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Abstract. Array audio-visual signal processing algorithms require time-synchronized
capture of AV-data on distributed platforms. In addition, the geometry of the array
of cameras, microphones, speakers and displays is often required. In this chapter
we present a novel setup involving network of wireless computing platforms with
sensors and actuators onboard, and algorithms that can provide both synchronized
I/O and self-localization of the I/O devices in 3D space. The proposed algorithms
synchronize input and output for a network of distributed multi-channel audio sen-
sors and actuators connected to general purpose computing platforms (GPCs) such
as laptops, PDAs and tablets. IEEE 802.11 wireless network is used to deliver the
global clock to distributed GPCs, while the interrupt timestamping mechanism is
employed to distribute the clock between I/O devices. Experimental results demon-
strate a precision in A/D D/A synchronization precision better than 50 µs (a couple
of samples at 48 kHz). We also present a novel algorithm to automatically deter-
mine the relative 3D positions of the sensors and actuators connected to GPCs. A
closed form approximate solution is derived using the technique of metric multidi-
mensional scaling, which is further refined by minimizing a non-linear error function.
Our formulation and solution accounts for the errors in localization, due to lack of
temporal synchronization among different platforms. The performance limit for the
sensor positions is analyzed with respect to the number of sensors and actuators as
well as their geometry. Simulation results are reported together with a discussion of
the practical issues in a real-time system.
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1 Introduction

Arrays of audio/video sensors and actuators such as microphones, cameras,
loudspeakers and displays along with array processing algorithms offer a rich
set of new features for emerging applications. Until now, array processing
required expensive dedicated multi-channel I/O cards and high-throughput
computing systems to process multiple channels on a single machine. Re-
cent advances in mobile computing and communication technologies, how-
ever, suggest a novel and very attractive platform for implementing these
algorithms. Students in classrooms and co-workers at meetings are nowadays
accompanied by several mobile computing and communication devices with
audio and video I/O capabilities onboard such as laptops, PDA’s, and tablets.
In addition, high-speed wireless network connections, like IEEE 802.11a/b/g,
are available to network those devices. Such ad-hoc sensor/actuator networks
can enable emerging applications that include multi-stream audio and video,
smart audio/video conference rooms, meeting recordings, automatic lecture
summarization, hands-free voice communication, speech enhancement and ob-
ject localization. No dedicated infrastructure in terms of the sensors, actua-
tors, multi-channel interface cards and computing power is required. Multiple
GPCs along with their sensors and actuators co-operate on providing trans-
parent synchronized I/O. However, there are several important technical and
theoretical problems to be addressed before the idea of using those devices for
array DSP algorithms can materialize in real-life applications.

Figure 1 shows a schematic representation of our proposed distributed com-
puting platform consisting of N GPC platforms(e.g., laptops). Each GPC is
equipped with audio sensors (microphones), actuators (loudspeakers), and
wireless communication capabilities. Given this setup, one of the most im-
portant problems is to provide a common reference time to a network of
distributed computers and their I/O channels. A second important problem
is to provide a common 3D coordinate system for the locations of the sensors
and actuators. Solutions to both problems will be presented.

2 Providing Common Time

To illustrate the importance of time synchronization we implemented a Blind
Source Separation (BSS) algorithm published in [2]. In the simplest setting
two sound sources are separated using the input of two microphones, each
connected to a different laptop. However, without synchronization of A/Ds
the BSS algorithm failed to perform separation. Figure 2 demonstrates how a
difference of only a few Hz in audio sampling frequency between two channels
(laptops) impacts source separation. On the x-axis the sampling difference in
Hz between two audio channels at about 16 kHz is shown against the achieved
signal separation gain by BSS on the y-axis. As can be seen in Figure 2, a
difference of only 2 Hz at 16 kHz reduces the signal separation gain from
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Fig. 1. Distributed computing platform consisting of N general-purpose comput-
ers along with their onboard audio sensors, actuators and wireless communication
capabilities.

8.5 dB to about 2 dB only. In real life the difference in sampling frequency
can be even higher as we illustrate in Table 1. BSS is not the only algorithm
that is extremely sensitive to sampling synchronization. Other applications
that require similar precision of time synchronization between channels are
acoustic beamforming and 3D audio rendering.

Table 1. Audio sampling rates of several laptops.

