
A Fast Algorithm for Learning a Ranking
Function from Large-Scale Data Sets

Vikas C. Raykar, Ramani Duraiswami, Member, IEEE, and

Balaji Krishnapuram, Member, IEEE

Abstract—We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney

statistic on the training data. Relying on an �-accurate approximation for the error function, we reduce the computational complexity of

each iteration of a conjugate gradient algorithm for learning ranking functions from Oðm2Þ to OðmÞ, where m is the number of training

samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as

accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it

is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.

Index Terms—Ranking, preference relations, fast erfc summation.
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1 INTRODUCTION

THE problem of ranking has recently received significant
attention in the statistical machine learning and informa-

tion retrieval communities. In a typical ranking formulation,
we compare two instances and determine which one is better
or preferred. Based on this, a set of instances can be ranked
according to a desired preference relation. The study of ranking
has largely been motivated by applications in search engines,
information retrieval, collaborative filtering, and recommen-
der systems. For example, in search engines, rather than
returning a document as relevant or not (classification), the
ranking formulation allows one to sort the documents in the
order of their relevance.

1.1 Preference Relation and Ranking Function

Consider an instance space X . For any ðx; yÞ 2 X � X , we
interpret the preference relation x � y, as “x is at least as good as
y.” We say that “x is indifferent to y” ðx � yÞ if x � y and y � x.
For learning a ranking, we are provided with a set of pairwise
preferences based on which we have to learn a preference
relation. In general, an ordered list of instances can always be
decomposed down to a set of pairwise preferences. One way
of describing preference relations is by means of a ranking
function. A function f : X ! IR is a ranking/scoring function
representing the preference relation � if

8x; y 2 X ; x � y, fðxÞ � fðyÞ: ð1Þ

The ranking function f provides a numerical score to the
instances based on which the instances can be ordered.

The function f is not unique. For any strictly increasing
function g : IR! IR, gðfð:ÞÞ is a new ranking function
representing the same preference relation. It may be
noted that x � y, fðxÞ ¼ fðyÞ.

The ranking function is similar to the utility function used in
microeconomic theory [1], where utility is a measure of the
satisfaction gained by consuming commodities. A conse-
quence of using a ranking function is that the learnt
preference relation is rational. In economics, a preference
relation � is called rational if it satisfies the following two
properties [1]

. Completeness. 8x, y 2 X , we have that x � y or y � x.

. Transitivity. 8x, y, z 2 X , if x � y and y � z, then x � z.
A preference relation can be represented by a ranking
function only if it is rational: For all x, y 2 X either fðxÞ �
fðyÞ or fðyÞ � fðxÞ. This proves the completeness property.
For all x, y, z 2 X , fðxÞ � fðyÞ and fðyÞ � fðzÞ, implies that
fðxÞ � fðzÞ. Hence, transitivity is satisfied.

A central tenet of microeconomic theory is that many of the
human preferences can be assumed to be rational [1]. In the
training data, we may have preferences that do not obey
transitivity. However, the learnt ranking function will
correspond to a rational preference relation. For the rest of
the paper, we shall simply treat the learning of a preference
relation as a problem of learning a rational ranking function.

1.2 Problem Statement

In the literature, the problem of learning a ranking function
has been formalized in many ways. We adopt a general
formulation based on directed preference graphs [2], [3].

We are given training data A, a directed preference
graph G ¼ ðV; EÞ encoding the preference relations, and a
functionclassF fromwhichwechooseourrankingfunctionf .

. The training data A ¼
SS
j¼1ðA

j ¼ fxji 2 IRdgmj

i¼1Þ con-
tains S classes (sets). Each class Aj contains
mj samples, and there are a total of m ¼

PS
j¼1 mj

samples in A.
. Each vertex of the directed order graph G ¼ ðV; EÞ

corresponds to a class Aj. The existence of a directed
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edge Eij from Ai ! Aj means that all training
samples in Aj are preferred or ranked higher than any
training sample inAi, that is, 8ðxik 2 A

i; xjl 2 A
jÞ, xjl �

xik (see Fig. 1).

The goal is to learn a ranking function f : IRd ! IR such that

fðxjl Þ � fðxikÞ for as many pairs as possible in the training

data A and also to perform well on unseen examples. The

output fðxkÞ can be sorted to obtain a rank ordering for a set

of test samples fxk 2 IRdg.
This general formulation gives us the flexibility to learn

different kinds of preference relations by changing the

preference graph. Fig. 1 shows two different ways to encode

the preferences for a ranking problem with four classes. The

first one containing all possible relations is called the full

preference graph.
Although a ranking function can be obtained by learning

classifiers or ordinal regressors, it is more advantageous to

learn the ranking function directly due to two reasons:

. First, in many scenarios, it is more natural to obtain
training data for pairwise preference relations rather
than the actual labels for individual samples.

. Second, the loss function used for measuring the
accuracy of classification or ordinal regression—for
example, the 0-1 loss function—is computed for every
sample individually, and then averaged over the
training or the test set. In contrast, to asses the quality
of the ranking for arbitrary preference graphs, we will
use a generalized version of the Wilcoxon-Mann-
Whitney statistic [2], [4], [5], that is, averaged over
pairs of samples.

