Fast optimal bandwidth selection for kernel density estimation

Vikas C. Raykar and Ramani Duraiswami University of Maryland, CollegePark {vikas,ramani}@cs.umd.edu

2006 SIAM Conference on Data Mining Bethesda, April 20, 2006

Gist of the paper

- Bandwidth selection for kernel density estimation scales as $\mathcal{O}(N^2)$.
- We present a fast computational technique that scales as $\mathcal{O}(N)$.
- For 50,000 points we obtained speedups in the range 65 to 105.

Density estimation

- Widely used in exploratory data analysis, machine learning, data mining, computer vision, and pattern recognition.
- A density p gives a principled way to compute probabilities on sets.

$$\Pr[x \in A] = \int_A p(x) dx.$$

• Estimate the density from samples x_1, \ldots, x_N drawn from p.

Different methods for density estimation

- Parametric methods.
 - Assume a functional form for the density.
- Non-parametric methods.
 - letting the data speak for themselves
 - Histograms.
 - Kernel density estimators. [Most popular.]

Kernel density estimate (KDE)

$$\widehat{p}(x) = \frac{1}{Nh} \sum_{i=1}^{N} K\left(\frac{x - x_i}{h}\right)$$

- The kernel function K is essentially spreading a probability mass of 1/N associated with each point about its neighborhood.
- The neighborhood size is essentially decided by the parameter *h* called the **bandwidth** of the kernel.

KDE illustration

Gaussian kernel

The most widely used kernel is the Gaussian of zero mean and unit variance.

$$K(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}.$$

For the Gaussian kernel the kernel density estimate can be written as

$$\widehat{p}(x) = \frac{1}{N\sqrt{2\pi h^2}} \sum_{i=1}^{N} e^{-(x-x_i)^2/2h^2}.$$

Computational complexity of KDE

- Essentially sum of N Gaussians.
- Computing KDE at M points scales as $\mathcal{O}(MN)$.
- Various approximate algorithms are proposed that reduce the computational complexity to $\mathcal{O}(M+N)$.

[FFT, FGT, IFGT, dual-tree].

• This paper focuses on reducing the computational complexity of finding the optimal bandwidth, which scales as $\mathcal{O}(N^2)$.

Role of bandwidth h

- As h decreases towards 0, the number of modes increases to the number of data points and the KDE is very noisy.
- As h increases towards ∞, the number of modes drops to 1, so that any interesting structure has been smeared away and the KDE just displays a unimodal pattern.

The bandwidth h has to be chosen optimally.

The sense in which the bandwidth is optimal has to be made precise.

The most widely used is the AMISE optimal bandwidth.

Performance measure

• Integrated squared error (ISE)

$$\mathsf{ISE}(\widehat{p}, p) = \int_{\mathbf{R}} [\widehat{p}(x) - p(x)]^2 dx.$$

• Mean integrated squared error (MISE)

$$\mathsf{MISE}(\widehat{p}, p) = E[\mathsf{ISE}(\widehat{p}, p)] = E\left[\int_{\mathbf{R}} [\widehat{p}(x) - p(x)]^2 dx\right]$$

• A measure of the 'average' performance of the kernel density estimator, averaged over the support of the density and different realization of the points.

Asymptotic performance measure

- The dependence of the MISE on the bandwidth *h* is not very explicit.
- This makes it difficult to interpret the influence of the bandwidth on the performance of the estimator.
- An asymptotic large sample approximation for this expression is usually derived via the Taylor's series called as the AMISE, the A is for asymptotic.

AMISE

The AMISE can be shown to be *

AMISE
$$(\hat{p}, p) = \frac{1}{Nh}R(K) + \frac{1}{4}h^4\mu_2(K)^2R(p'')$$

= Variance + (bias)²

where

$$R(g) = \int_{\mathbf{R}} g(x)^2 dx$$
, , $\mu_2(g) = \int_{\mathbf{R}} x^2 g(x) dx$,

*Wand, M. P. and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall, London.

Bias-Variance tradeoff

- Variance is proportional to 1/h.
- Bias is proportional to h^2 .
- Optimal h is found by setting the first derivative of AMISE to zero.

