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Abstract

In this study we introduce a novel algorithm for
learning a polyhedron to describe the target class.
The proposed approach takes advantage of the
limited subclass information made available for
the negative samples and jointly optimizes mul-
tiple hyperplane classifiers each of which is de-
signed to classify positive samples from a sub-
class of the negative samples. The flat faces
of the polyhedron provides robustness whereas
multiple faces contributes to the flexibility re-
quired to deal with complex datasets. Apart from
improving the prediction accuracy of the sys-
tem, the proposed polyhedral classifier also pro-
vides run-time speedups as a by-product when
executed in a cascaded framework in real-time.
We evaluate the performance of the proposed
technique on a real-world Colon dataset both in
terms of prediction accuracy and online execu-
tion speed.

1. Problem Specification

In target detection the objective is to determine whether
or not a given example is from a target class. Obtaining
ground truth for the target class usually involves a tedious
process of manual labeling. If samples belonging to the tar-
get class are labeled as positive, then negative class covers
everything else. Due to the nature of the problem and the
labeling process, the number of samples representing the
target class is usually scarce whereas abundant data is po-
tentially available to represent the negative class. In other
words the data is highly unbalanced between classes favor-
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ing the negative class.

In this process the actual labels of the counter-examples are
ignored and the negative class is formed by pooling sam-
ples of potentially different characteristics together within
a single class. In other words samples of the negative class
do not cluster well since they can belong to different sub-
classes.

One promising approach that has been heavily explored in
this domain is the one-class classifiers. One-class classi-
fication simply omits the negative class (if it exists) and
aims to learn a model with the positive examples only. Sev-
eral techniques have been proposed in this direction. Sup-
port vector domain description technique aims to fit a tight
hyper-sphere in the feature space to include most of the
positive training samples and reject outliers (Tax & Duin,
1999). In this approach the nonlinearity of the data can
be addressed implicitly through the kernel evaluation of
the technique. One-class SVM generates an artificial point
through kernel transformation for representing the negative
class and then using relaxation parameters it aims to sepa-
rate the image of the one-class from the origin (Scholkopf
et al., 1999). Compression Neural Network constructs a
three-layer feed-forward neural network and trains this net-
work with a standard back-propogation algorithm to learn
the identity function on the positive examples (Manevitz &
Yousef, 2001).

Discriminative techiques such as Support Vector Machines
(Vapnik, 1995), Kernel Fisher Discriminant (Mika et al.,
2000), Relevance Vector Machines (Tipping, 2000) to
name few are also used in this domain. These techniques
deal with the unbalanced nature of the data by assigning
different cost factors to the negative and positive samples
in the objective function. The kernel evaluation of these
techniques yields nonlinear decision boundaries suitable
for classifying multi-mode data from the target class.

In this study we aim to learn a polyhedron in the feature
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space to describe the positive training samples. Polyhedral
decision boundaries such as boundaries that are drawn par-
allel to the axes of the feature space as in decision trees
or skewed decision boundaries (Murth et al., 1994) have
existed for quite some time. Our approach is similar in
some sense to the Support vector domain description tech-
nique but there are two major differences. First instead of
a hypersphere, a polyhedron is used to fit positive training
samples. Second, positive and negative samples are used
together in this process. The target polyhedron is learned
through joint optimization of multiple hyperplane classi-
fiers, each of which is designed to classify positive samples
from a subgroup of negative samples. The number of such
hyperplane classifiers is equivalent to the number of sub-
classes identified in the negative class. The proposed tech-
nique requires labeling of a small portion of the negative
samples to collect training data for the subclasses that exist
in the negative class.

Our approach does not intend to precisely identify each and
every subclass in the dataset. By manual labeling we aim
to identify major subclasses. Subclasses with similar char-
acteristics or with only few labeled samples can be grouped
together. During annotation one may also encounter posi-
tive look alikes, i.e. samples do not appear as negative but
not yet confirmed as positive. A new subclass can be intro-
duced for these samples.