1.3 Generalized Wilcoxon-Mann-Whitney Statistic

The Wilcoxon-Mann-Whitney (WMW) statistic [4], [5] is

frequently used to assess the performance of a classifier

because of its equivalence to the area under the Receiver

Operating Characteristics (ROC) curve (AUC). It is equal to

the probability that a classifier assigns a higher value to the

positiveexample than tothe negative example, for arandomly

drawn pair of samples. The generalized version of the WMW

statistic for our ranking problem is defined as follows [2]:

WMWðf;A;GÞ ¼
P
Eij
Pmi

k¼1

Pmj

l¼1 1fðxj
l
Þ�fðxi

k
ÞP

Eij
Pmi

k¼1

Pmj

l¼1 1
; ð2Þ

where 1a�b ¼
1 if a � b;
0 otherwise:

�
ð3Þ

The numerator counts the number of correct pairwise
orderings. The denominator is the total number of pairwise
preference relations available. The WMW statistic is thus an
estimate of Pr½fðx1Þ � fðx0Þ� for a randomly drawn pair of
samples ðx1; x0Þ such that x1 � x0. This is a generalization of
the area under the ROC curve (often used to evaluate
bipartite rankings) to arbitrary preference graphs between
many classes of samples. For a perfect ranking function, the
WMW statistic is 1, and for a completely random assign-
ment, the expected WMW statistic is 0.5.

A slightly more general formulation can be found in [3],
[6], [7], where each edge in the graph has an associated
weight, which indicates the strength of the preference
relation. In such a case, each term in the WMW statistic must
be suitably weighted.

Although the WMW statistic has been used widely to
evaluate a learned model, it has only recently been used as
an objective function to learn the model. Since maximizing
the WMW statistic is a discrete optimization problem, most
previous algorithms optimize a continuous relaxation
instead. Previous algorithms often incurred Oðm2Þ effort
in order to evaluate the relaxed version or its gradient. This
led to very large training times for massive data sets.

1.4 Our Proposed Approach

In this paper, we directly maximize the relaxed version of
the WMW statistic using a conjugate gradient (CG)
optimization procedure. The gradient computation scales
asOðm2Þ, which is computationally intractable for large data
sets. Inspired by the fast multipole methods in computa-
tional physics [8], we develop a new algorithm that allows us
to compute the gradient approximately to � accuracy in
OðmÞ time. This enables the learning algorithm to scale well
to massive data sets.

1.5 Organization

The rest of the paper is structured as follows: In Section 2, we
describe the previous work in ranking and place our method
in context. The cost function that we optimize is described in
Section 3. We also show that the cost function derived from a
probabilistic framework can be considered as a regularized
lower bound on the WMW statistic (see Section 3.1). The
computational complexity of the gradient computation is
analyzed in Section 4.2. In Section 5, we describe the fast
summation of erfc functions–a main contribution of this
paper—which makes the learning algorithm scalable for
large data sets. Experimental results are presented in
Section 6 and 7.

2 PREVIOUS LITERATURE ON LEARNING RANKING

FUNCTIONS

Many ranking algorithms have been proposed in the
literature. Most learn a ranking function from pairwise
relations and as a consequence are computationally
expensive to train as the number of pairwise constraints is
quadratic in the number of samples.
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Fig. 1. (a) A full preference graph and (b) chain preference graph for a

ranking problem with four classes.



2.1 Methods Based on Pairwise Relations

The problem of learning rankings was first treated as a
classification problem on pairs of objects by Herbrich et al. [9]
and, subsequently, used on a Web page ranking task by
Joachims [10]. The positive and negative examples are
constructed from pairs of training examples—for example,
Herbrich et al. [9] use the difference between the feature
vectors of two training examples as a new feature vector for
that pair. Algorithms similar to SVMs were used to learn the
ranking function.

Burges et al. [6] proposed the RankNet, which uses a
neural network to model the underlying ranking function.
Similar to our approach, it uses gradient descent techniques
to optimize a probabilistic cost function—the cross entropy.
The neural net is trained on pairs of training examples
using a modified version of the backpropagation algorithm.

Several boosting-based algorithms have been proposed
for ranking. With collaborative filtering as an application
Freund et al. [7] proposed the RankBoost algorithm for
combining preferences. Dekel et al. [3] present a general
framework for label ranking by means of preference graphs
and graph decomposition procedure. A log-linear model is
learnt using a boosting algorithm.

A probabilistic kernel approach to preference learning
based on Gaussian processes was proposed by Chu and
Ghahramani [11].

2.2 Fast Approximate Algorithms

The naive optimization strategy proposed in all the above
algorithms suffer from the Oðm2Þ growth in the number of
constraints. Fast approximate methods have only recently
been investigated. An efficient implementation of the
RankBoost algorithm for two class problems was presented
in [7]. A convex-hull-based relaxation scheme was proposed
in [2]. In a recent paper, Yan and Hauptmann [12] proposed
an approximate margin-based rank learning framework by
bounding the pairwise risk function. This reduced the
computational cost of computing the risk function from
quadratic to linear. Recently, an extension of RankNet, called
LambdaRank, was proposed [13], which speeds up the
algorithm by reducing the pairwise part of the computation
to a loop, which can be computed very quickly. Although they
showed good experimental evidence for the speedup
obtained, the method still has a pairwise dependence.

2.3 Other Approaches

A parallel body of literature has considered online algorithms
and sequential update methods, which find solutions in
single passes through the data. PRank [14], [15] is a
perceptron-based online ranking algorithm that learns using
one example at a time. RankProp [16] is a neural net ranking
model that is trained on individual examples rather than
pairs. However, it is not known whether the algorithm
converges. All gradient-based learning methods can also be
trained using stochastic gradient descent techniques.

2.4 WMW Statistic Maximizing Algorithms

Our proposed algorithm directly maximizes the WMW
statistic. Previous algorithms that explicitly try to maximize
the WMW statistic come in two different flavors. Since the
WMW statistic is not a continuous function, various
approximations have been used.

