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Evaluating sums of multivariate Gaussian kernels is a key computational task in many problems in
computational statistics and machine learning. The computational cost of the direct evaluation of
such sums scales as the product of the number of kernel functions and the evaluation points. The
original fast Gauss transform due to Greengard and Strain (1991) can accelerate such sums in low
dimensions. Yang et al. (2003) presented an extension of the fast Gauss transform (the improved
fast Gauss transform or IFGT) that was suitable for higher dimensional problems, and applied it
to some machine learning problems in Yang et al. (2004). However, this algorithm was restricted
to the case of constant bandwidth Gaussians. In many applications performance is improved if
variable bandwidth functions are used. We present an extension to the IFGT algorithm that allows
variable bandwidth Gaussian kernels. Algorithm details, error bounds and numerical experiments
are presented. For example for N = M = 1, 024, 000 while the direct evaluation takes around 2.6
days the fast evaluation requires only 4.65 minutes with an error of around 10−5.
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1. DISCRETE GAUSS TRANSFORM WITH VARIABLE SCALES

For each target point {yj ∈ Rd}j=1,...,M the discrete Gauss transform with variable
source scales is defined as,

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

i , (1)

where {qi ∈ R+}i=1,...,N are the source weights, {xi ∈ Rd}i=1,...,N are the source
points, i.e., the center of the Gaussians, and {hi ∈ R+}i=1,...,N are the source
scales or bandwidths. In other words G(yj) is the total contribution at yj of N
Gaussians centered at xi with bandwidth hi. Each Gaussian is weighted by the
term qi. The computational complexity of evaluating the discrete Gauss transform
at M target points is O(MN). This makes the computation for large scale problems
prohibitively expensive. In many machine learning tasks data-sets containing more
than 104 points are already common and larger problems are of interest.

The Fast Gauss Transform (FGT) is an ε− exact approximation algorithm that
reduces the computational complexity to O(M + N), at the expense of reduced
precision ε, which however can be arbitrary. The constant depends on the desired
precision, dimensionality of the problem, and the bandwidths. Given any ε > 0, it
compute an approximation Ĝ(yj) to G(yj) such that the maximum absolute error
relative to the total weight Q =

∑N
i=1 qi is upper bounded by ε, i.e.,

max
yj

[
|Ĝ(yj)−G(yj)|

Q

]
≤ ε. (2)

The fast Gauss transform (FGT) was first proposed in the seminal paper by
Greengard and Strain [Greengard and Strain 1991]. The variable bandwidth case
was handled in [Strain 1991]. However in their formulation the constant term
increases exponentially (as pd) with increasing dimensionality d. Further, the data
structure used to cluster points was inefficient in high dimensions. Thus the al-
gorithm is impractical for machine learning and statistical applications where the
data encountered are usually high dimensional. Yang et al. [Raykar et al. 2005;
Yang et al. 2003; Yang et al. 2005] proposed the improved fast Gauss Transform
(IFGT) where the constant factor is reduced to asymptotically polynomial order.
The reduction was achieved based on a multivariate Taylor expansion scheme com-
bined with the efficient space subdivision using the k-center algorithm. The main
contribution of the current paper is to extend the IFGT to handle variable band-
widths. While we follow the same space sub-division scheme as proposed in [Yang
et al. 2003], the variable bandwidth case involves the factorization of two expo-
nentials and and the error bound evaluation is more involved than the constant
bandwidth case. We discuss the case of variable source bandwidths, though the ap-
proach presented here can also be extended to variable target bandwidths. Another
novel contribution is the use of pointwise error bounds for each source point. This
naturally leads to tighter error bounds and a good strategy for choosing the para-
meters. For each source point we choose different truncation numbers depending
on its bandwidth and distance to the cluster center.

CS-TR-4727/UMIACS-TR-2005-34
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2. PRELIMINARIES

2.1 Multidimensional Taylor’s Series

The factorization of the multivariate Gaussian and the evaluation of the error
bounds are based on the multidimensional Taylor’s series and Lagrange’s evalu-
ation of the remainder which we state it here without the proof.

Theorem 2.1. For any point x∗ ∈ Rd, let I ⊂ Rd be an open set containing
the point x∗. Let f : I → R be a real valued function which is n times partially
differentiable on I. Then for any x = (x1, x2, . . . , xd) ∈ I, there is a θ ∈ R with
0 < θ < 1 such that

f(x) =
n−1∑

k=0

1
k!

[(x− x∗) · ∇]k f(x∗) +
1
n!