Dell IBM IBM IBM
Laptop Inspiron ThinkPad ThinkPad ThinkPad

7000 T20 600E T23

Sampling
rate, Hz 16001.7 16003.6 16001.8 16009.5

2.1 Related Work

The problem of time synchronization in distributed computing systems has
been discussed extensively in the literature in the context of maintaining clock
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Fig. 2. Sensitivity of acoustic source separation performance to small sample rate
differences. Channel 1 is assumed to sample at 16 kHz, while channel 2 is assumed
to sample at 16000+ x Hz. Signal separation gain is calculated for the Blind Source
Separation algorithm in [2].

synchrony throughout large geographic areas. Each process exchanges mes-
sages with its peers to determine a common clock. Seminal works have been
reported in [6] and [9]. However, the results provided there can not be applied
directly to our problem, since the precision of time synchronization is too low.
NTP, the Network Time Protocol, currently used worldwide for clock synchro-
nization in the best case achieves synchronization in the range of milliseconds
- 2 to 3 orders of magnitudes higher than the microsecond resolution needed
for our application scenarios. The Global Positioning system (GPS) provides
a much higher clock resolution. Its reported time is steered to stay always
within one microsecond of UTC (Coordinated Universal Time). In practice,
it has been within 50 nanoseconds. With the Standard Positioning Service
(SPS) a GPS receiver can obtain a time transfer accuracy to UTC within 340
nanoseconds (95% interval). GPS, however, only works reliably outdoors and
thus does not completely fit our application scenario. There is also some recent
work on synchronization in wireless sensor networks. In [10, 1], the reference-
broadcast synchronization method is introduced. In this scheme, nodes send
reference beacons to their neighbors based on a physical broadcast medium.
All nodes record the local time at which they receive the broadcasts (e.g., by
using the RDTSC instruction of the Pentium r© processor family; the Read-
Time Stamp Counter counts clocktics since the processor was started). Based



on the exchange of this information, nodes can translate each other’s clock.
Although promising, the worst case performance of 150µs reported in [10] is
too high for our application scenario. Our system is similar in spirit but we
rely on additional processing to reduce errors in estimation of synchronization
parameters.

In general, all clock synchronization algorithms studied in the literature
only address the problem of providing a common clock on distributed comput-
ing platforms. They do not address how the I/O can be synchronized with the
common clock (we proposed one solution in [7]). In other words, even under
the assumption of a perfect clock on each platform, there is still a mechanism
required to link the common clock to the data in the I/O channels. On a GPC
this is a challenge in itself and we address this problem in this chapter.

2.2 Problem Formulation

We tackle the problem of distributed I/O synchronization in two steps: (1) the
local CPU clocks of the GPCs are synchronized against a global clock (inter-
platform), and (2) I/O is synchronized against the local clocks and thus also
against the global clock (intra-platform). In the experimental results, one of
the CPU clocks will arbitrarily be chosen as the global clock.

Each GPC has a local CPU clock (e.g., RDTSC). Let ti(t) denote the value
of this clock on the i-th GPC at some global time t. Assuming a linear model
between the global clock and the local platform clock, we get

ti(t) = ai(t)t + bi(t), (1)

where ai(t) and bi(t) are timing model parameters for the i-th GPC. The de-
pendency of the model parameters on global time t approximates instabilities
in the clock frequency due to temperature variations and other factors. In
practice, these instabilities are in the order of 10−5. In the rest of this section
we will omit explicit time dependency to simplify our notations. Similarly, the
sampling times of audio A/Ds and D/As on GPC’s are approximated as:

τi(ti) = αi(ti)ti + βi(ti). (2)

In this model τi is simply the number of samples produced by A/D (or con-
sumed by D/A) converter since the start of the audio I/O. Note that two
different timing models are required since the audio I/O devices on a typical
PC platform have their own internal clock that is not synchronized to other
platform clocks such as the RDTSC.

Given the two timing models above the problem that we address in this
section can be formulated as finding t(τi) - the global time stamp of audio
sample τi. We separate it into two subproblems: finding α̂i and β̂i such that
ti(τi) = α̂iτi + β̂i (convert sample number to local time stamp with α̂ = α−1

and β̂ = −β/α) and finding â and b̂ such that t(ti) = âti + b̂ (convert value
of local clock to global time with â = a−1 and b̂ = −b/a).



2.3 Timing relationships on GPC platform

In order to understand the inter and intra platform synchronization methods
proposed in here we briefly describe the operations and timing relationships
on a typical GPC. Figure 3 shows a processing diagrams of networking and
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Fig. 3. Network (top part) and audio (bottom part) data and control flows on a
typical GPC platform.

audio I/O. Both I/O operations have a very similar structure that can be
described by the following sequence of actions (only input path is described):

1. Incoming data is received and processed by a hardware device, and even-
tually is put into a Direct Memory Access (DMA) buffer. This is modeled
in Figure 3 by the delay dhw, which is approximately constant for similar
hardware.