A class of these methods have a Support Vector Machine
(SVM)-type flavor, where the hinge loss is used as a convex
upper bound for the 0-1 indicator function [7], [17], [18],

[19]. Algorithms similar to the SVMs were used to learn the
ranking function.

Another class of methods use a sigmoid [20] or a
polynomial approximation [17] to the 0-1 loss function.
Similar to our approach, they use a gradient-based learning
algorithm.

2.5 Relationship to the Current Paper

Similar to the papers mentioned, our algorithm is also based
on the common approach of trying to correctly arrange pairs
of samples, treating them as independent. However, our
algorithm differs from the previous approaches in the
following ways:

. Most of the proposed approaches [3], [6], [9], [10],
[11], [21] are computationally expensive to train due
to the quadratic scaling in the number of pairwise
constraints. Although the number of pairwise con-
straints is quadratic, the proposed algorithm is still
linear. This is achieved by an efficient algorithm for
the fast approximate summation of erfc functions,
which allows us to factor the computations.

. There are no approximations in our ranking formula-
tion, as in [12], where in order to reduce the quadratic
growth, a bound on the risk functional is used. It
should be noted that we use approximations only in
the gradient computation of the optimization proce-
dure. As a result, the optimization will converge to the
same solution but will take a few more iterations.

. The other approximate algorithm [2] scales well to
large data sets computationally, but it makes very
coarse approximations by summarizing the slack
variables for an entire class by a single common scalar
value.

. The cost function that we optimize is a lower bound
on the WMW statistic—the measure that is fre-
quently used to assess the quality of rankings.
Previous approaches that try to maximize the
WMW statistic [7], [17], [18], [19], [20] consider only
a classification problem and also incur the quadratic
growth in the number of constraints.

. Also, to optimize our cost function, we use the
nonlinear conjugate gradient algorithm—which con-
verges much more rapidly than the steepest gradient
method used for instance by the backpropagation
algorithm in RankNet [6].

3 THE MAP ESTIMATOR FOR LEARNING RANKING

FUNCTIONS

In this paper, we will consider the family of linear ranking
functions: F ¼ ffwg, where for any x, w 2 IRd, fwðxÞ ¼ wTx.

Although we want to choose w to maximize the general-
ized WMWðfw;A;GÞ, for computational efficiency, we shall
instead maximize a continuous surrogate via the log
likelihood

Lðfw;A;GÞ ¼ log Pr correct rankingjw½ �

� log
Y
Eij

Ymi

k¼1

Ymj

l¼1

Pr fwðxjl Þ > fwðxikÞjw
h i

:
ð4Þ

Note that in (4), in common with most papers [6], [9], [11], we
have assumed that every pair ðxjl ; xikÞ is drawn independently,
whereas only the original samples are drawn independently.
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We use the sigmoid function to model the pairwise
probability, that is,

Pr
�
fwðxjl Þ > fwðxikÞjw

�
¼ �

�
wT ðxjl � xikÞ

�
; ð5Þ

where �ðzÞ ¼ 1

1þ e�z ; ð6Þ

is the sigmoid function (see Fig. 3a). The sigmoid function
has been previously used in [6] to model pairwise posterior
probabilities. However, the cost function used was the
cross-entropy.

We will assume a spherical Gaussian prior pðwÞ ¼
N ðwj0; ��1IÞ on the weights w. This encapsulates our prior
belief that the individual weights in w are independent and
close to zero with a variance parameter 1=�. The optimal
maximum a posteriori (MAP) estimator is of the form

bwMAP ¼ arg max
w

LðwÞ; ð7Þ

where LðwÞ is the penalized log likelihood:

LðwÞ ¼ ��
2
kwk2 þ

X
Eij

Xmi

k¼1

Xmj

l¼1

log�
�
wT ðxjl � xikÞ

�
: ð8Þ

The parameter � is also known as the regularization
parameter. A similar objective function was also derived
in [11] based on a Gaussian process framework.

3.1 Lower Bounding the WMW Statistic

Comparing the log-likelihood LðwÞ (8) to the WMW statistic
(2), we can see that this is equivalent to lower bounding the 0-1
indicator function in the WMW statistic by a log-sigmoid
function (see Fig. 2), that is,

1z>0 � 1þ ðlog�ðzÞ= log 2Þ: ð9Þ

The log-sigmoid is appropriately scaled and shifted to make
the bound tight at the origin. The log-sigmoid bound was
also used in [3] along with a boosting algorithm. Therefore,
maximizing the penalized log likelihood is equivalent to
maximizing a lower bound on the WMW statistic. The prior
acts as a regularizer.

4 THE OPTIMIZATION ALGORITHM

In order to find the w that maximizes the penalized log
likelihood, we use the Polak-Ribière variant of nonlinear
conjugate gradients (CG) algorithm [22]. The CG method only
needs the gradient gðwÞ and does not require evaluation of
LðwÞ. It also avoids the need for computing the second
derivatives (Hessian matrix). The gradient vector is given by
(using the fact that �0ðzÞ ¼ �ðzÞ�ð�zÞ and �ð�zÞ ¼ 1� �ðzÞ):

gðwÞ ¼ ��w�
X
Eij

Xmi

k¼1

Xmj

l¼1

ðxik � x
j
l Þ�
h
wT ðxik � x

j
l Þ
i
: ð10Þ

Notice that the evaluation of the penalized log likelihood or its
gradient requires M2 ¼

P
Eij mimj operations—this quad-

ratic scaling can be prohibitively expensive for large data sets.
The main contribution of this paper is an extremely fast
method to compute the gradient approximately (Section 5).