AMISE optimal bandwidth

$$h_{optimal} = \left[\frac{R(K)}{\mu_2(K)^2 R(p'')N}\right]^{1/5}.$$

- This expression cannot be used directly since R(p'') depends on the second derivative of the density p.
- Different strategies have been proposed to solve this problem.
- The most popular **plug-in methods** use an estimate of R(p'') which in turn needs an estimate of p''.
- So for optimal bandwidth estimation we need estimates of the density derivatives.

Estimating density functionals

- This bandwidth for estimation of the density functional R(p'') is quite different from the the bandwidth h used for the kernel density estimate.
- We can find an expression for the optimal bandwidth for the estimation of R(p'').
- However this bandwidth will depend on an unknown density functional $R(p^{'''})$.
- This problem will continue since the optimal bandwidth for estimating $R(p^{(s)})$ will depend on $R(p^{(s+1)})$.
- In general we need estimates of higher order derivatives also.

Kernel density derivative estimation

• Take the derivative of the kernel density estimate.

$$\hat{p}^{(r)}(x) = \frac{1}{Nh^{r+1}} \sum_{i=1}^{N} K^{(r)}\left(\frac{x-x_i}{h}\right).$$

• For the Gaussian kernel this takes the form

$$\hat{p}^{(r)}(x) = \frac{(-1)^r}{\sqrt{2\pi}Nh^{r+1}} \sum_{i=1}^N H_r\left(\frac{x-x_i}{h}\right) e^{-(x-x_i)^2/2h^2}.$$

• $H_r(u)$ is the r^{th} Hermite polynomial.

Computational complexity of bandwidth estimation

- In order to estimate a density functional we need to evaluate the density derivative at N points.
- Hence computing a density functional is $\mathcal{O}(rN^2)$.
- The current most practically successful approach, solve-theequation plug-in * method involves the numerical solution of a non-linear equation.
 - Iterative methods to solve this equation will involve repeated use of the density derivative functional estimator for different bandwidths which adds much further to the computational burden.

*Sheather, S. and Jones, M. 1991. A reliable data-based bandwidth selection method for kernel density estimation. Journal of Royal Statistical Society Series B 53, 683-690.

Fast $\epsilon - exact$ density derivative estimation

$$G_r(y_j) = \sum_{i=1}^N q_i H_r\left(\frac{y_j - x_i}{h}\right) e^{-(y_j - x_i)^2/2h^2} \quad j = 1, \dots, M,$$

- The computational complexity is $\mathcal{O}(rNM)$.
- We will present an ϵ -exact approximation algorithm that reduces it to $\mathcal{O}(prN + npr^2M)$ where the constants p and n depends on the precision ϵ and the bandwidth h.
- For example for N = M = 409,600 points while the direct evaluation of the density derivative takes around 12.76 hours the fast evaluation requires only 65 seconds with an error of around $\epsilon = 10^{-12}$.

Notion of $\epsilon - exact$ approximation

For any given $\epsilon > 0$ the algorithm computes an approximation $\hat{G}_r(y_j)$ such that

$$\left|\frac{\widehat{G}_r(y_j) - G_r(y_j)}{Q}\right| \le \epsilon,$$

where $Q = \sum_{i=1}^{N} |q_i|$.

We call $\hat{G}_r(y_j)$ an $\epsilon - exact$ approximation to $G_r(y_j)$.

- ϵ can be arbitrarily small.
- For machine precision accuracy there is no difference between the direct and the fast methods.

Algorithm

- The fast algorithm is based on separating the x_i and y_j .
- The Gaussian is factorized via Taylor's series.
- Only first few terms are retained.
- Need to derive good error bounds to decide how many terms to retain to achieve a desired error.
- The Hermite is factorized via the binomial theorem.