In Figure 1 the proposed algorithm is demonstrated with a
toy example. Positive samples are depicted by the dark cir-
cles in the middle, whereas negative samples are depicted
with the numbers with each number corresponding to a dif-
ferent subclass. All eight classifiers are optimized simulta-
neously and polygon shown with dark lines is obtained as a
decision boundary that classifies positive samples from the
negative ones.

Kernel-based classifiers have the capacity to learn higly
nonlinear decision boundaries allowing great flexibility.
However it is well-known that in real-world applications
where feature noise and redundancy is a problem, too much
capacity usually hurts the generalizability of a classifier by
enabling the classifier to easily overfit the training data.
The proposed approach is capable of addressing nonlinear-
ities by fitting the positive class through a series of linear
hyperplanes, all of which are optimized jointly to form a
polyhedral decision boundary. The flat faces provides ro-
bustness whereas multiple faces contributes to the flexibil-
ity.

The problem described above is commonly encountered in
areas like content-base image retrieval (Chen et al., 2001),
document classification (Manevitz & Yousef, 2001) and
speech recognition (Brew et al., 2007). A similar scheme is
also observed in Computer Aided Detection (CAD). In this
study we explore the proposed idea for a CAD application,
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Figure 1. A Toy example demonstrating the proposed algorithm.
Dark circles depicting positive samples, numbers representing
negative samples. The decision boundary is shown with the solid
lines.

namely Colon CAD.

2. Hyperplane Classifiers

We are given a training dataset {(xi, yi)}
`

i=1, where xi ∈
<d are input variables and yi ∈ {−1, 1} are class labels.
We consider a class of models of the form f(x) = αT x,
with the sign of f(x) predicting the label associated with
the point x. An hyperplane classifier with hinge loss can be
designed by minimizing the following cost function.

J (α) = Φ(α) +
∑̀

i=1

wi

(

1 − αT yixi

)

+
(1)

where the function Φ : <(d) ⇒ < is a regulariza-
tion function or regularizer on the hyperplane coefficients
and (k)+ = max(0, k) represents the hinge loss, and
{wi : wi ≥ 0, ∀i} is the weight preassigned to the loss as-
sociated with xi. For balanced data usually wi = w, but for
unbalanced data it is a common practice to weight positive
and negative classes differently, i.e. {wi = w+, ∀i ∈ C+}
and {wi = w−, ∀i ∈ C−} where C+ and C− are the cor-
responding sets of indices for the positive and negative
classes respectively.

The function
(

1 − αT yixi

)

+
is a convex function. The

weighted sum of convex functions is also convex. There-
fore for a convex function Φ(α) (1) is also convex. The
problem in (1) can be formulated as a mathematical pro-
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gramming problem as follows:

min
(α,ξ)∈Rd+`

Φ(α) +
∑`

i=1 wiξi

s.t. ξi ≥ 1 − αT yixi

ξi ≥ 0, ∀i

(2)

For Φ(α) = ‖α‖2
2, where ‖.‖2 is the 2-norm, (2) results

in the conventional Quadratic-Programming-SVM, and for
Φ(α) = |α|, where |.| is the 1-norm it yields the sparse
Linear-Programming-SVM.

3. Polyhedral Decision Boundaries

3.1. Training a Classifier with an AND Structure

We aim to optimize the following cost function

J (α1, . . . αK) =

K
∑

k=1

Φk(αk) (3)

+ ν1

K
∑

k=1

∑

i∈C
−

k

(eik)+

+ ν2

∑

i∈C+

max (0, ei1, . . . , eiK)

where eik = 1+αT
k xik and (eik)+ defines the hinge loss of

the i-th training example {(xik , yik)} in subclass-k induced
by classifier k. C−

k is the set of indices of the negative
samples in subclass-k. Note that classifier k is designed to
classify positive examples from the negative examples in
the subclass-k. The first term in (3) is a summation of the
regularizers for each of the classifiers in the cascade and the
second and third terms accounts for the losses induced by
the negative and positive samples respectively. Unlike (1)
the loss function here is different for the positive samples.
The loss induced by a positive sample i, i ∈ C+ is zero
only if ∀k : 1−αT