2. The DMA controller transfers the data to a memory block allocated by
the system and signals this event to the CPU by an Interrupt ReQuest
(IRQ). This stage introduces variable delay due to memory bus arbitration
between different agents (i.e., CPU, graphics adapter, other DMA’s).

3. The interrupt controller (APIC) queues the interrupt and schedules a time
slot for handling. Because APIC is handling requests from multiple I/O
devices this stage introduces variable delay with standard deviation of
around 6 ms and the maximum deviation of 30 ms. Both previous stages
are modeled by disr in Figure 3.

4. The Interrupt Service Routine (ISR) of the device driver is called, and the
driver sends notification to the Operating System (OS).

5. The OS delivers a notification and data to the user application(s). This
stage has to be executed in a multitasking software environment and this



leads to significant variable delays that depend on CPU utilization and
many other factors.

In summary, data traverses multiple hardware and software stages in order
to travel from an I/O device to the CPU and back. The delay introduced by
the various stages is highly variable making the problem of providing a global
clock to the GPCs and distributing it to I/O devices very challenging. It is
advantageous to perform synchronization as close to hardware as possible,
therefore our solution is implemented at the driver level (during ISR) thus
avoiding additional errors due to OS processing.

2.4 Inter-platform synchronization

For the synchronization of CPU clocks over a wireless network we propose to
use a series of arrival times of multicast packets sent by the wireless access
point (AP). In our current approach we implement a pairwise time synchro-
nization with one node chosen as the master (say t(t0) = t0). All other nodes
(clients) are required to synchronize their clocks to the master . A similar
approach was also suggested in [10, 1]. Our solution, however, extends it by
introducing additional constraints on the timing model. In order to provide a
global clock to distributed platforms that is potentially useful to other appli-
cations (e.g., joint stream processing and distributed computations) we im-
pose the clock monotonicity condition to make sure that the global clock is
monotonically increasing during model parameter adaptation. In addition we
smooth the clock model (ai and bi in equation (1)) variation by limiting the
magnitude of its updates.

The algorithm consists of the following steps:

1. AP sends next beacon packet.
2. Master node records its local time of packet arrival and distributes it to

all other nodes.
3. Client nodes record both their local times of arrival of beacon packets

from AP, and the corresponding times received from the master.
4. Clients update local timing models based on the set of local timestamps

and corresponding master timestamps.

Let us assume that in Figure 3 the packet j arrives to multiple plat-
forms approximately at the same global time corresponding to local clocks
tji (dprop ≈ 0). The set of observations available on the platforms consist of
pairs of timestamps (t̃j0, t̃

j
i ). From Figure 3 we have t̃j = tj + dhw + disr (we

omitted dependency on i) that we further model as t̃j = tj + d + n. In this
approximation d models all constant delay component and n represents the
stochastic component. Given the set of observations (t̃j0, t̃

j
i ) we are required to

estimate the timing model parameters âi and b̂i for all slave platforms. In our
experiments a window of 3 minutes is used to estimate current values of âi and
b̂i using the least trimmed squares (LTS) regression [14]. LTS is equivalent to



performing least squares fit, trimming the observations that correspond to the
largest residuals (defined as the distance of the observed value to the linear
fit), and then computing a least squares regression model for the remaining
observations. Figure 4 shows comparison of quantiles of residuals with quan-
tiles of normal distribution and Figure 5 plots the histogram of residuals. The
distribution appears to be close to Gaussian except for the presence of a few
outliers (see Figure 4) that do not fit into a normal distribution. The trimming
step is specifically targeted to remove those outliers.

Fig. 4. Comparison quantiles of residuals with quantiles of the normal distribu-
tion. Points away from the straight line are treated as outliers and removed during
regression.

2.5 Intra-platform synchronization

In order to synchronize the audio clock to the CPU clock we use a similar
approach as the one presented in the previous section. The ISR of the audio
driver is modified to timestamp the samples in the OS buffer using the CPU
clock to form a set of observation pairs (t̃ji , τ

j
i ), where j now represents the

index of an audio data packet.



Fig. 5. Histogram of residuals and the normal probability density function.

Following our model in Figure 3 we have t̃j = tj + dhw + disr (we omitted
dependency on i) that we further represent as t̃j = tj + d + n. Except for
the fact that the τ j are available without any noise (it is simply the number
of samples processed!) we are back to the problem of determining the linear
fit parameters for pairs of observations that we solved in the previous section
using the LTS method.

