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Gist of the paper

• Bandwidth selection for kernel density estimation scales as O(N2).

• We present a fast computational technique that scales as O(N).

• For 50,000 points we obtained speedups in the range 65 to 105.
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Density estimation

• Widely used in exploratory data analysis, machine learning, data

mining, computer vision, and pattern recognition.

• A density p gives a principled way to compute probabilities on

sets.

Pr[x ∈ A] =
∫

A
p(x)dx.

• Estimate the density from samples x1, . . . , xN drawn from p.
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Different methods for density estimation

• Parametric methods.

– Assume a functional form for the density.

• Non-parametric methods.

– letting the data speak for themselves

– Histograms.

– Kernel density estimators. [ Most popular.]
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Kernel density estimate (KDE)

p̂(x) =
1

Nh

N∑

i=1

K

(
x− xi

h

)

• The kernel function K is essentially spreading a probability mass

of 1/N associated with each point about its neighborhood.

• The neighborhood size is essentially decided by the parameter h

called the bandwidth of the kernel.
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KDE illustration

Actual density 

KDE

Data points
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Gaussian kernel

The most widely used kernel is the Gaussian of zero mean and unit

variance.

K(u) =
1√
2π

e−u2/2.

For the Gaussian kernel the kernel density estimate can be written

as

p̂(x) =
1

N
√

2πh2

N∑

i=1

e−(x−xi)
2/2h2

.
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Computational complexity of KDE

• Essentially sum of N Gaussians.

• Computing KDE at M points scales as O(MN).

• Various approximate algorithms are proposed that reduce the

computational complexity to O(M + N).

[FFT, FGT, IFGT, dual-tree].

• This paper focuses on reducing the computational complexity

of finding the optimal bandwidth, which scales as O(N2).
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Role of bandwidth h

• As h decreases towards 0, the number of modes increases to
the number of data points and the KDE is very noisy.

• As h increases towards ∞, the number of modes drops to 1,
so that any interesting structure has been smeared away and the
KDE just displays a unimodal pattern.

Small bandwidth h=0.01 Large bandwidth h=0.2
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The bandwidth h has to be chosen optimally.

The sense in which the bandwidth is optimal has to be made precise.

The most widely used is the AMISE optimal bandwidth.

9



Performance measure

• Integrated squared error (ISE)

ISE(p̂, p) =
∫

R
[p̂(x)− p(x)]2dx.

• Mean integrated squared error (MISE)

MISE(p̂, p) = E[ISE(p̂, p)] = E

[∫

R
[p̂(x)− p(x)]2dx

]

• A measure of the ‘average’ performance of the kernel density

estimator, averaged over the support of the density and different

realization of the points.
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Asymptotic performance measure

• The dependence of the MISE on the bandwidth h is not very

explicit.

• This makes it difficult to interpret the influence of the bandwidth

on the performance of the estimator.

• An asymptotic large sample approximation for this expression is

usually derived via the Taylor’s series called as the AMISE, the

A is for asymptotic.
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AMISE

The AMISE can be shown to be ∗

AMISE(p̂, p) =
1

Nh
R(K) +

1

4
h4µ2(K)2R(p

′′
)

= Variance + (bias)2

where

R(g) =
∫

R
g(x)2dx, , µ2(g) =

∫

R
x2g(x)dx,

∗Wand, M. P. and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall, London.
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Bias-Variance tradeoff

h

Variance 

Bias 

• Variance is proportional to 1/h.

• Bias is proportional to h2.

• Optimal h is found by setting the first derivative of AMISE to
zero.
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AMISE optimal bandwidth

hoptimal =

[
R(K)

µ2(K)2R(p′′)N

]1/5

.

• This expression cannot be used directly since R(p
′′
) depends on

the second derivative of the density p.

• Different strategies have been proposed to solve this problem.

• The most popular plug-in methods use an estimate of R(p
′′
)

which in turn needs an estimate of p
′′
.

• So for optimal bandwidth estimation we need estimates of the

density derivatives.
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Estimating density functionals

• This bandwidth for estimation of the density functional R(p
′′
)

is quite different from the the bandwidth h used for the kernel
density estimate.

• We can find an expression for the optimal bandwidth for the
estimation of R(p

′′
).

• However this bandwidth will depend on an unknown density func-
tional R(p

′′′
).

• This problem will continue since the optimal bandwidth for esti-
mating R(p(s)) will depend on R(p(s+1)).

• In general we need estimates of higher order derivatives also.
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Kernel density derivative estimation

• Take the derivative of the kernel density estimate.

p̂(r)(x) =
1

Nhr+1

N∑

i=1

K(r)
(

x− xi

h

)
.

• For the Gaussian kernel this takes the form

p̂(r)(x) =
(−1)r

√
2πNhr+1

N∑

i=1

Hr

(
x− xi

h

)
e−(x−xi)

2/2h2
.