4.1 Gradient Approximation Using the Error
Function

We shall rely on the approximation (see Fig. 3a):

�ðzÞ � 1� 1

2
erfc

ffiffiffi
3
p

zffiffiffi
2
p

�

� �
; ð11Þ
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Fig. 2. Log-sigmoid lower bound for the 0-1 indicator function.

Fig. 3. (a) Approximation of the sigmoid function �ðzÞ � 1� 1
2 erfcð

ffiffi
3
p

zffiffi
2
p

�
Þ. (b) The erfc function.



where the complementary error function (Fig. 3b) is defined

in [23]

erfcðzÞ ¼ 2ffiffiffi
�
p
Z 1
z

e�t
2

dt: ð12Þ

Note that erfcðzÞ ¼ 1� erfðzÞ, where erfðzÞ ¼ 2ffiffi
�
p
R z

0 e
�t2dt is

the error function encountered in integrating the normal
distribution. As a result, the approximate gradient can be
computed—still with M2 operations—as

gðwÞ � ��w

�
X
Eij

Xmi

k¼1

Xmj

l¼1

ðxik � x
j
l Þ 1� 1

2
erfc

ffiffiffi
3
p

wT ðxik � x
j
l Þffiffiffi

2
p

�

 !" #
:

ð13Þ

4.2 Quadratic Complexity of Gradient Evaluation

We will isolate the key computational primitive contributing

to the quadratic complexity in the gradient computation. The

following summarizes the different variables in analyzing the

computational complexity of evaluating the gradient.

. We have S classes with mi training instances in the
ith class.

. Hence, we have a total of m ¼
PS

i¼1 mi training
examples in d dimensions.

. jEj is the number of edges in the preference graph.

. M2 ¼
P
Eij mimj is the total number of pairwise

preference relations.

For any x, we will define z ¼
ffiffiffi
3
p

wTx=ð�
ffiffiffi
2
p
Þ. Note that z is a

scalar and, for a given w, can be computed in OðdmÞ
operations for the entire training set. We will now rewrite

the gradient as

gðwÞ ¼ ��w��1 þ
1

2
�2 �

1

2
�3; ð14Þ

where the vectors �1, �1, and �3 are defined as follows:

�1 ¼
X
Eij

Xmi

k¼1

Xmj

l¼1

ðxik � x
j
l Þ;

�2 ¼
X
Eij

Xmi

k¼1

Xmj

l¼1

xikerfcðzik � z
j
l Þ;

�3 ¼
X
Eij

Xmi

k¼1

Xmj

l¼1

xjl erfcðzik � z
j
l Þ:

ð15Þ

The vector �1 is independent of w and can be written as

follows:

�1 ¼
X
Eij

mimjðximean � xjmeanÞ;where ximean ¼
1

mi

Xmi

k¼1

xik:

is the mean of all the training instances in the ith class.

Hence, �1 can be precomputed in OðjEjdþ dmÞ operations.

The other two terms �2 and �3 can be written as follows:

�2 ¼
X
Eij

Xmi

k¼1

xikE
j
�ðzikÞ �3 ¼

X
Eij

Xmj

l¼1

xjlE
i
þð�z

j
l Þ; ð16Þ

where

Ej
�ðyÞ ¼

Xmj

l¼1

erfcðy� zjl Þ;

Ei
þðyÞ ¼

Xmi

k¼1

erfcðyþ zikÞ:
ð17Þ

Note that Ej
�ðyÞ in the sum of mj erfc functions centered at

zjl and evaluated at y—which requires OðmjÞ operations. In
order to compute �2, we need to evaluate it at mi points,
thus requiring OðmimjÞ operations. Hence, each of �2 and
�3 can be computed in OðdSmþM2Þ operations.

Hence, the core computational primitive contributing to
the OðM2Þ cost is the summation of erfc functions. In the
next section, we will show how this sum can be computed in
linear Oðmi þmjÞ time, at the expense of reduced accuracy,
which however can be arbitrary. As a result of this, �2 and �3

can be computed in linear OðdSmþ ðS � 1ÞmÞ time.
In terms of the optimization algorithm since the gradient is

computed approximately, the number of iterations required
to converge may increase. However, this is more than
compensated by the cost per iteration, which is drastically
reduced.

5 FAST WEIGHTED SUMMATION OF ERFC
FUNCTIONS

In general, Ej
�ðyÞ and Ei

þðyÞ can be written as the weighted
summation of N erfc functions centered at zi 2 R with
weights qi 2 R

EðyÞ ¼
XN
i¼1

qi erfcðy� ziÞ: ð18Þ

Direct computation of (18) atM points fyj 2 RgMj¼1 isOðMNÞ.
In this section, we will derive an �-accurate approximation
algorithm to compute this in OðM þNÞ time.

5.1 �-Accurate Approximation

For any given � > 0, we define bE to be an �-accurate
approximation to E if the maximum absolute error relative
to the total weight Qabs ¼

PN
i¼1 jqij is upper bounded by a

specified �, that is,

max
yj

jÊðyjÞ � EðyjÞj
Qabs

" #
	 �: ð19Þ

The constant inOðM þNÞ for our algorithm depends on the
desired accuracy �, which however can be arbitrary. In fact, for
machineprecisionaccuracy, there isnodifferencebetweenthe
direct and the fast methods. The algorithm we present is
inspired by the fast multipole methods proposed in computa-
tional physics [8]. The fast algorithm is based on using an
infinite series expansion for the erfc function and retaining
only the first few terms (whose contribution is at the desired
accuracy).