In summary, by using LTS procedure twice both local and global synchro-
nization problems are solved and the audio samples can be precisely synchro-
nized on the distributed GPCs.

2.6 Experimental results

The distributed test system was implemented with several off-the-shelf Intel r©
Centrino laptops using the following software components (see also Figure 6):
(a) A modified WLAN card driver timestamps each interrupt, parses incoming
packets in order to find all master beacon frames, and stores their timestamp
values in a cyclic shared memory buffer. The timestamp values as well as
the corresponding message IDs are further accessible through the standard
driver I/O interface. (b) A modified AC97 driver timestamps ISRs and calcu-
lates the number of samples transmitted since the beginning of the audio cap-
ture/playblack. The value pair is placed into a cyclic shared memory buffer. (c)



The synchronization agents are responsible for synchronizing the distributed
system. We have three types of agents: the multicast server (MCS), the master
synchronization agent (SAM) and the slave synchronization agent (SAS). The
MCS periodically broadcasts beacon packets (short packets with unique ID as
the payload). The SAM and SASs use the modified WLAN driver to detect the
beacons. The SAM periodically broadcasts its recorded timestamps of beacon
arrivals to the SAS devices. Based on SASs’ recorded timestamps and the
corresponding SAM timestamps, each SAS calculates the clock parameter to
convert between the platform clock and the global clock. The clock parameters
are placed in shared memory for use by other applications. (d) The Synchro-
nization API allows user applications to retrieve the local clock value, access
the clock parameters, and convert between the platform and global clock. (e)
The audio API allows user applications to retrieve pairs of local timestamps
and sample numbers, as well as to convert global timestamp values to sample
numbers and vice versa. It also provides transparent synchronized capture
and playback.

Based on these components a distributed audio rendering system was im-
plemented with three laptops (see Figure 6). The first laptop was used as the
MCS. Modified AC97 and WLAN drivers were installed on other two lap-
tops. SAM was started on the second laptop, while SAS were started on the
third laptop. The distributed system was instructed through the audio API
to synchronously playback a Maximum Length Sequence (MLS) signal on the
two synchronized laptops. The line-out signal of both laptops were recorded
by a multichannel soundcard. The measured inter-GPC offset was at most 2
samples at 48 kHz (less than 42 µs).

3 Providing Common Space

A common space (coordinate system) can be provided by means of actively
estimating the three dimensional positions of the sensors and actuators. Many
multi-microphone array processing algorithms (like sound source localization
or conventional beamforming) need to know the positions of the microphones
very precisely. Current systems either place the microphones in known loca-
tions or manually calibrate them. There are some approaches which do cali-
bration using speakers in known locations [15]. We offer here a more general
approach where no assumptions about the positions of the speakers are made.
Our solution explicitly accounts for the errors in localization due to lack of
temporal synchronization among different platforms.

We again refer to Figure 1 showing a schematic representation of a dis-
tributed computing platform consisting of N GPCs. For the purpose of per-
forming space localization one of them is configured to be the master. The
master controls the distributed computing platform and performs the location
estimation. As already described each GPC is assumed to be equipped with



Fig. 6. Distributed audio rendering/capturing system setup

audio sensors (microphones), actuators (loudspeakers), and wireless commu-
nication capabilities.

3.1 Related Work

The problem of self-localization for a network of nodes generally involves
two steps: ranging and multilateration. The ranging technology can be either
based on the Time Of Flight (TOF) or the Received Signal Strength (RSS)
of acoustic, ultrasound or radio frequency (RF) signals. The GPS system and
long range wireless sensor networks use RF technology for range estimation.
Localization using Global Positioning System (GPS) is not suitable for our
applications since GPS systems do not work indoors and are very expensive.
Also RSS based on RF is very unpredictable [16] and the RF TOF is quite
small to be used indoors. [16] discusses systems based on ultrasound TOF
using specialized hardware (like motes) as the nodes. However, our goal is to
use the already available sensors and actuators on GPCs to estimate their
positions. Our ranging technology is based on acoustic TOF as in [15, 11, 4].
Once we have the range estimates the Maximum Likelihood (ML) estimate
can be used to get the positions. To find the solution one can assume that the
locations of a few sources are known as in [15, 16] or make no such assumptions
as in [11, 19].



3.2 Problem Formulation

Given a set of M acoustic sensors (microphones) and S acoustic actuators
(speakers) in unknown locations, our goal is to estimate their three dimen-
sional coordinates. Each of the acoustic actuators is excited using a known
calibration signal such as maximum length sequences or chirp signals, and the
Time of Flight (TOF) is estimated for each of the acoustic sensors. The TOF
for a given pair of microphone and speaker is defined as the time taken by the
acoustic signal to travel form the speaker to the microphone.