[(x− x∗) · ∇]n f(x∗ + θ(x− x∗)), (3)

where the operator ∇ =
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)
.

Based on the above theorem we state two corollaries which give the multivariate
Taylor’s series expansion of two exponential functions, which we will use in the
IFGT algorithm. The first corollary gives the expansion for e−‖x−x∗‖2/h2

and the
second for e2(x−x∗).(y−x∗)/h2

.

Corollary 2.1. Let Br(x∗) be a open ball of radius r with center x∗ ∈ Rd, i.e.,
Br(x∗) = {x : ‖x−x∗‖ < r}. Let h ∈ R be a positive constant. For any x ∈ Br(x∗)
and any non-negative integer p1 the function f(x) = e−‖x−x∗‖2/h2

can be written
as

f(x) = e−‖x−x∗‖2/h2
=

p1−1∑

k=0

(−1)k

k!
‖(x− x∗)/h‖2k + Rp1(x), (4)

and the absolute value of the residual Rp1(x) can be bounded as follows.

|Rp1(x)| < 2p11.09
(2p1)1/12

√
(2p1)!

‖(x− x∗)/h‖2p1 . (5)

Proof. Consider the Taylor’s series expansion of function g(x) = e−‖x‖
2/h2

around the origin x∗ = 0 . From Theorem 2.1 for any x ∈ Br(0), there is a θ ∈ R
with 0 < θ < 1 such that

g(x) =
n−1∑

k=0

1
k!

[x · ∇]k g(0) +
1
n!

[x · ∇]n g(θx). (6)

It can be shown that,

[x · ∇]k g(0) =
{

0 if k is odd
(−1)k/2 k!

(k/2)!‖x/h‖k if k is even (7)

CS-TR-4727/UMIACS-TR-2005-34
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In fact it can be see that [x · ∇]k g(0) = Hk(0)‖x/h‖k, where Hk(0) are the Hermite
numbers, i.e., the Hermite polynomials 1 Hk(y) evaluated at y = 0. Also,

[x · ∇]n g(θx) = (−1)n‖x/h‖nHn(θ‖x/h‖)e−θ2‖x/h‖2 . (8)

Substituting Eqs. 7 and 8 in Eq. 6, we have

g(x) =
dn/2e−1∑

k=0

(−1)k

k!
‖x/h‖2k +

[
(−1)n

n!
‖x/h‖ne−θ2‖x/h‖2Hn(θ‖x/h‖)

]
. (9)

Centering the function g(x) around x∗ we have,

f(x) = e−‖x−x∗‖2/h2
=

p1−1∑

k=0

(−1)k

k!
‖(x− x∗)/h‖2k + Rp1(x), (10)

where,

Rp1(x) =
‖(x− x∗)/h‖2p1

(2p1)!
e−θ2‖(x−x∗)/h‖2H2p1(θ‖(x− x∗)/h‖). (11)

We bound the Hermite polynomial Hn(y) as follows [Hille 1926],

|Hn(y)| < K2n/2
√

n!n−1/12ey2/2, (12)

where the numerical constant K < 1.09. This is slightly tighter than the bound
used in [Greengard and Strain 1991]. The residual Rp1(x) is bounded as follows,

|Rp1(x)| <
‖(x− x∗)/h‖2p1

(2p1)!
e−θ2‖(x−x∗)/h‖2K2p1

√
(2p1)!(2p1)−1/12eθ2‖(x−x∗)/h‖2/2,

<
K2p1(2p1)−1/12‖(x− x∗)/h‖2p1

√
(2p1)!

e−θ2‖(x−x∗)/h‖2/2,

<
2p11.09

(2p1)1/12
√

(2p1)!
‖(x− x∗)/h‖2p1 . [since 0 < θ < 1 and K < 1.09] (13)

Remark : Fig. 1 shows the actual residual (solid line) and the bound (dashed
line) given by Eq. 5 as a function of ‖x− x∗‖ for p1 = 4 and h = 0.5. The residual
is minimum at x = x∗ and increases as x moves away from x∗. It can be seen that
the bound is pretty tight. It should be noted that we use the error bound which is a
function of ‖x−x∗‖. A consequence of this is that a lower truncation number p1 can
achieve a given error, depending on the magnitude of ‖x− x∗‖. For points close to
x∗ we need a very small truncation number compared to points far from the center.
The original IFGT and the FGT algorithms used the same truncation number for
all the points in the open ball. The truncation number was chosen based on the
points at the boundary (the dotted line in Fig. 1). However our current approach
adaptively chooses p1 based on ‖x− x∗‖. Also note that the error bound which we
have in Eq. 5 is independent of the dimensionality d.