5.2 Series Expansion for erfc Function
Several series exist for the erfc function (see Chapter 7 in
[23]). Some are applicable only to a restricted interval,
whereas others need a large number of terms to converge.
We use the following truncated Fourier series representa-
tion derived by Beauliu [24], [25]:
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erfcðzÞ ¼ 1� 4

�

X2p�1

n¼1
n odd

e�n
2h2

n
sinð2nhzÞ þ errorðzÞ; ð20Þ

jerrorðzÞj < 4

�

X1
n¼2pþ1
n odd

e�n
2h2

n
sinð2nhzÞ

������
������þ erfc

�

2h
� jzj

	 

: ð21Þ

Here, p is known as the truncation number, and h is a real
number related to the sampling interval. The series is
derived by applying a Chernoff bound to an approximate
Fourier series expansion of a periodic square waveform [24].
This series converges rapidly, especially as z! 0. Fig. 4
shows the maximum absolute error between the actual
value of erfc and the truncated series representation as a
function of p. For example, for any z 2 ½�4; 4� with p ¼ 12,
the error is less than 10�6.

5.3 Error Bound
We will have to choose p and h such that the error is less
than the desired �. For this purpose, we further bound the
first term in (21) as follows:

4

�

X1
n¼2pþ1
n odd

e�n
2h2

n
sinð2nhxÞ

������
������

	 4

�

X1
n¼2pþ1
n odd

e�n
2h2

n
sinð2nhxÞj j

	 4

�

X1
n¼2pþ1
n odd

e�n
2h2

n
½Since sinð2nhxÞj j 	 1�

<
4

�

X1
n¼2pþ1
n odd

e�n
2h2 ½Since 1=n 	 1�

<
4

�

Z 1
2pþ1

e�x
2h2

dx

"
Replacing

X
by

Z #

<
2ffiffiffi
�
p

h

2ffiffiffi
�
p
Z 1
ð2pþ1Þh

e�t
2

dt

" #

¼ 2ffiffiffi
�
p

h
erfcðð2pþ 1ÞhÞ:

Hence, the final error bound is of the form:

jerrorðzÞj < 2ffiffiffi
�
p

h
erfc ð2pþ 1Þhð Þ þ erfc

�

2h
� jzj

	 

: ð22Þ

The error bound is shown as a dotted line in Fig. 4.

5.4 Fast Summation Algorithm

We now derive a fast algorithm to compute EðyÞ based on

the series (20).

EðyÞ ¼
XN
i¼1

qierfcðy� ziÞ

¼
XN
i¼1

qi 1� 4

�

X2p�1

n¼1
n odd

e�n
2h2

n
sinf2nhðy� ziÞg þ error

24 35:
ð23Þ

Ignoring the error term for the time being, the sum EðyÞ can

be approximated as

bEðyÞ ¼ Q� 4

�

XN
i¼1

qi
X2p�1

n¼1
n odd

e�n
2h2

n
sinf2nhðy� ziÞg; ð24Þ

where Q ¼
PN

i¼1 qi. The terms y and zi are entangled in the

argument of the sin function, leading to a quadratic

complexity. The crux of the algorithm is to separate them

using the trigonometric identity

sinf2nhðy� ziÞg
¼ sinf2nhðy� z
Þ � 2nhðzi � z
Þg
¼ sinf2nhðy� z
Þg cosf2nhðzi � z
Þg
� cosf2nhðy� z
Þg sinf2nhðzi � z
Þg:

ð25Þ

Note that we have shifted all the points by z
. The reason for

this will be clearer later in Section 5.7, where we cluster the

points and use the series representation around different

cluster centers. Substituting the separated representation in

(24), we have

bEðyÞ ¼ Q
� 4

�

XN
i¼1

qi
X2p�1

n¼1
n odd

e�n
2h2

n
sinf2nhðy�z
Þg cosf2nhðzi � z
Þg

þ 4

�

XN
i¼1

qi
X2p�1

n¼1
n odd

e�n
2h2

n
cosf2nhðy�z
Þg sinf2nhðzi � z
Þg:

ð26Þ

Exchanging the order of summation and regrouping the

terms, we have the following expression:

bEðyÞ ¼ Q� 4

�

X2p�1

n¼1
n odd

An sinf2nhðy� z
Þg

þ 4

�

X2p�1

n¼1
n odd

Bn cosf2nhðy� z
Þg;

ð27Þ
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Fig. 4. The maximum absolute error between the actual value of erfc and
the truncated series representation (20) as a function of the truncation
number p for any z 2 ½�4; 4�. The error bound (22) is also shown as a
dotted line.



where

An ¼
e�n

2h2

n

XN
i¼1

qi cosf2nhðzi � z
Þg; and

Bn ¼
e�n

2h2

n

XN
i¼1

qi sinf2nhðzi � z
Þg:
ð28Þ

5.5 Computational and Space Complexity

Note that the coefficients fAn;Bngdo not depend ony. Hence,

each of An and Bn can be evaluated separately inOðNÞ time.

Since there are p such coefficients the total complexity to

computeA andB isOðpNÞ. The termQ ¼
PN

i¼1 qi can also be

precomputed in OðNÞ time. Once A, B, and Q have been

precomputed, evaluation of bEðyÞ requires OðpÞ operations.

Evaluating at M points is OðpMÞ. Therefore, the computa-

tional complexity has reduced from the quadraticOðNMÞ to

the linearOðpðN þMÞÞ. We need space to store the points and

the coefficients A and B. Hence, the storage complexity is

OðN þM þ pÞ.