Let mi for i ∈ [1,M ] and sj for j ∈ [1, S] be the three dimensional vectors
representing the spatial coordinates of the ith microphone and jth speaker,
respectively. We excite one of the S speakers at a time and measure the TOF
at each of the M microphones. Let TOF actual

ij be the actual TOF for the ith

microphone due to the jth source. Based on geometry the actual TOF can be
written as (assuming a direct path),

TOF actual
ij =

‖ mi − sj ‖
c

(3)

where c the speed of sound in the acoustical medium 4 and ‖‖ is the Euclidean
norm. The TOF which we estimate based on the signal captured confirms to
this model only when all the sensors start capturing at the same instant and
we know when the calibration signal was sent from the speaker.

However in a typical distributed setup as shown in Figure 1, the master
starts the audio capture and playback on each of the GPCs one by one. As
a result the capture starts at different instants on each GPC and also the
time at which the calibration signal was emitted from each loudspeaker is not
known. So the TOF which we measure from the signal captured includes both
the speaker emission start time and the microphone capture start time (See
Figure 7 where ˆTOF ij is what we measure and TOFij is what we require).
The speaker emission start time is defined as the time at which the sound
is actually emitted from the speaker. This includes the time when the play
back command was issued (with reference to some time origin), the network
delay involved in starting the playback on a different machine (if the speaker
is on a different GPC), the delay in setting up the audio buffers and also the
time required for the speaker diaphragm to start vibrating The microphone
capture start time is defined as the time instant at which capture is started.
This includes the time when the capture command was issued, the network
delay involved in starting the capture on a different machine and the delay in
transferring the captured sample from the sound card to the buffers.

Let tsj be the emission start time for the jth source and tmi be the capture
start time for the ith microphone (see Figure 7). Incorporating these two the
actual TOF now becomes,

4The speed of sound in a given acoustical medium is assumed to be constant. In
air it is given by c = (331 + 0.6T )m/s, where T is the temperature of the medium
in Celsius degrees.
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ˆTOF
actual

ij =
‖ mi − sj ‖

c
+ tsj − tmi (4)

The origin can be arbitrary since ˆTOF
actual

ij depends on the difference of tsj

and tmi. We start the audio capture on each GPC one by one. We define the
microphone on which the audio capture was started first as our first micro-
phone. In practice, we set tm1 = 0 i.e. the time at which the first microphone
started capturing is our origin. We define all other times with respect to this
origin. We can jointly estimate the unknown source emission and capture start
times along with microphone and source coordinates.

In this chapter we propose to use the Time Difference Of Arrival (TDOA)
instead of the TOF. The TDOA for a given pair of microphones and a speaker
is defined as the time difference between the signal received by the two micro-
phones 5. Let TDOAestimated

ikj be the estimated TDOA between the ith and
the kth microphone when the jth source is excited. Let TDOAactual

ikj be the
actual TDOA. It is given by

TDOAactual
ikj =

‖ mi − sj ‖ − ‖ mk − sj ‖
c

(5)

Including the source emission and capture start times, it becomes

ˆTDOA
actual

ikj =
‖ mi − sj ‖ − ‖ mk − sj ‖

c
+ tmk − tmi (6)

In the case of TDOA the source emission time is the same for both micro-
phones and thus gets cancelled out. Therefore, by using TDOA measurements
instead of TOF we can reduce the number of parameters to be estimated.

5Given M microphones and S speakers we can have MS(M − 1)/2 TDOA mea-
surements as opposed to MS TOF measurements. Of these MS(M − 1)/2 TDOA
measurements only (M − 1)S are linearly independent.



3.3 Maximum Likelihood (ML) Estimate

Assuming a Gaussian noise model for the TDOA observations we can derive
the ML estimate as follows. Let Θ, be a vector of length P × 1, representing
all the unknown non-random parameters to be estimated (microphone and
speaker coordinates and microphone capture start times). Let Γ , be a vector
of length N × 1, representing noisy TDOA measurements. Let T (Θ), be a
vector of length N × 1, representing the actual value of the observations.
Then our model for the observations is Γ = T (Θ) + η where η is the zero-
mean additive white Gaussian noise vector of length N×1 where each element
has the variance σ2

j . Also let us define Σ to be the N×N covariance matrix of
the noise vector N . The likelihood function of Γ in vector form can be written
as:

p(Γ/Θ) = (2π)−
N
2 | Σ |− 1

2 exp−1
2
(Γ − T )T Σ−1(Γ − T ) (7)

The ML estimate of Θ is the one which maximizes the log likelihood ratio and
is given by

Θ̂ML = argΘ max F (Θ, Γ )

F (Θ, Γ ) = −1
2
[Γ − T (Θ)]T Σ−1[Γ − T (Θ)] (8)

Assuming that each of the TDOAs are independently corrupted by zero-
mean additive white Gaussian noise 6 of variance σ2

ikj the ML estimate turns
out to be a nonlinear least squares problem (in this case Σ is a diagonal
matrix), i.e.