k xi ≤ 0, which corresponds to the “AND”
operation. The problem (3) can be formulated as follows

min
(α,ξ)∈RKd+`

∑K

k=1 Φk(αk) + ν1

∑K

k=1

∑

i∈C−

k

ξik

+ ν2

∑

i∈C+ ξi

s.t. ξik ≥ 1 + αT
k xik

ξik ≥ 0
ξi ≥ 1 − αT

k xi

ξi ≥ 0
(4)

where the first two constraints are imposed for ∀i ∈ C−
k ,

k = 1, ..., K and the last two constraints are imposed for
∀i ∈ C+, k = 1, ..., K. Note that for a convex function
Φ(α) the problem in (4) is convex. In a nutshell we de-
signed K classifiers, one for each of the binary classifica-
tion problems, i.e. positive class vs subclass-k of the nega-
tive class. Then we construct a learning algorithm to jointly

optimize these classifiers such that the cost induced by a
positive sample is zero if and only if all of the K classifiers
classifies this sample correctly, i.e. ∀k : 1 − αT

k xi ≤ 0.
Since each negative sample is only used once for training
the classifier k, the cost induced for a negative sample is
zero as long as it is classified correctly by the correspond-
ing classifier k, i.e. 1+ αT

k xik ≤ 0. Each classifier can use
an arbitrary subset of the original feature set. This provides
run time advantages in real-time when the classification ar-
chitecture is implemented in a cascaded framework. This
will be explained later in the paper. For now to keep the no-
tation clean and tractable we assumed each classifier uses
the entire feature set in the formulation (4) above.

3.2. Training a Classifier with an AND-OR Structure

The AND algorithm is developed with the assumption that
the negative class is fully labeled. That is to say, the sub-
class membership of each of the negative sample is known
apriori. For most real world applications this is not a very
realistic scenario as it is almost impractical to label all of
the negative samples due to the time limitations. However
one can label a small subset of the negative class to discover
different type of subclasses as well as pool the training data
for each subgroup. To accommodate for the unlabeled sam-
ples we modify the equation (3) for the unlabeled negative
samples as follows.

J (α1, . . . αK) =
K

∑

k=1

Φk(αk)

+ ν1

K
∑

k=1

∑

i∈C
−

k

(eik)+

+ ν1

∑

i∈Ć−

K
∏

k=1

(eik)+

+ ν2

∑

i∈C+

max (0, ei1, . . . , eiK)

where Ć− is the set of indices of the unlabeled negative
samples. The first term in (5) requires a labeled sample
from a subclass-k to be correctly classified by the classi-
fier k. In other words if a sample is known to be a mem-
ber of subclass-k, ideally it should be classified as negative
by the corresponding classifier k. On the other hand the
second term requires an unlabeled negative sample to be
correctly classified by any of the classifiers. As long as an
unlabeled sample is classified as negative it does not matter
which classifier does it, i.e. ∃k : 1 − αT

k xik ≤ 0 which
corresponds to a “OR” operation. The third term requires
a positive sample is classified as positive by all of the K

classifiers, i.e. ∀k : 1 − αT
k xi ≤ 0, which corresponds to

the “AND” operation.
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Due to the product operation in the objective function for
unlabeled samples, unlike equation (3), equation (5) can
not be cast as a convex programming problem. In the next
section we propose an efficient alternating optimization al-
gorithm to solve this problem.