5.6 Direct Inclusion and Exclusion of Far Away
Points

From (22), it can be seen that for a fixed p and h as jzj
increases the error increases. Therefore, as jzj increases, h

should decrease, and consequently, the series converges

slower leading to a large truncation number p.
Note that s ¼ ðy� ziÞ 2 ½�1;1�. The truncation numberp

required to approximate erfcðsÞ can be quite large for large jsj.
Luckily, erfcðsÞ ! 2 as s! �1, and erfcðsÞ ! 0 as s!1
very quickly (see Fig. 3b). Since we only want an accuracy of �,

we can use the approximation

erfcðsÞ �
2 if s < �r;
p-truncated series if � r 	 s 	 r;
0 if s > r:

8<: ð29Þ

The bound r and the truncation number p have to be chosen

such that for any s, the error is always less than �. For

example, for error of the order 10�15, we need to use the

series expansion for �6 	 s 	 6. However, we cannot check

the value of ðy� ziÞ for all pairs of zi and y. This would lead

us back to the quadratic complexity. To avoid this, we

subdivide the points into clusters.

5.7 Space Subdivision

We uniformly subdivide the domain into K intervals of

length 2rx. The N source points are assigned into K clusters

Sk, for k ¼ 1; . . . ; K with ck being the center of each cluster.

The aggregated coefficients are computed for each cluster,

and the total contribution from all the influential clusters is

summed up. For each cluster, if jy� ckj 	 ry, we will use the

series coefficients. If ðy� ckÞ < �ry, we will include a

contribution of 2Qk; if ðy� ckÞ > ry, we will ignore that

cluster. The cutoff radius ry has to be chosen to achieve a

given accuracy. Hence,

bEðyÞ ¼ X
jy�ckj	ry

Qk

�
X

jy�ckj	ry

4

�

X2p�1

n¼1
n odd

Ak
n sinf2nhðy� ckÞg

þ
X

jy�ckj	ry

4

�

X2p�1

n¼1
n odd

Bk
n cosf2nhðy� ckÞg

þ
X

ðy�ckÞ<�ry
2Qk;

ð30Þ

where

Ak
n ¼

e�n
2h2

n

XN
i¼1

qi cosf2nhðzi � ckÞg;

Bk
n ¼

e�n
2h2

n

XN
i¼1

qi sinf2nhðzi � ckÞg; and

Qk ¼
X
8zi2Sk

qi:

ð31Þ

The computational complexity to compute A, B, and Q is

still OðpNÞ since each zi belongs to only one cluster. Let l be

the number of influential clusters, that is, the clusters for

which jy� ckj 	 ry. Evaluating bEðyÞ at M points due to

these l clusters is OðplMÞ. Let m be the number of clusters

for which ðy� ckÞ < �ry. Evaluating bEðyÞ at M points due

to these m clusters is OðmMÞ. Hence, the total computa-

tional complexity is OðpN þ ðplþmÞMÞ. The storage com-

plexity is OðN þM þ pKÞ.

5.8 Choosing the Parameters

Given any � > 0, we want to choose the following parameters,
rx (the interval length), ry (the cut off radius), p (the truncation
number), and h such that for any target point y:

ÊðyÞ � EðyÞ
Qabs

�����
����� 	 �; ð32Þ

where Qabs ¼
PN

i¼1 jqij.
Let us define �i to be the pointwise error in bEðyÞ

contributed by the ith source zi. We now require that

jÊðyÞ �EðyÞj ¼
XN
i¼1

�i

�����
����� 	XN

i¼1

�ij j 	
XN
i¼1

jqij�: ð33Þ

One way to achieve this is to let j�ij 	 jqij� 8i ¼ 1; . . . ; N .
For all zi such that jy� zij 	 r, we have (22)

j�ij < jqij
2ffiffiffi
�
p

h
erfc ð2pþ 1Þhð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Te

þ jqijerfc
�

2h
� r

	 

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Se

: ð34Þ

We have to choose the parameters such that j�ij < jqij�. We
will let Se < jqij�=2. This implies that

�

2h
� r > erfc�1 �=2ð Þ: ð35Þ

Hence, we have to choose

h <
�

2 rþ erfc�1 �=2ð Þ
� 
 : ð36Þ
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We will choose

h ¼ �

3 rþ erfc�1 �=2ð Þ
� 
 : ð37Þ

We will choose p such that Te < jqij�=2. This implies that

2pþ 1 >
1

h
erfc�1

ffiffiffi
�
p

h�

4

� �
: ð38Þ

We choose

p ¼ 1

2h
erfc�1

ffiffiffi
�
p

h�

4

� �� �
: ð39Þ

Note that as r increases, h decreases, and, consequently, p

increases. If s 2 ðr;1�, we approximate erfcðsÞ by 0, and if

s 2 ½�1;�rÞ, then approximate erfcðsÞ by 2. If we choose

r > erfc�1ð�Þ; ð40Þ

then the approximation will result in a error < �. In practice,

we choose

r ¼ erfc�1ð�Þ þ 2rx; ð41Þ

where rx is the cluster radius. For a target point y, the

number of influential clusters

ð2lþ 1Þ ¼ 2r

2rx

� �
: ð42Þ

Let us choose rx ¼ 0:1erfc�1ð�Þ. This implies 2lþ 1 ¼ 12.
Therefore, we have to consider six clusters on either side of
the target point. Summarizing, the parameters are given by

. rx ¼ 0:1erfc�1ð�Þ.

. r ¼ erfc�1ð�Þ þ 2rx.

. h ¼ �=3 rþ erfc�1 �=2ð Þ
� 


.

. p ¼ 1
2h erfc�1

ffiffi
�
p

h�
4

	 
l m
.

. ð2lþ 1Þ ¼ r=rxd e.

5.9 Numerical Experiments

We present experimental results for the core computational
primitive of erfc functions. Experiments when this primitive
is embedded in the optimization routine will be provided in
Section 6.