Θ̂ML = argΘ min[F̃ML(Θ, Γ )]

F̃ML(Θ,Γ ) =
S∑

j=1

M∑

i=1

M∑

k=i+1

(TDOAestimated
ikj − ˆTDOA

actual

ikj )2

σ2
ikj

(9)

Since the solution depends only on pairwise distances, any translation,
rotation and reflection of the global minimum found will also be a global
minimum. In order to make the solution invariant to rotation and translation
we select three arbitrary nodes to lie in a plane such that the first is at (0, 0, 0),
the second at (x1, 0, 0), and the third at (x2, y2, 0). In two dimensions we
select two nodes to lie in a line, the first at (0, 0) and the second at (x1, 0). To

6We estimate the TDOA or TOF using Generalized Cross Correlation (GCC)[5].
The estimated TDOA or TOF is corrupted due to ambient noise and room reverber-
ation. For high SNR the delays estimated by the GCC can be shown to be normally
distributed with zero mean [5].



eliminate the ambiguity due to reflection along Z-axis(3D) or Y-axis(2D) we
specify one more node to lie in the positive Z-axis(in 3D) or positive Y-axis(in
2D). Also the reflections along X-axis and Y-axis(for 3D) can be eliminated
by assuming the nodes which we fix to lie on the positive side of the respective
axes i.e x1 > 0 and y2 > 0. Similar to fixing a reference coordinate system in
space we introduce a reference time line by setting tm1 = 0.

3.4 Problem Solution

The ML estimate for the node coordinates of the microphones and loudspeak-
ers is implicitly defined as the minimum of a non-linear function. The solu-
tion is same as a nonlinear weighted least squares problem. The Levenberg-
Marquardt method is a popular method for solving non-linear least squares
problems. For more details on nonlinear minimization refer to [3]. Least
squares optimization requires that the total number of observations is greater
than or equal to the total number of parameters to be estimated. This imposes
a minimum number of microphones and speakers required for the position es-
timation method to work. Assuming M=S=K, Table 2 lists the minimum K
required for the algorithm.

Table 2. Minimum value of Microphone Speaker Pairs (K) required for different
estimation procedures (D-Dimension)

K ≥ D = 2 D = 3

TDOA Position Estimation 5 6

TDOA Joint Estimation 6 7

One problem with minimization is that it can often get stuck in a local
minima. In order to avoid this we need a good starting guess. We use the
technique of metric multidimensional scaling (MDS) [17] to get a closed form
approximation for the microphone and speaker positions, which is used as
a starting point for the minimization routine. MDS is a popular method in
psychology and denotes a set of data-analysis techniques for the analysis of
proximity data on a set of stimuli for revealing the hidden structure underlying
the data.

Given a set of N GPCs, let X be a N×3 matrix where each row represents
the 3D coordinates of each GPC. Then the N ×N matrix B = XXT is called
the dot product matrix. By definition, B is a symmetric positive definite
matrix, so the rank of B (i.e the number of positive eigen values) is equal to
the dimension of the datapoints i.e. 3 in this case. Also based on the rank
of B we can find whether the GPCs are on a plane (2D) or distributed in
3D. Starting with a matrix B (possibly corrupted by noise), it is possible to
factor it to get the matrix of coordinates X. One method to factor B is to



use singular value decomposition (SVD) [12], i.e., B = UΣUT where Σ is a
N×N diagonal matrix of singular values. The diagonal elements are arranged
as s1 ≥ s2 ≥ sr > sr+1 = ..... = sN = 0, where r is the rank of the matrix
B. The columns of U are the corresponding singular vectors. We can write
X
′

= UΣ1/2. From X
′

we can take the first three columns to get X. If the
elements of B are exact (i.e., they are not corrupted by noise), then all the
other columns are zero. It can be shown that SVD factorization minimizes the
matrix norm ‖ B −XXT ‖.