4. Cyclic Optimization of AND-OR Algorithm

We develop an iterative algorithm which, at each iteration,
carries out K steps, each aiming to optimize one classifier
at a time. This type of algorithms is usually called alternat-
ing or cyclic optimization approaches. At any iteration, we
fix all of the classifiers but the classifier k. The fixed terms
have no effect on the optimization of the problem once they
are fixed. Hence solving (5) is equivalent to solving the fol-
lowing problem by dropping the fixed terms in (5):

J (αk) = Φk(αk)

+ ν1

∑

i∈C
−

k

(eik)+

+ ν1

∑

i∈Ć−

wi (eik)+

+ ν2

∑

i∈C+

max (0, ei1, . . . , eik, . . . , eiK)

where wi =
∏K

k=1,k 6=k (eik)+. This can be cast into a
constrained problem as follows

min
(αk,ξ)∈Rd+`

k
+`+

Φk(αk) + ν1

∑

i∈C
−

k

ξi

+ ν1

∑

i∈Ć−
wiξi

+ ν2

∑

i∈C+ ξi

s.t. ξi ≥ eik, ∀i

ξi ≥ 0, ∀i ∈ Ć− ∪ C−
k

ξi ≥ γi, ∀i ∈ C+

(5)
where γi = max

(

0, ei1, . . . , ei(k−1), ei(k+1), . . . , eiK

)

and `k is the number of samples in subclass-k. The sub-
problem in (5) is a convex problem and differs from the
problem in (2) by two small changes. First the weight as-
signed to the loss induced by the negative samples is now
adjusted by the term wi =

∏K

k=1,k 6=k (eik)+. This term
multiplies out to zero for negative samples correctly clas-
sified by one of the other classifiers. For these samples
eik < 0 and ξi = 0 making the constraints on ξi in (5) re-
dundant. As a result there is no need to include these sam-
ples when training for the classifier-k, which yields signif-
icant computational advantages. Second the lower bound
for ξ is now max

(

0, ei1, . . . , ei(k−1), ei(k+1), . . . , eiK

)

.
This implies that if any of the classifiers in the cascade
misclassifies xik the lower bound on ξ is no longer zero
relaxing the constraint on xik .

4.1. An Algorithm for AND-OR Learning

(0) Initialize eik in (5) such that all candidates are classi-
fied as positive, i.e. 100% sensitivity, 0% specificity.
Set counter c = 1.

(i) Fix all the classifiers in the cascade except classi-
fier k and solve (5) for αc

k using the training dataset
{(

xk
i , yi

)}`

i=1
. Repeat this for all k = 1, . . . , K.

(ii) Compute Jc(α1, . . . , αK) by replacing αc−1
k by αc

k in
(5), for all k = 1, . . . , K.

(iii) Stop if Jc − Jc−1 is less than some desired tolerance.
Else replace αc−1

k by αc
k for all k = 1, . . . , K, c by

c + 1 and go to step i.

The initial objective function in (5) is neither convex nor
twice differentiable due to the product of the hinge loss
term. Therefore the convergence theorem introduced in
(Bezdek & Hathaway, 2003) for cyclic optimization does
not hold here. On the other hand the subproblem in (5)
is convex and hence at each iteration J c <= Jc−1 holds
and also (5) is bounded below. These guarantee conver-
gence of the algorithm from any initial point to the set of
suboptimal solutions. The solution is suboptimal if the ob-
jective function J can not be further improved following
any directions. For a more detailed discussion on this topic
please see (Dundar & Bi, 2007).

An unseen sample x can be classified as positive if
max(1 − αT

1 x, . . . , 1 − αT
Kx) ≤ τ and as negative if vice

versa for a threshold τ . The receiver operating character-
istics (ROC) curve can be plotted by varying the value of
τ .

5. Cascade Design for Run-Time Speedups

In Figure 2 a cascade classification scheme is shown. The
key insight here is to reduce the computation time and
speed-up online learning. This is achieved by designing
simpler classifiers in the earlier stages of the cascade to re-
ject as many negative candidates as possible before calling
upon classifiers with more features to further reduce the
false positive rate. A positive result from the first classifier
activates the second classifier and a positive result from the
second classifier activates the third classifier, and so on (Vi-
ola & Jones., 2004). A negative outcome for a candidate at
any stage in the cascade leads to an immediate rejection
of that candidate. Under this scenario Tk−1 = Tk ∪ Fk

