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Gist of the paper

e Bandwidth selection for kernel density estimation scales as O(N?2).

e We present a fast computational technique that scales as O(NV).

e For 50,000 points we obtained speedups in the range 65 to 105.



Density estimation

e Widely used in exploratory data analysis, machine learning, data
mining, computer vision, and pattern recognition.

e A density p gives a principled way to compute probabilities on
sets.

Priz € A] = /Ap(a?)dac.

e Estimate the density from samples z,...,zy drawn from p.



Different methods for density estimation

e Parametric methods.

— Assume a functional form for the density.

e Non-parametric methods.
— letting the data speak for themselves
— Histograms.

— Kernel density estimators. [ Most popular.]



Kernel density estimate (KDE)

e [ he kernel function K is essentially spreading a probability mass
of 1/N associated with each point about its neighborhood.

e [ he neighborhood size is essentially decided by the parameter h
called the bandwidth of the kernel.



KDE illustration

Data points
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Gaussian kernel

The most widely used kernel is the Gaussian of zero mean and unit
variance.

K(u) = ——e—u?/2,

For the Gaussian kernel the kernel density estimate can be written
as
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Computational complexity of KDE
e Essentially sum of N Gaussians.
e Computing KDE at M points scales as O(MN).
e Various approximate algorithms are proposed that reduce the
computational complexity to O(M + N).

[FFT, FGT, IFGT, dual-tree].

e [ his paper focuses on reducing the computational complexity
of finding the optimal bandwidth, which scales as O(NQ).



Role of bandwidth h

e As h decreases towards 0O, the number of modes increases to
the number of data points and the KDE is very noisy.

e As h increases towards oo, the number of modes drops to 1,
so that any interesting structure has been smeared away and the
KDE just displays a unimodal pattern.

Small bandwidth h=0.01 Large bandwidth h=0.2
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The bandwidth A has to be chosen optimally.

- i R - - e e e e —HHR R -

The sense in which the bandwidth is optimal has to be made precise.

The most widely used is the AMISE optimal bandwidth.



Performance measure

e Integrated squared error (ISE)

ISE(5,p) = | [p(a) - p())?da.

e Mean integrated squared error (MISE)

MISE(p, p) = EISEG.p)) = E | [ [5(x) - p(a)?da

e A measure of the ‘average’ performance of the kernel density
estimator, averaged over the support of the density and different
realization of the points.
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Asymptotic performance measure

e [ he dependence of the MISE on the bandwidth A is not very
explicit.

e [ his makes it difficult to interpret the influence of the bandwidth
on the performance of the estimator.

e An asymptotic large sample approximation for this expression is
usually derived via the Taylor's series called as the AMISE, the
A is for asymptotic.
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AMISE

The AMISE can be shown to be *

. 1 1 %
AMISE(p,p) = ﬁR(K)+Zh4”2(K>2R(p)
— Variance 4 (bias)?

where

R(g) = | 9(@)?de, , p2(9) = [ 2?g(a)de,

*Wand, M. P. and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall, London.
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Bias-Variance tradeoff

H Variance

e Variance is proportional to 1/h.

e Bias is proportional to hZ2.

e Optimal h is found by setting the first derivative of AMISE to
Zero.
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AMISE optimal bandwidth

R(K) ]1/5

it = |
P e (K)2R(N

e [ his expression cannot be used directly since R(p”) depends on
the second derivative of the density p.

e Different strategies have been proposed to solve this problem.

e The most popular plug-in methods use an estimate of R(p”)
which in turn needs an estimate of p”.

e SO for optimal bandwidth estimation we need estimates of the
density derivatives.
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Estimating density functionals

e This bandwidth for estimation of the density functional R(p”)
IS quite different from the the bandwidth h used for the kernel
density estimate.

e We can find an %xpression for the optimal bandwidth for the
estimation of R(p ).

e However this bandwidth will depend on an unknown density func-

"

tional R(p ).

e [ his problem will continue since the optimal bandwidth for esti-
mating R(p{$)) will depend on R(p{st1)).

e In general we need estimates of higher order derivatives also.
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Kernel density derivative estimation

e Take the derivative of the kernel density estimate.
1 N

(r) ﬂ)
Nh?“+17§1K ( h /)

P (2) =

e For the Gaussian kernel this takes the form

r N
5 (2) = S H (x ;xz) e~ (z—2i)*/2h?
=1

V2rNhTT1

e H,.(u) is the rt" Hermite polynomial.
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Computational complexity of bandwidth estimation

e In order to estimate a density functional we need to evaluate the
density derivative at N points.

e Hence computing a density functional is O(rN?2).

e [ he current most practically successful approach, solve-the-
equation plug-in * method involves the numerical solution of a
non-linear equation.

— Iterative methods to solve this equation will involve repeated
use of the density derivative functional estimator for different
bandwidths which adds much further to the computational
burden.

