

1 Computation of the kernel density estimate.

2 Estimation of the optimal bandwidth.

3 Computation of the first derivative of the kernel density estimate,
which is required in the optimization procedure.

Vikas C. Raykar (Univ. of Maryland) Doctoral dissertation March 8, 2007 61 / 69



Thesis contributions Algorithm 2: Sums of Hermite × Gaussians

Image segmentation via PP
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Image segmentation via PP with optimal KDE took 15 minutes while that
using the direct method takes around 7.5 hours.
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Thesis contributions Algorithm 3: Sums of error functions

Algorithm 3: Sums of error functions

Another sum which we have encountered in ranking algorithms is

E (y) =

N∑

i=1

qi erfc(y − xi).
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Thesis contributions Algorithm 3: Sums of error functions

Example

N = M = 51, 200.

Direct evaluation takes about 18 hours.

We specify ǫ = 10−6.

Fast evaluation just takes 5 seconds.

Actual error is around 10−10
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Thesis contributions Algorithm 3: Sums of error functions

Application 1: Ranking

For some applications ranking or ordering the elements is more
important.

Information retrieval.
Movie recommendation.
Medical decision making.

Compare two instances and predict which one is better.

Various ranking algorithms train the models using pairwise preference
relations.

Computationally expensive to train due to the quadratic scaling in the
number of pairwise constraints,
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Thesis contributions Algorithm 3: Sums of error functions

Fast ranking algorithm

We propose a new ranking algorithm.

Our algorithm also uses pairwise comparisons the runtime is still
linear.

This is made possible by fast approximate summation of erfc
functions.

The proposed algorithm is as accurate as the best available methods
in terms of ranking accuracy.

Several orders of magnitude faster.

For a dataset with 4, 177 examples the algorithm took around 2
seconds.

Direct took 1736 seconds and the best competitor RankBoost took
63 seconds.
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Outline of the proposal

1 Motivation

2 Key Computational tasks

3 Thesis contributions
Algorithm 1: Sums of Gaussians

Kernel density estimation

Gaussian process regression

Implicit surface fitting

Algorithm 2: Sums of Hermite × Gaussians
Optimal bandwidth estimation

Projection pursuit

Algorithm 3: Sums of error functions
Ranking

4 Conclusions
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Conclusions

Identified the key computationally intensive primitives in machine
learning.

We presented linear time algorithms.

We gave high accuracy guarantees.

Unlike methods which rely on choosing a subset of the dataset we use
all the available points and still achieve O(N) complexity.

Applied it to a few machine learning tasks.
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Technical reports

Fast weighted summation of erfc functions. Vikas C. Raykar, R. Duraiswami, and B. Krishnapuram, CS-TR-4848,
Department of computer science, University of Maryland, CollegePark.

Very fast optimal bandwidth selection for univariate kernel density estimation. Vikas C. Raykar and R. Duraiswami,
CS-TR-4774, Department of computer science, University of Maryland, CollegePark.

Fast computation of sums of Gaussians in high dimensions. Vikas C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov,
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