and T0 = TK ∪
⋃K

1 Fk where Tk and Fk are the sets of
candidates labeled as positive and negative respectively by
classifier k.

The proposed algorithm learns a polyhedron through
jointly optimizing a series of sparse linear classifiers. Since
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Figure 2. A general cascade framework used for online classifica-
tion

the order these classifiers are executed in real-time does
not matter in terms of the overall prediction accuracy of
the system, we can arrange the execution sequence of these
classifiers in a way to optimize the run-time. Let Γk be
the set of indices of nonzero coefficients for classifier-k, ti

be the time required to compute feature i for a given candi-
date, i = 1, . . . , d and nk−1 is the number of samples in set
Tk−1, then the total time required for the online execution
of the algorithm is

T =

K
∑

k=1

nk−1

∑

i∈(Γk−1\
S

k−2

i=0
Γi)

ti (6)

The sets Γk are learned during offline training of the poly-
hedral classifier and are fixed for online execution. How-
ever the sets Tk is a function of the classifier 1 through
classifier k-1. Therefore this is a combinatorial optimiza-
tion problem with K! different outcomes, where K! is the
factorial of K. For small K one can try the exhaustive
number of orderings between classifier to find the optimum
sequence. However when K is large we can start with the
most sparse classifier, i.e. the linear classifier with the least
number of nonzero coefficients and choose the next classi-
fier as the one that will require computing least number of
additional features.

6. Computer Aided Detection

The goal of a Computer Aided Detection (CAD) system is
to detect potentially malignant tumors and lesions in med-
ical images (CT scans, X-ray, MRI etc). In an almost uni-
versal paradigm for CAD algorithms, this problem is ad-
dressed by a 3 stage system: A typical CAD system con-
sists of a candidate generation phase, a feature extraction
module and a classifier. The task of the candidate gener-
ation module is to create a list of potential polyps with a
high sensitivity but low specificity. Features are then ex-

tracted for each candidate and eventually passed to a classi-
fier where each candidate is labeled as normal or diseased.

In order to train a CAD system, a set of medical images
(eg CT scans, MRI, X-ray etc) is collected from archives of
community hospitals that routinely screen patients, e.g. for
colon cancer. These medical images are then read by ex-
pert radiologists; the regions that they consider unhealthy
are marked as ground-truth in the images. After the data
collection stage, a CAD algorithm is designed to learn to
diagnose images based on the expert opinions of the radi-
ologists on the database of training images. First, domain
knowledge engineering is employed to (a) identify all po-
tentially suspicious regions in a candidate generation stage,
and (b) to describe each such region quantitatively using a
set of medically relevant features based on for example,
texture, shape, intensity and contrast. Then, a classifier is
trained using the features computed for each candidate in
the training data and the corresponding ground truth.

When training a classifier for a CAD system for detection
of colonic polyps, the only information that is usually avail-
able is the location of polyps, since radiologists only mark
unhealthy regions when they are reading cases. This, of
course, is very important for training a CAD system. But
for all other structures that are picked up during candidate
generation phase that are not pointing to a known lesion
there is no other information available and they all have to
be treated equally as negative examples. This introduces
two complications. First all the negative candidates are
clustered in one group although variation in size and shape
among them is very big and valuable information about
those candidates, e.g. type category, is not used. Second,
radiologists only mark lesions of clinical importance, i.e.
polyps greater than 6mm in colon. It is also possible that
some lesions are overlooked during clinical evaluation. So
potentially there are unidentified lesions in our dataset with
no matching ground truth. If the candidate generation al-
gorithm generates candidates for these lesions then these
candidates are also marked as negative together with all the
other candidates with no corresponding radiologist marks.
In other words negative class may also contain unidentified
samples of the target class.

In the rest of this section we will discuss some motivation
for the proposed algorithm within the scope of a CAD sys-
tem designed to detect colorectal cancer. Colorectal can-
cer is the second leading cause of cancer-related death in
the western world (Jemal et al., 2004). Early detection
of polyps through colorectal screening can help to prevent
colon cancer by removing the polyps before they can turn
malignant.