*Sheather, S. and Jones, M. 1991. A reliable data-based bandwidth selection method for kernel
density estimation. Journal of Royal Statistical Society Series B 53, 683-690.
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Fast ¢ — exact density derivative estimation

N
Gr(yj):Zqur(]h Z>€ (y] x’l,) /2h ]:17'..7M7
1=1

e The computational complexity is O(rNM).

e \We will present an e—exact approximation algorithm that reduces
it to O(prN + npr?2M) where the constants p and n depends on
the precision ¢ and the bandwidth h.

e For example for N = M = 409,600 points while the direct eval-
uation of the density derivative takes around 12.76 hours the
fast evaluation requires only 65 seconds with an error of around
e =10"12
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Notion of ¢ — exact approximation

For any given € > 0 the algorithm computes an approximation @r(yj)
such that
Gr(y;) — Gr(y;) < e
@

where Q@ = SN | |q;l.
We call Gr(y;) an e — ezact approximation to Gr(y;).
e ¢ can be arbitrarily small.
e For machine precision accuracy there is no difference between

the direct and the fast methods.
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Algorithm

e T he fast algorithm is based on separating the x; and Yj-

e [ he Gaussian is factorized via Taylor's series.

e Only first few terms are retained.

e Need to derive good error bounds to decide how many terms to
retain to achieve a desired error.

e | he Hermite is factorized via the binomial theorem.
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Factorization of the Gaussian

k
Ty — Tx o—llyj—zsl|2/h3 (Y5 — T+
ho

p—1 ~k
e l—il?/m3 = 5 2{6%-9:*2/%%(
k!
k=0
+ errorp
where,
2P (x;, — x p . — X
crrory < 2 (g a7 (lly; = ]
p! ho ho

p
) —(lzi—as | ~lly;—z4l)2/h3.
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Factorization of the Hermite

|7/2] r—21 m
Yj — Tg\ T; — Tx Yj — T
ELﬂ( h1 ) =2 X ahn< h1 > ( h1

where,

Alm

(—1)l+mr!
C 2ml(r = 21l —m)!

>r2l7n
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Ignore the error terms and regroup

p—1|r/2] r—2I o5 o NE g\ T2lem
ér(yj) — Y > > aymBim e Ilyj—«[1*/h5 (y] *) (yy *)

k=0 =0 m=0 ho h1

ok N 212 [(X; — T g T; — Tx)
B, =2 o—llwi—a][2/h3 [ i i |
km Il Z; d; ho I
e The coefficients By,,, can be evaluated separately in O(prN).

e Evaluation of Gr(y;) at M points is O(pr2M).

e Hence the computational complexity has reduced from the quadratic
O(rNM) to the linear O(prN + preM).
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Other tricks

e Space subdivision.

e Rapid decay of the Gaussian.

e Choosing p based on tight error bounds.
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Numerical Experiments

e Algorithm programmed in C4++ with MATLAB bindings.

e Experiments run on 2.4 GHz processor with 2 GB RAM.

e Source and target points uniformly distributed in the unit inter-
val.
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As a function of N [M = N h=0.1 r = 4]
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Precision Vs Speedup [M = N = 50,000 h = 0.1 r = 4]
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As a function of bandwidth h [M = N = 50,000 r = 4]
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As a function of r [M = N = 50,000 h = 0.1]
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Speedup for bandwidth estimation
e Used the solve-the-equation plug-in method of Jones at.al (1996) *.

e \We demonstrate the speedup achieved on the mixture of normal
densities used by Marron and Wand (1992).

— A typical representative of the densities likely to be encoun-
tered in real data situations.

‘ Rdirect— hfast |
hdirect .

e [ he absolute relative error is defined as

e For 50,000 points we obtained speedups in the range 65 to 105
with the absolute relative error of the order 107> to 10~ ’.

*Sheather, S. and Jones, M. 1991. A reliable data-based bandwidth selection method for kernel
density estimation. Journal of Royal Statistical Society Series B 53, 683-690.
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Marron

wand normal mixtures *

1 2 4 5
0.4 N 0.7 1.6 4
0.35 0.6F 1.4F 3.5
0.3 0.5 1.2r 3
0.25 0al 1r 25
0.2 - 0.8f 2r
0.3}
0.15 0.61 1.5f
0.1 0.2 0.4f 1t
0.05 0.1r 0.2f 05
93 93 -2 -1 0 93 -2 -1 [o] 1 2 3 93 -2 -1 [o] 1 2 3
6 7 9 10
0.35 0.35 0.35 0.7
0.4 0.6/
0.35
0.5f
0.3
0.25 0.4r
0.2 0.3l
0.15
0.2}
0.1
0.05 0.1r
% % -2 -1 0 1 2 3
15
0.4 0.4 0.4 0.4 0.4
0.35 0.35 0.35 0.35 0.35
0.3 0.3 0.3 0.3 0.3
0.25 0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2 0.2
0.15 0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05 0.05
% -2 -1 0 % -2 -1 0 % -2 -1 % %
k .
Marron, J. S. and Wand, M. P. 1992. Exact mean integrated squared error. The Annals of