• Hr(u) is the rth Hermite polynomial.
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Computational complexity of bandwidth estimation

• In order to estimate a density functional we need to evaluate the
density derivative at N points.

• Hence computing a density functional is O(rN2).

• The current most practically successful approach, solve-the-
equation plug-in ∗ method involves the numerical solution of a
non-linear equation.

– Iterative methods to solve this equation will involve repeated
use of the density derivative functional estimator for different
bandwidths which adds much further to the computational
burden.

∗Sheather, S. and Jones, M. 1991. A reliable data-based bandwidth selection method for kernel
density estimation. Journal of Royal Statistical Society Series B 53, 683-690.
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Fast ε− exact density derivative estimation

Gr(yj) =
N∑

i=1

qiHr

(
yj − xi

h

)
e−(yj−xi)

2/2h2
j = 1, . . . , M,

• The computational complexity is O(rNM).

• We will present an ε−exact approximation algorithm that reduces
it to O(prN + npr2M) where the constants p and n depends on
the precision ε and the bandwidth h.

• For example for N = M = 409,600 points while the direct eval-
uation of the density derivative takes around 12.76 hours the
fast evaluation requires only 65 seconds with an error of around
ε = 10−12.
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Notion of ε− exact approximation

For any given ε > 0 the algorithm computes an approximation Ĝr(yj)

such that ∣∣∣∣∣
Ĝr(yj)−Gr(yj)

Q

∣∣∣∣∣ ≤ ε,

where Q =
∑N

i=1 |qi|.

We call Ĝr(yj) an ε− exact approximation to Gr(yj).

• ε can be arbitrarily small.

• For machine precision accuracy there is no difference between

the direct and the fast methods.
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Algorithm

• The fast algorithm is based on separating the xi and yj.

• The Gaussian is factorized via Taylor’s series.

• Only first few terms are retained.

• Need to derive good error bounds to decide how many terms to

retain to achieve a desired error.

• The Hermite is factorized via the binomial theorem.
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Factorization of the Gaussian

e−‖yj−xi‖2/h2
2 =

p−1∑

k=0

2k

k!


e−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k




e−‖yj−x∗‖2/h2

2

(
yj − x∗

h2

)k



+ errorp.

where,

errorp ≤ 2p

p!

(‖xi − x∗‖
h2

)p (‖yj − x∗‖
h2

)p

e−(‖xi−x∗‖−‖yj−x∗‖)2/h2
2.
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Factorization of the Hermite

Hr

(
yj − xi

h1

)
=

br/2c∑

l=0

r−2l∑

m=0

alm

(
xi − x∗

h1

)m(
yj − x∗

h1

)r−2l−m

where,

alm =
(−1)l+mr!

2ll!m!(r − 2l−m)!
.
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Ignore the error terms and regroup

Ĝr(yj) =
p−1∑

k=0

br/2c∑

l=0

r−2l∑

m=0

almBkme−‖yj−x∗‖2/h2
2

(
yj − x∗

h2

)k (
yj − x∗

h1

)r−2l−m

where

Bkm =
2k

k!

N∑

i=1

qie
−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k (
xi − x∗

h1

)m

.

• The coefficients Bkm can be evaluated separately in O(prN).

• Evaluation of Ĝr(yj) at M points is O(pr2M).

• Hence the computational complexity has reduced from the quadratic
O(rNM) to the linear O(prN + pr2M).

23



Other tricks

• Space subdivision.

• Rapid decay of the Gaussian.

• Choosing p based on tight error bounds.
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Numerical Experiments

• Algorithm programmed in C++ with MATLAB bindings.

• Experiments run on 2.4 GHz processor with 2 GB RAM.

• Source and target points uniformly distributed in the unit inter-

val.
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As a function of N [M = N h = 0.1 r = 4]

10
2

10
4

10
6

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s
e

c
)

Direct
Fast

10
2

10
4

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

N
M

a
x
. 
a

b
s
. 
e

rr
o

r 
/ 
Q

Desired error
Acutal error

Linear in N .
26



Precision Vs Speedup [M = N = 50,000 h = 0.1 r = 4]
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As a function of bandwidth h [M = N = 50,000 r = 4]
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As a function of r [M = N = 50,000 h = 0.1]
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Speedup for bandwidth estimation

• Used the solve-the-equation plug-in method of Jones at.al (1996) ∗.

• We demonstrate the speedup achieved on the mixture of normal
densities used by Marron and Wand (1992).

– A typical representative of the densities likely to be encoun-
tered in real data situations.

• The absolute relative error is defined as
|hdirect−hfast|

hdirect
.

• For 50,000 points we obtained speedups in the range 65 to 105
with the absolute relative error of the order 10−5 to 10−7.