Typical examples of different polyp morphologies are
given in Figure 3.
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The commonly encountered false positive types in colon
are fold, stool, tagged stool, meniscus, illeocecal valve, rec-
tum etc. Some of these are shown in Figure 4. Ideally we
can label all of the negative candidates in the training data
and use the proposed AND algorithm in (4) to jointly train
classifiers one for each of the subclasses of negative sam-
ples. However an exhaustive annotation of all negative ex-
amples is not feasible. Therefore we first select a very small
subset of the negative candidates and annotate them manu-
ally through visual inspection. Then this set together with
the positive samples and the remaining negative samples,
i.e. unlabeled samples is used in the proposed AND−OR

framework to train the classifiers.

7. Experimental Results

We validate the proposed polyhedral classifier (polyhedral)
with respect to its generalization performance and run-time
efficiency. We compared our algorithm to a Support Vector
Domain Description technique (svdd) (Tax & Duin, 1999),
nonlinear SVM with Radial Basis Function (rbf), and one-
norm SVM (sparse). To achieve sparseness we set the
Φk(αk) = |αk| for the polyhedral classifier.

7.1. Data and Experimental Settings

The database of high-resolution CT images used in this
study were obtained from two different sites across US. The
370 patients were randomly partitioned into two groups:
training (n=167) and test (n=199). The test group was se-
questered and only used to evaluate the performance of the
final system.

Training Data Patient and Polyp Info: There were 167 pa-
tients with 316 volumes. The candidate generation (CG) al-
gorithm identifies a total of 226 polyps at the volume level
across all sizes while generating a total of 64890 candi-
dates or an average of 205 false positives per volume. Test-
ing Data Patient and Polyp Info: There were 199 patients
with 385 volumes. The candidate generation (CG) algo-
rithm identifies a total of 245 polyps at the volume level
across all sizes while generating an average of 75946 sam-
ples or 194 false positives per volume (fp/vol).

A total of 98 features are extracted to capture shape and
intensity characteristics of each candidate. The proposed
algorithm requires a small set of false positives anno-
tated. Rather than labeling false positives randomly across
a dataset with 64890 samples we used the output of the
most recent prototype classifier for labeling. This classi-
fier is trained using a naive SVM and optimized for the 0-5
fp/vol range. This way we only focus on the most challeng-
ing false positives. This classifier marks a total of 1432
candidates as positive. Out of these candidates 1249 are
false positives. A small subset of the volumes from this set

is chosen for labeling and a total of 177 false positives (out
of 1249) are annotated and ten different subcategories are
identified.

7.2. Performance Evaluation

The classifiers are trained with the combination of 1249
false positives generated by the prototype classifier and all
the polyps the candidade generation detects in the training
data. A total of 1560 candidates are used for training. Clas-
sifiers are evaluated on the 1920 candidates the prototype
classifier marked as positive in the testing data. The corre-
sponding Receiver Operating Characteristics (ROC) curves
for each algorithm is plotted in Figure 5.

The classifier parameters are estimated using a 10-fold pa-
tient cross validation from a set of discrete values using the
training data. These are namely the width of the kernel
(γ=[0.01 0.03 0.05 0.1 0.3 0.5 1 5]) for rbf, svdd, the cost
factor (c=[5 10 15 20 25 50 75 100]) for rbf, polyhedral,
sparse and the ν=[0.001 0.005 0.01 0.05 0.1 0.2] parame-
ter for svdd. The desired tolerance value for Algorithm 4.1
is set to 0.001. The algorithm converged in less than 10
iterations.

As shown in Figure 5 the ROC curve corresponding to the
proposed polyhedral classifier is consistently dominating
all the other curves. The curve associated with the sparse
SVM is almost linear implying a random behavior. This is
not surprising to a greater extent as both the training and
testing data sets used in this experiment are derived from
the initial datasets via a linear SVM classifier. In other
words the datasets are composed of samples marked as pos-
itive by the linear SVM, a significant portion of which are
false positives. The one-class SVM is only slightly better
than the sparse SVM. Even though the rbf SVM is the best
of the three competitor algorithms, the difference in sen-
sitivity between the rbf SVM and the proposed polyhedral
classifier can be as high as 5% ( 10 polyps) in favor of the
proposed algorithm.