Statistics 20, 2, 712-736.
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Speedup for Marron Wand normal mixtures

Rgirect hfast Tairect (S€C) | Trast (S€C) | Speedup | Rel. Err.
1 | 0.122213 | 0.122215 4182.29 64.28 65.06 1.37e-005
2 |1 0.082591 | 0.082592 5061.42 77.30 65.48 1.38e-005
3 1 0.020543 | 0.020543 8523.26 101.62 83.87 1.53e-006
4 | 0.020621 | 0.020621 7825.72 105.88 73.91 1.81e-006
5 10.012881 | 0.012881 6543.52 91.11 71.82 5.34e-006
6 | 0.098301 | 0.098303 5023.06 76.18 65.93 1.62e-005
7 | 0.002240 | 0.092240 5918.19 388.61 66.79 6.34e-006
8 | 0.074698 | 0.074699 5912.97 90.74 65.16 1.40e-005
9 | 0.081301 | 0.081302 6440.66 89.91 71.63 1.17e-005
10 | 0.024326 | 0.024326 7186.07 106.17 67.69 1.84e-006
11 | 0.086831 | 0.086832 5912.23 90.45 65.36 1.71e-005
12 | 0.032492 | 0.032493 8310.90 119.02 69.83 3.83e-006
13 | 0.045797 | 0.045797 63824.59 104.79 65.13 4.41e-006
14 | 0.027573 | 0.027573 10485.48 111.54 94.01 1.18e-006
15 | 0.023096 | 0.023096 11797.34 112.57 104.80 | 7.05e-007




Projection pursuit

The idea of projection pursuit is to search for projections from high-
to low-dimensional space that are most interesting *.

1. Given N data points in a d dimensional space project each data
point onto the direction vector a € RY, i.e., z; = alx;.

2. Compute the univariate nonparametric kernel density estimate,
p, of the projected points z;.

3. Compute the projection index I(a) based on the density estimate.

4. Locally optimize over the the choice of a, to get the most inter-
esting projection of the data.

*Huber, P. J. 1985. Projection pursuit. The Annals of Statistics 13, 435-475.
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Projection index

The projection index is designhed to reveal specific structure in the
data, like clusters, outliers, or smooth manifolds.

The entropy index based on Renyi's order-1 entropy is given by

1(a) = [ p(2) 109 p(2)dz

The density of zero mean and unit variance which uniquely minimizes
this is the standard normal density.

Thus the projection index finds the direction which is most non-
normal.
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Speedup

The computational burden is reduced in the following three in-
stances.

1. Computation of the kernel density estimate (i.e. use the fast
method with » = 0).

2. Estimation of the optimal bandwidth.

3. Computation of the first derivative of the kernel density estimate,
which is required in the optimization procedure.
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Projection pursuit on a image
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The entire procedure took 15 minutes while that using the direct

method takes around 7.5 hours.
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Conclusions

e Fast ¢ — exact algorithm for kernel density derivative estima-
tion which reduced the computational complexity from O(N?)
to O(N).

e \We demonstrated the speedup achieved for optimal bandwidth
estimation.

e \We demonstrated how to potentially speedup the projection pur-
suit algorithm.
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Software

e | he code is available for academic use.

e www.cs.umd.edu/~vikas

e A detailed version of this paper is available as a TR *.

*Very fast optimal bandwidth selection for univariate kernel density estimation. Vikas C. Raykar
and R. Duraiswami, CS-TR-4774, Department of computer science, University of Maryland,
Collegepark.
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Related work

e FFT * FGT T IFGT ¥, dual-tree 8. All the above methods are
designed to specifically accelerate the KDE.

e [ he main contribution of this paper is to accelerate the kernel
density derivative estimate with an emphasis to solve the optimal
bandwidth problem. The case of KDE arises as a special case
of r =20, i.e., the zero order density derivative.

*Silverman, B. W. 1982. Algorithm AS 176: Kernel density estimation using the fast Fourier
transform. Journal of Royal Statistical society Series C: Applied statistics 31, 1, 93-99.

TGreengard, L. and Strain, J. 1991. The fast Gauss transform. SIAM Journal of Scientic and
Statistical Computing 12, 1, 79-94.

iYang, C., Duraiswami, R., Gumerov, N., and Davis, L. 2003. Improved fast Gauss transform
and efficient kernel density estimation. In IEEE International Conference on Computer Vision.
464-471.

§Gray, A. G. and Moore, A. W. 2003. Nonparametric density estimation: Toward computational
tractability. In SIAM International conference on Data Mining.
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