∗Sheather, S. and Jones, M. 1991. A reliable data-based bandwidth selection method for kernel
density estimation. Journal of Royal Statistical Society Series B 53, 683-690.
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Marron Wand normal mixtures ∗
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∗Marron, J. S. and Wand, M. P. 1992. Exact mean integrated squared error. The Annals of

Statistics 20, 2, 712-736.
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Speedup for Marron Wand normal mixtures

hdirect hfast Tdirect (sec) Tfast (sec) Speedup Rel. Err.

1 0.122213 0.122215 4182.29 64.28 65.06 1.37e-005
2 0.082591 0.082592 5061.42 77.30 65.48 1.38e-005
3 0.020543 0.020543 8523.26 101.62 83.87 1.53e-006
4 0.020621 0.020621 7825.72 105.88 73.91 1.81e-006
5 0.012881 0.012881 6543.52 91.11 71.82 5.34e-006
6 0.098301 0.098303 5023.06 76.18 65.93 1.62e-005
7 0.092240 0.092240 5918.19 88.61 66.79 6.34e-006
8 0.074698 0.074699 5912.97 90.74 65.16 1.40e-005
9 0.081301 0.081302 6440.66 89.91 71.63 1.17e-005
10 0.024326 0.024326 7186.07 106.17 67.69 1.84e-006
11 0.086831 0.086832 5912.23 90.45 65.36 1.71e-005
12 0.032492 0.032493 8310.90 119.02 69.83 3.83e-006
13 0.045797 0.045797 6824.59 104.79 65.13 4.41e-006
14 0.027573 0.027573 10485.48 111.54 94.01 1.18e-006
15 0.023096 0.023096 11797.34 112.57 104.80 7.05e-007
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Projection pursuit

The idea of projection pursuit is to search for projections from high-
to low-dimensional space that are most interesting ∗.

1. Given N data points in a d dimensional space project each data
point onto the direction vector a ∈ Rd, i.e., zi = aTxi.

2. Compute the univariate nonparametric kernel density estimate,
p̂, of the projected points zi.

3. Compute the projection index I(a) based on the density estimate.

4. Locally optimize over the the choice of a, to get the most inter-
esting projection of the data.

∗Huber, P. J. 1985. Projection pursuit. The Annals of Statistics 13, 435-475.
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Projection index

The projection index is designed to reveal specific structure in the

data, like clusters, outliers, or smooth manifolds.

The entropy index based on Rényi’s order-1 entropy is given by

I(a) =
∫

p(z) log p(z)dz.

The density of zero mean and unit variance which uniquely minimizes

this is the standard normal density.

Thus the projection index finds the direction which is most non-

normal.
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Speedup

The computational burden is reduced in the following three in-

stances.

1. Computation of the kernel density estimate (i.e. use the fast

method with r = 0).

2. Estimation of the optimal bandwidth.

3. Computation of the first derivative of the kernel density estimate,

which is required in the optimization procedure.
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Projection pursuit on a image
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The entire procedure took 15 minutes while that using the direct

method takes around 7.5 hours.
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Conclusions

• Fast ε − exact algorithm for kernel density derivative estima-

tion which reduced the computational complexity from O(N2)

to O(N).

• We demonstrated the speedup achieved for optimal bandwidth

estimation.

• We demonstrated how to potentially speedup the projection pur-

suit algorithm.
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Software

• The code is available for academic use.

• www.cs.umd.edu/∼vikas

• A detailed version of this paper is available as a TR ∗.

∗Very fast optimal bandwidth selection for univariate kernel density estimation. Vikas C. Raykar

and R. Duraiswami, CS-TR-4774, Department of computer science, University of Maryland,

Collegepark.
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Related work

• FFT ∗, FGT †, IFGT ‡, dual-tree §. All the above methods are
designed to specifically accelerate the KDE.

• The main contribution of this paper is to accelerate the kernel
density derivative estimate with an emphasis to solve the optimal
bandwidth problem. The case of KDE arises as a special case
of r = 0, i.e., the zero order density derivative.

∗Silverman, B. W. 1982. Algorithm AS 176: Kernel density estimation using the fast Fourier
transform. Journal of Royal Statistical society Series C: Applied statistics 31, 1, 93-99.

†Greengard, L. and Strain, J. 1991. The fast Gauss transform. SIAM Journal of Scientic and
Statistical Computing 12, 1, 79-94.

‡Yang, C., Duraiswami, R., Gumerov, N., and Davis, L. 2003. Improved fast Gauss transform
and efficient kernel density estimation. In IEEE International Conference on Computer Vision.
464-471.

§Gray, A. G. and Moore, A. W. 2003. Nonparametric density estimation: Toward computational
tractability. In SIAM International conference on Data Mining.
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