In practice we can estimate the distance matrix D where the ijth element
is the Euclidean distance between the ith and the jth GPC. We have to convert
this distance matrix D into a dot product matrix B. In order to form the dot
product matrix we need to choose some point as the origin of our coordinate
system. Any point can be selected as the origin, but Togerson [17] recommends
the centroid of all the points. If the distances have random errors then choosing
the centroid as the origin will minimize the errors as they tend to cancel each
other. We obtain the dot product matrix B using the cosine law which relates
the distance between two vectors to their lengths and the cosine of the angle
between them. Refer to [13] for a detailed derivation of how to convert the
distance matrix to the scalar product matrix.

In the case of M microphones and S speakers we cannot use MDS directly
because we cannot measure all the pairwise distances. We can measure the
distance between each speaker and all the microphones. However, we cannot
measure the distance between two microphones or two speakers. In order to
apply MDS, we cluster microphones and speakers, which are close together.
In practice, it is justified by the fact that the microphones and the speakers
on the same GPC are close together. Assuming that all GPCs have at least
one microphone and one speaker, we can measure the distance between the
speakers on one GPC and the microphones on the other and vice versa. Tak-
ing the average we get an approximate distance between the two GPCs. The
position estimate obtained using MDS has the centroid as the origin and an ar-
bitrary orientation. Therefore, the solution obtained using MDS is translated,
rotated and reflected to the reference coordinate system discussed earlier. Fig-
ure 8 shows an example with 10 laptops each having one microphone and one
speaker. The actual locations of the sensors and actuators are shown as ’x’.
The ’*’s are the approximate GPC locations resulting from MDS. As can be
seen the MDS result is very close to the true microphone and speaker loca-
tions. Each GPC location got using MDS is randomly perturbed to be used as
a initial guess for the microphones and speakers on that GPC. The ’o’ are the
results from the ML estimation procedure using the perturbed MDS locations
as the initial guess. The algorithm can be summarized as follows:

ALGORITHM

Say we have M microphones and S speakers
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Fig. 8. Results of Multidimensional Scaling for a network consisting of 10 GPCs
each having one microphone and one speaker.

• STEP 0: Form a Coordinate system by selecting three nodes: The first
one as the origin, the second to define the x-axis and the third to form the
xy-plane. Also select a fourth node to represent the positive z-axis.

• STEP 1: Compute the M × S Time Of Flight (TOF) matrix.
• STEP 2:

– Convert the TOF matrix into an approximate distance matrix by ap-
propriately clustering the closest microphones and speakers.

– Get the approximate positions of the clustered entities using metric
Multidimensional Scaling.

– Translate, rotate and mirror the coordinates to the coordinate system
specified in STEP 0.

• STEP 3:
– Slightly perturb the coordinates from STEP 2 to get approximate initial

guess for the microphone and speaker coordinates.
– Set an approximate initial guess for the microphone capture start time
– Minimize the TDOA based error function using the Levenberg-Marquardat

method to get the final positions of the microphones and speakers.

3.5 Analysis

The Cramér-Rao bound (CRB) gives a lower bound on the variance of any
unbiased estimate [18]. We derived it in [13] for our system leading to the
following important observations.

The more microphones and speakers in the network, the smaller the error
in estimating their positions as can be seen from Figure 9(a) and 9(b) which
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Fig. 9. 95% uncertainty ellipses for a regular 2 dimensional array of (a) 9 speakers
and 9 microphones, (b)and (c) 25 speakers and 25 microphones. Noise variance for
all cases is σ2 = 10−9. The microphones are represented as crosses (×) and the
speakers as dots (.). The position of one microphone and the x coordinate of one
speaker is assumed to be known (shown in bold). In (c) the known nodes are close
to each other and in (a) and (b) they are spread out one at each corner of the grid.
(d) schematic to explain the shape of the uncertainty ellipses.

shows the 95% uncertainty ellipses for different number of sensors and actua-
tors. Intuitively this can be explained as follows: Let there be a total of n nodes
in the network whose coordinates are unknown. Then we have to estimate a
total of 3n parameters. The total number of TOF measurements available is
however n2/4 (assuming that there are n/2 microphones and n/2 speakers).
So if the number of unknown parameters increases as O(n), the number of
available measurements increases as O(n2). So the linear increase in the num-
ber of unknown parameters, is compensated by the quadratic increase in the
available measurements.