Factorization of the Gaussian

$$e^{-\|y_j - x_i\|^2 / h_2^2} = \sum_{k=0}^{p-1} \frac{2^k}{k!} \left[e^{-\|x_i - x_*\|^2 / h_2^2} \left(\frac{x_i - x_*}{h_2} \right)^k \right] \left[e^{-\|y_j - x_*\|^2 / h_2^2} \left(\frac{y_j - x_*}{h_2} \right)^k \right] + error_p.$$

where,

$$error_p \leq \frac{2^p}{p!} \left(\frac{\|x_i - x_*\|}{h_2}\right)^p \left(\frac{\|y_j - x_*\|}{h_2}\right)^p e^{-(\|x_i - x_*\| - \|y_j - x_*\|)^2/h_2^2}.$$

21

Factorization of the Hermite

$$H_r\left(\frac{y_j - x_i}{h_1}\right) = \sum_{l=0}^{\lfloor r/2 \rfloor} \sum_{m=0}^{r-2l} a_{lm} \left(\frac{x_i - x_*}{h_1}\right)^m \left(\frac{y_j - x_*}{h_1}\right)^{r-2l-m}$$

where,

$$a_{lm} = \frac{(-1)^{l+m} r!}{2^{l} l! m! (r-2l-m)!}.$$

Ignore the error terms and regroup

$$\widehat{G}_{r}(y_{j}) = \sum_{k=0}^{p-1} \sum_{l=0}^{\lfloor r/2 \rfloor} \sum_{m=0}^{r-2l} a_{lm} B_{km} e^{-\|y_{j}-x_{*}\|^{2}/h_{2}^{2}} \left(\frac{y_{j}-x_{*}}{h_{2}}\right)^{k} \left(\frac{y_{j}-x_{*}}{h_{1}}\right)^{r-2l-m}$$

where

$$B_{km} = \frac{2^k}{k!} \sum_{i=1}^N q_i e^{-\|x_i - x_*\|^2 / h_2^2} \left(\frac{x_i - x_*}{h_2}\right)^k \left(\frac{x_i - x_*}{h_1}\right)^m$$

- The coefficients B_{km} can be evaluated separately in $\mathcal{O}(prN)$.
- Evaluation of $\hat{G}_r(y_j)$ at M points is $\mathcal{O}(pr^2M)$.
- Hence the computational complexity has reduced from the quadratic $\mathcal{O}(rNM)$ to the linear $\mathcal{O}(prN + pr^2M)$.

Other tricks

- Space subdivision.
- Rapid decay of the Gaussian.
- Choosing p based on tight error bounds.

Numerical Experiments

- Algorithm programmed in C++ with MATLAB bindings.
- Experiments run on 2.4 GHz processor with 2 GB RAM.
- Source and target points uniformly distributed in the unit interval.

As a function of N [M = N h = 0.1 r = 4]

Linear in N.

Precision Vs Speedup $[M = N = 50,000 \ h = 0.1 \ r = 4]$

Better speedup for reduced precision.

As a function of bandwidth h [M = N = 50,000 r = 4]

Better speedups for large bandwidths.

As a function of r [$M = N = 50,000 \ h = 0.1$]

29

Speedup for bandwidth estimation

- Used the solve-the-equation plug-in method of Jones at.al (1996) *.
- We demonstrate the speedup achieved on the mixture of normal densities used by Marron and Wand (1992).
 - A typical representative of the densities likely to be encountered in real data situations.
- The absolute relative error is defined as $\frac{|h_{direct} h_{fast}|}{h_{direct}}$.
- For 50,000 points we obtained speedups in the range 65 to 105 with the absolute relative error of the order 10^{-5} to 10^{-7} .

*Sheather, S. and Jones, M. 1991. A reliable data-based bandwidth selection method for kernel density estimation. Journal of Royal Statistical Society Series B 53, 683-690.

Marron Wand normal mixtures *

*Marron, J. S. and Wand, M. P. 1992. Exact mean integrated squared error. The Annals of Statistics 20, 2, 712-736.