We present numerical studies of the speedup and error as
a function of the number of data points and the desired
error �. The algorithm was programmed in C++ with
MATLAB bindings and was run on a 1.6 GHz Pentium M
processor with 512 Mbytes of RAM. Figs. 5a and 5b shows
the running time and the maximum absolute error relative
to Qabs for both the direct and the fast methods as a function
of Nð¼MÞ. The points were normally distributed with zero
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Fig. 5. (a) The running time in seconds, and (b) maximum absolute error relative to Qabs for the direct and the fast methods as a function of Nð¼MÞ.
For N > 3; 200, the timing results for the direct evaluation were obtained by evaluating the sum at M ¼ 100 points and then extrapolating (shown as

dotted line). (c) The speedup achieved and (d) maximum absolute error relative to Qabs for the direct and the fast methods as a function of � for

Nð¼MÞ ¼ 3; 000. Results are on a 1.6-GHz Pentium M processor with 512 Mbytes of RAM.



mean and unit variance. The weights qi were set to 1. We see
that the running time of the fast method grows linearly,
whereas that of the direct evaluation grows quadratically.
We also observe that the error is well below the permissible
error, thus validating our bound. For example, for
N ¼M ¼ 51; 200 points, although the direct evaluation
takes around 17.26 hours, the fast evaluation requires only
4.29 sec with an error of around 10�10. Fig. 5c shows the
trade-off between precision and speedup. An increase in
speedup is obtained at the cost of slightly reduced accuracy.

6 RANKING EXPERIMENTS

6.1 Data Sets

We used two artificial data sets and 10 publicly available
benchmark data sets1 in Table 1, previously used for
evaluating ranking [2] and ordinal regression [26]. Since
these data sets are originally designed for regression, we
discretize the continuous target values intoS equal sized bins
as specified in Table 1. For each data set, the number of
classes Swas chosen such that none of them were empty. The
two data sets RandNet and RandPoly are artificial data sets
generated as described in [6]. The ranking function for
RandNet is generated using a random two layer neural net
with 10 hidden units and RandPoly using a random
polynomial.

6.2 Evaluation Procedure

For each data set, 80 percent of the examples were used for
training and the remaining 20 percent were used for testing.
The results are shown for a fivefold cross validation
experiment. In order to choose the regularization parameter
�, on each fold, we used the training split and performed a
fivefold cross validation on the training set. The perfor-
mance is evaluated in terms of the generalized WMW
statistic (A WMW of one implies perfect ranking). We used
a full order graph to evaluate the ranking performance.

We compare the performance and the time taken for the
following methods:

1. RankNCG. The proposed nonlinear conjugate-gradi-
ent ranking procedure. The tolerance for the con-
jugate gradient procedure was set to 10�3. The
nonlinear conjugate gradient optimization proce-
dure was randomly initialized. We compare the
following two versions:

. RankNCG direct. This uses the exact gradient
computations.

. RankNCG fast. This uses the fast approximate
gradient computation. The accuracy parameter �
for the fast gradient computation was set to 10�6.

2. RankNet [6]. A neural network, which is trained
using pairwise samples based on cross-entropy cost
function. For training in addition to the preference
relation xi � xj, each pair also has an associated
target posterior Pr½xi � xj�. In our experiments, we
used hard target probabilities of 1 for all pairs. The
best learning rate for the net was chosen using
WMW as the cross validation measure. Training was
done in a batch mode for around 500–1,000 epochs
or until there are no function decrease in the cost
function. We used two versions of the RankNet:

. RankNet two layer. A two layer neural network
with 10 hidden units.

. RankNet linear. A single layer neural network.
3. RankSVM [9], [10]. A ranking function is learnt by

training an SVM classifier2 over pairs of examples.
The trade-off parameter was chosen by cross
validation. We used two version of the RankSVM:

. RankSVM linear. The SVM is trained using a
linear kernel.

. RankSVM quadratic. The SVM is trained using a
polynomial kernel kðx; yÞ ¼ ðx:yþ cÞp of order
p ¼ 2.

4. RankBoost [7]. A boosting algorithm, which effec-
tively combines a set of weak ranking functions. We
used {0, 1}-valued weak rankings that use the
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1. The data sets were downloaded from http://www.liacc.up.pt/
~ltorgo/Regression/DataSets.html.

2. Using the SVM-light packages available at http://svmlight.joachims.
org.

TABLE 1
Benchmark Data Sets Used in the Ranking Experiments

N is the size of the data set. d is the number of attributes. S is the number of classes.M is the average total number of pairwise relations per fold of
the training set.



ordering information provided by the features [7].
Training a weak ranking function involves finding
the best feature and the best threshold for that
feature. We boosted for 50-100 rounds.

6.3 Results

The results are summarized in Tables 2 and 3. All experiments

were run on a 1.83 GHz machine with 1.00 Gbytes of RAM.

The following observations can be made.

6.3.1 Quality of Approximation

The WMW is similar for 1) the proposed exact method
(RankNCG direct) and the 2) the approximate method

(RankNCG fast). The runtime of the approximate method is

one to two magnitudes lower than the exact method,

especially for large data sets. Thus, we are able to get very
good speedups without sacrificing ranking accuracy.

6.3.2 Comparison with Other Methods

All the methods show very similar WMW scores. In terms
of the training time, the proposed method clearly beats all
the other methods. For small data sets, RankSVM linear is
comparable in time to our methods. For large data sets,
RankBoost shows the next best time.

6.3.3 Ability to Handle Large Data Sets

For data set 14, only the fast method completed execution. The

direct method and all the other methods either crashed due to

huge memory requirements or took an incredibly large

amount of time. Further, since the accuracy of learning (that
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TABLE 2
The Mean Training Time and Standard Deviation in Seconds for the Various Methods and All the Data Sets Shown in Table 1

The results are shown for a five fold cross-validation experiment. The symbol ? indicates that the particular method either crashed due to limited
memory requirements or took a very large amount of time.