In our formulation we assumed that we know the positions of a certain
number of nodes, i.e we fix three of the nodes to lie in the x-y plane. The CRB
depends on which of the sensor nodes are assumed to have known positions. In



Figure 9(c) the two known nodes are at one corner of the grid. It can be seen
that the uncertainty ellipse becomes wider as you move away form the known
nodes. The uncertainty in the direction tangential to the line joining the sensor
node and the center of the known nodes is much larger than along the line. The
reason for this can be explained for a simple case where we know the locations
of two speakers (see Figure 9(d)). A circular band centered at each speaker
represents the uncertainty in the distance estimation. The intersection of the
two bands corresponding to the two speakers gives the uncertainty region
for the position of the sensor. For nodes far away from the two speakers the
region widens because of the decrease in the curvature. It is beneficial if the
known nodes are on the edges of the network and as faraway from each other
as possible. In Figure 9(b) the known sensor nodes are on the edges of the
network. As can be seen there is a substantial reduction in the dimensions of
the uncertainty ellipses. In order to minimize the error due to Gaussian noise
we should choose the three reference nodes (in 3D) as far as possible.

3.6 Experimental Details and Results

We implemented a prototype system consisting of 6 microphones and 6 speak-
ers. The real-time setup has been tested in a synchronized as well as a dis-
tributed setup using laptops. The ground truth was measured manually to
validate the results from the position calibration methods.

A linear chirp signal was used to measure the TOF. A linear chirp signal
is a short pulse in which the frequency of the signal varies linearly between
two preset frequencies. In our system, we used the chirp signal of 512 samples
at 44.1kHz (11.61 ms) as our calibration signal. The instantaneous frequency
varied linearly from 5 kHz to 8 kHz. The initial and the final frequency was
chosen to lie in the common pass band of the microphone and the speaker
frequency response. The chirp signal send by the speaker is convolved with
the room impulse response resulting in the spreading of the chirp signal.

One of the problems in accurately estimating the TOF is due to the mul-
tipath propagation caused by room reflections. The time-delay may be found
by locating the peak in the cross-correlation of the signals received over the
two microphones. However this method is not robust to noise and reverber-
ations. Knapp and Carter [5] developed the Generalized Cross Correlation
(GCC) method. In this method, the delay estimate is the time lag which
maximizes the cross-correlation between filtered versions of the received sig-
nals [5]. The cross-correlation of the filtered versions of the signals is called
as the Generalized Cross Correlation (GCC) function. The GCC function
Rx1x2(τ) is computed as [5] Rx1x2(τ) =

∫∞
−∞W (ω)X1(ω)X∗

2 (ω)ejωτdω where
X1(ω), X2(ω) are the Fourier transforms of the microphone signals x1(t),
x2(t), respectively and W (ω) is the weighting function. The two most com-
monly using weighting functions are the ML and the PHAT weighting. The
ML weighting function performs well for low room reverberation. As the room
reverberation increases this method shows severe performance degradations.



Since the spectral characteristics of the received signal are modified by the
multipath propagation in a room, the GCC function is made more robust by
deemphasizing the frequency dependent weighting. The Phase Transform is
one extreme where the magnitude spectrum is flattened. The PHAT weighting
is given by WPHAT (ω) = 1/|X1(ω)X∗

2 (ω)|. By flattening out the magnitude
spectrum the resulting peak in the GCC function corresponds to the domi-
nant delay. However, the disadvantage of the PHAT weighting is that it places
equal emphasizes on both the low and high SNR regions, and hence it works
well only when the noise level is low.

In practice, the sensors’ and actuators’ three dimensional locations could
be estimated with an average bias of 0.08 cm and average standard deviation
of 3 cm (results averaged over 100 trials). Our algorithm assumed that the
sampling rate is known for each laptop and the clock does not drift. Our initial
real time setup integrates the distributed synchronization scheme using ML
sequence as proposed in [8] to resample and align the different audio streams.
It has now been converted to use the synchronization scheme presented in
Section 2. As regards to CPU utilization the TOA estimation consumes negli-
gible resources. If we use a good initial guess via the Multidimensional Scaling
technique then the minimization routine converges within 8 to 10 iterations.

4 Conclusion and Outlook

We presented our novel algorithms for self-synchronization of distributed AV-
sensor networks in time (i.e., synchronized I/O) with a precision of the order
of µs and for self-localization in space (i.e., 3D spatial coordinates) with a
precision of the order of several centimeters. These algorithms when imple-
mented in real-life systems can provide a completely new platform for future
exciting research in areas ranging from manufacturing to communications,
entertainment (especially games), and many more.

Researchers interested in using the common time and space infrastructure
are encouraged to contact the authors for a research prototype of the system
implemented for laptops with Intel r© CentrinoTM Mobile Technology.
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