7.3. Run-time Evaluation

As stated earlier in the paper, run-time speedups can be
achieved as a by-product of the proposed algorithm when
the real-time classification is implemented in a cascaded
framework as in Figure 2. For a more detailed discussion
of cascade classifiers in the CAD domain we refer the in-
terested readers to these recent works (Dundar & Bi, 2007),
(Bi et al., 2006).

To avoid any delays in the workflow of a physician the
CAD results should be ready by the time physician com-
pletes his own review of the case. Therefore there is a run-
time requirement a CAD system needs to satisfy. Among
the stages involved during online processing of a volume,
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Figure 3. Polyp morphologies (from left to right): Sessile, pedunculated, and flat polyp

Figure 4. Negative examples (from left to right): stool, fold, noisy data and rectal tube
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Figure 5. ROC curves obtained by the four classifiers on the test
data.

feature computation is by far the most computational stage
of online processing. A cascaded framework for executing
the classifier in the order of increasing feature complex-
ity may bring significant computational advantages in this
case. In this framework the cascade is designed so as to
execute classifiers with less number of features earlier in
the sequence. This way the additional features required for
the succeeding classifiers will only be computed on the re-
maining candidates, i.e. candidates marked as positive by
all of the previous classifiers.

In this section we evaluate the speedups achieved by the
proposed classifier. We set the operating point at 60%
specificity, around 2.2fp/vol. At this specificity the pro-
posed polyhedral classifier yields 85% sensitivity (see Fig-
ure 5). Assuming each feature takes on the average t sec-
onds per candidate to compute we came up with the table
in 1. This table shows the aggregate number of features

used, feature computation time and number of candidates
rejected at each stage in the sequence.

Feature computation for the proposed approach on average
takes 452t secs per volume. On the other hand for svdd and
rbf, which require computation of all the features at once,
this stage takes 595t secs. This represents a roughly 25%
improvement in run-time execution speed of the system.
For the one-norm SVM sparse, this time is 437t secs. How-
ever the corresponding sensitivity at this operating point for
one-norm SVM is around 40% vs 85% for the proposed
technique.

8. Conclusions

In this study we have presented a methodology to take ad-
vantage of the subclass information information available
in the negative class to achieve a more robust description
of the target class. The subclass information which is ne-
glected in conventional binary classifiers provides a bet-
ter insight of the dataset and when incorporated into the
learning mechanism acts as an implicit regularizer on the
classifier coefficients. We believe this is an important con-
tribution for applications where feature noise is prevalent.
Highly nonlinear kernel classifiers provides flexibility for
modeling complex data but they tend to overfit when there
are too many redundant and irrelevant features in the data.
Linear classifiers on the other hand do not have enough
capacity to model complex data but they are more robust
when there is noise. The polyhedral classifier is proposed
as a midway solution. The linear faces of the polyhedron
achieves robustness whereas multiple faces provides flexi-
bility.

The order in which the classifiers are executed during on-
line execution does not matter. Even though finding the
globally optimum sequence is an open research problem
for a large number of subclasses, the ordering of the clas-
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sequence order 1 2 3 4 5 6 7 8 9
aggregate number 48 67 73 75 76 78 81 84 87
of features
aggregate number 1.08 2.37 2.57 2.82 2.90 2.93 3.06 3.07 3.40
of rejected candidates
(avg. per volume)
aggregate feature 291 386 408 414 418 424 434 443 452
computation time in t
(avg. per volume)

Table 1. Run-time Results obtained for the Polyhedral classifier. The classifiers are executed in the order of increasing number of features
required by each classifier.

sifiers can be arranged in a cascaded manner to reduce the
total run-time of the system.
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