TABLE 3
The Corresponding Generalized WMW Statistic and the Standard Deviation on the Test Set for the Results Shown in Table 2



is, estimation) clearly depends on the ability to leverage large

data sets, in real life, the proposed methods are also expected

to be more accurate on large-scale ranking problems.

6.4 Impact of the Gradient Approximation

Fig. 6 studies the accuracy and the runtime for data set 10 as a

function of the gradient tolerance, �. As � increases, the time

taken per-iteration (and hence, overall) decreases. However,

if it is too large, the total time taken starts increasing (after

� ¼ 10�2 in Fig. 6a). Intuitively, this is because the use of

approximate derivatives slows the convergence of the

conjugate gradient procedure by increasing the number of

iterations required for convergence. The speedup is achieved

because computing the approximate derivatives is extremely

fast, thus compensating for the slower convergence. How-

ever, after a certain point the number of iterations dominates

the runtime. Also, notice that � has no significant effect on the

WMW achieved, because the optimizer still converges to the

optimal value albeit at a slower rate.

7 APPLICATION TO COLLABORATIVE FILTERING

As an application, we will show some results on a

collaborative filtering task for movie recommendations. We

use the MovieLens data set,3 which contains approximately

1 million ratings for 3,592 movies by 6,040 users. Ratings are

made on a scale of 1 to 5. The task is to predict the movie

rankings for a user based on the rankings provided by other

users. For each user, we used 70 percent of the movies rated by

him for training and the remaining 30 percent for testing. The

features for each movie consisted of the ranking provided by

d other users. For each missing rating, we imputed a sample

drawn from a Gaussian distribution with its mean and

variance estimated from the available ratings provided by the

other users. Tables 4 and 5 shows the time taken and the

WMW score for this task for the two fastest methods. The

results are averaged for over 100 users. The other methods

took a large amount of time to train just for one user. The

proposed method shows the best WMW and takes the least

amount of time for training.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented an approximate ranking

algorithm that directly maximizes (a regularized lower

bound on) the generalized Wilcoxon-Mann-Whitney statistic.

The algorithm was made computationally tractable using a

novel fast summation method for calculating a weighted sum

of erfc functions.4 Experimental results demonstrate that

despite the order of magnitude speedup, the accuracy was

almost identical to exact method and other algorithms

proposed in literature.

8.1 Future Work

Other applications for fast summation of erfc functions. The fast

summation method proposed could be potentially useful in

neural networks, probit regression, and in Bayesian models

involving sigmoids.

Nonlinear kernelized variations. The main focus of the

paper was to learn a linear ranking function. A nonlinear

version of the algorithm can be easily derived using the

kernel trick (see [9] for an SVM analog). We kernelize the

algorithm by replacing the linear ranking function

fðxÞ ¼ wTx, with fðxÞ ¼
Pm

i¼1 �ikðx; xiÞ ¼ �TkðxÞ, where k

is the kernel used, and kðxÞ is a column vector defined by

kðxÞ ¼ ½kðx; x1Þ; . . . ; kðx; xmÞ�T . The penalized log likelihood

for this problem changes to

Lð�Þ ¼ ��
2
k�k2 þ

X
Eij

Xmi

k¼1

Xmj

l¼1

log�
�
�T
�
kðxjl Þ � kðxikÞ


�
:

ð43Þ
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Fig. 6. Effect of �-accurate derivatives. (a) The time taken and (b) the WMW statistic for the proposed method and the faster version of the proposed

method as a function of �. The CG tolerance was set to 10�3. Results are for data set 10. The bars indicate � one standard deviation.

3. The data set was downloaded from http://www.grouplens.org/.
4. The software for the fast erfc summation is available on the first

author’s Web site at http://www.umiacs.umd.edu/~vikas/.



The gradient vector is given by

gð�Þ ¼rLð�Þ ¼ ���

�
X
Eij

Xmi

k¼1

Xmj

l¼1

�
kðxikÞ � kðxjl Þ



�
�
�T
�
kðxikÞ � kðxjl Þ


�
:

ð44Þ

The gradient is now a column vector of length m, whereas it
was of length d for the linear version. As a result, evaluating
the gradient now requires roughly Oðm2 þM2Þ computa-
tions. TheOðM2Þpart is due the weighted sum of sigmoid (or
erfc) functions, for which we can use the fast approximation
proposed in this paper. The Oðm2Þ part arises due to the
multiplication of the m�m kernel matrix with a vector. Fast
approximate matrix-vector multiplication techniques like
dual-tree methods [27] and the improved fast Gauss trans-
form [28], [29] can be used to speedup this computation.
However, each of these methods have their own regions of
applicability, and more experiments need to be done to
evaluate the final speedups that can be obtained.

Independence of pairs of samples. In common with most
papers following [9], we have assumed that every pair ðxjl ; xikÞ
is drawn independently, even though they are really
correlated (actually, the samples xik are drawn indepen-
dently). In the future, we plan to correct this lack of
independence using a statistical random-effects model.

Effect of � on convergence rate. We plan to study the
convergence behavior of the conjugate gradient procedure
using approximate gradient computations. This would give
us a formal mechanism to choose �.

Other metrics. The paper considers only the WMW
statistic, but many information retrieval metrics (for
example, mean reciprocal rank, mean average precision,
and normalized discounted cumulative gain) are more
sophisticated. They try to weigh the items that appear at the
top of the list more. In the future, we would like to extend
the proposed method to other commonly used metrics.
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