Speedup for Marron Wand normal mixtures

	h_{direct}	h_{fast}	T_{direct} (sec)	T_{fast} (sec)	Speedup	Rel. Err.
1	0.122213	0.122215	4182.29	64.28	65.06	1.37e-005
2	0.082591	0.082592	5061.42	77.30	65.48	1.38e-005
3	0.020543	0.020543	8523.26	101.62	83.87	1.53e-006
4	0.020621	0.020621	7825.72	105.88	73.91	1.81e-006
5	0.012881	0.012881	6543.52	91.11	71.82	5.34e-006
6	0.098301	0.098303	5023.06	76.18	65.93	1.62e-005
7	0.092240	0.092240	5918.19	88.61	66.79	6.34e-006
8	0.074698	0.074699	5912.97	90.74	65.16	1.40e-005
9	0.081301	0.081302	6440.66	89.91	71.63	1.17e-005
10	0.024326	0.024326	7186.07	106.17	67.69	1.84e-006
11	0.086831	0.086832	5912.23	90.45	65.36	1.71e-005
12	0.032492	0.032493	8310.90	119.02	69.83	3.83e-006
13	0.045797	0.045797	6824.59	104.79	65.13	4.41e-006
14	0.027573	0.027573	10485.48	111.54	94.01	1.18e-006
15	0.023096	0.023096	11797.34	112.57	104.80	7.05e-007

Projection pursuit

The idea of projection pursuit is to search for projections from highto low-dimensional space that are most *interesting* *.

- 1. Given N data points in a d dimensional space project each data point onto the direction vector $a \in \mathbf{R}^d$, i.e., $z_i = a^T x_i$.
- 2. Compute the univariate nonparametric kernel density estimate, \hat{p} , of the projected points z_i .
- 3. Compute the projection index I(a) based on the density estimate.
- 4. Locally optimize over the the choice of a, to get the *most inter*esting projection of the data.

*Huber, P. J. 1985. Projection pursuit. The Annals of Statistics 13, 435-475.

Projection index

The projection index is designed to reveal specific structure in the data, like clusters, outliers, or smooth manifolds.

The entropy index based on Rényi's order-1 entropy is given by

$$I(a) = \int p(z) \log p(z) dz.$$

The density of zero mean and unit variance which uniquely minimizes this is the standard normal density.

Thus the projection index finds the direction which is most nonnormal.

Speedup

The computational burden is reduced in the following three instances.

- 1. Computation of the kernel density estimate (i.e. use the fast method with r = 0).
- 2. Estimation of the optimal bandwidth.
- 3. Computation of the first derivative of the kernel density estimate, which is required in the optimization procedure.

Projection pursuit on a image

(a)

The entire procedure took 15 minutes while that using the direct method takes around 7.5 hours.

Conclusions

- Fast $\epsilon exact$ algorithm for kernel density derivative estimation which reduced the computational complexity from $O(N^2)$ to O(N).
- We demonstrated the speedup achieved for optimal bandwidth estimation.
- We demonstrated how to potentially speedup the projection pursuit algorithm.

Software

- The code is available for academic use.
- www.cs.umd.edu/~vikas
- A detailed version of this paper is available as a TR *.

*Very fast optimal bandwidth selection for univariate kernel density estimation. Vikas C. Raykar and R. Duraiswami, CS-TR-4774, Department of computer science, University of Maryland, Collegepark.

Related work

- FFT *, FGT [†], IFGT [‡], dual-tree [§]. All the above methods are designed to specifically accelerate the KDE.
- The main contribution of this paper is to accelerate the kernel density derivative estimate with an emphasis to solve the optimal bandwidth problem. The case of KDE arises as a special case of r = 0, i.e., the zero order density derivative.

*Silverman, B. W. 1982. Algorithm AS 176: Kernel density estimation using the fast Fourier transform. Journal of Royal Statistical society Series C: Applied statistics 31, 1, 93-99.

[†]Greengard, L. and Strain, J. 1991. The fast Gauss transform. SIAM Journal of Scientic and Statistical Computing 12, 1, 79-94.

[‡]Yang, C., Duraiswami, R., Gumerov, N., and Davis, L. 2003. Improved fast Gauss transform and efficient kernel density estimation. In IEEE International Conference on Computer Vision. 464-471.

[§]Gray, A. G. and Moore, A. W. 2003. Nonparametric density estimation: Toward computational tractability. In SIAM International conference on Data Mining.