1The Hermite polynomials are set of orthogonal polynomials [Abramowitz and Stegun 1972]. The
first few Hermite polynomials are H0(u) = 1, H1(u) = u, andH2(u) = u2 − 1.

CS-TR-4727/UMIACS-TR-2005-34
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Fig. 1. (a) The actual residual (solid line) and the bound (dashed line) given by Eq. 5 as a function
of ‖x − x∗‖. The residual is minimum at x = x∗ and increases as x moves away from x∗. The
bandwidth was h = 0.5 and the truncation number p1 = 4.

Corollary 2.2. Let Brx(x∗) be a open ball of radius rx with center x∗ ∈ Rd,
i.e., Brx(x∗) = {x : ‖x− x∗‖ < rx}. Let h ∈ R+ be a positive constant and y ∈ Rd

be a fixed point such that ‖y−x∗‖ < ry. For any x ∈ Brx(x∗) and any non-negative
integer p2 the function f(x) = e2(x−x∗).(y−x∗)/h2

can be written as

f(x) = e2(x−x∗).(y−x∗)/h2
=

p2−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+ Rp2(x)

(14)

and the residual Rp2(x) is bounded as follows.

|Rp2(x)| ≤ 2p2

p2!

(‖x− x∗‖
h

)p2
(‖y − x∗‖

h

)p2

e2‖x−x∗‖‖y−x∗‖/h2
. (15)

(16)

Proof. Let us define a new function g(x) = e2[x.(y−x∗)]/h2
. Using the result

[(x− x∗) · ∇]k g(x∗) = 2ke2[x∗.(y−x∗)]/h2
[(

x− x∗
h

)
·
(

y − x∗
h

)]k

(17)

and Theorem 2.1, we have for any x ∈ Brx(x∗) there is a θ ∈ R with 0 < θ < 1
such that

g(x) = e2[x∗.(y−x∗)]/h2

{
p2−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+
2p2

p2!

[(
x− x∗

h

)
·
(

y − x∗
h

)]p2

e2θ[(x−x∗).(y−x∗)]/h2
}

. (18)

CS-TR-4727/UMIACS-TR-2005-34
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Hence

f(x) = e2(x−x∗).(y−x∗)/h2

=
p2−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+ Rp2(x), (19)

where,

Rp2(x) =
2p2

p2!

[(
x− x∗

h

)
·
(

y − x∗
h

)]p2

e2θ[(x−x∗).(y−x∗)]/h2
. (20)

Using the Cauchy-Schwartz inequality x · y ≤ ‖x‖‖y‖ the remainder is bounded as
follows.

Rp2(x) ≤ 2p2

p2!

(‖x− x∗‖
h

)p2
(‖y − x∗‖

h

)p2

e2θ‖x−x∗‖‖y−x∗‖/h2
,

≤ 2p2

p2!

(‖x− x∗‖
h

)p2
(‖y − x∗‖

h

)p2

e2‖x−x∗‖‖y−x∗‖/h2
[Since 0 < θ < 1].

(21)

2.2 Multi-index Notation

A multi-index α = (α1, α2 . . . , αd) is a d-tuple of nonnegative integers. The length
of the multi-index α is defined as |α| = α1+α2+. . .+αd. The factorial of α is defined
as α! = α1!α2! . . . αd!. For any multi-index α ∈ Nd and x = (x1, x2, . . . , xd) ∈ Rd

the d-variate monomial xα is defined as xα = xα1
1 xα2

2 . . . xαd

d . xα is of degree n if
|α| = n. The total number of d-variate monomials of degree n is

(
n+d−1

d−1

)
. The

total number of d-variate monomials of degree less than or equal to n is rnd =∑n
k=0

(
k+d−1

d−1

)
=

(
n+d

d

)
. Let x, y ∈ Rd and v = x · y = x1y1 + . . . + xdyd. Then

using the multi-index notation vn can be written as,

(x · y)n =
∑

|α|=n

n!
α!

xαyα. (22)

2.3 Space sub-division

In the IFGT we will appropriately cluster source points and evaluate their contri-
butions using an expression that involves the Taylor’s series. Accordingly we need
a strategy to choose a set of centers about which to expand the Taylor’s series,
i.e., we need to subdivide the space. We use an data adaptive space partitioning
scheme based on k-center clustering as proposed in [Yang et al. 2003; Yang et al.
2003; Yang et al. 2005]. The k-center problem is defined as follows:

Given a set of N points in d dimensions and a predefined number of the clusters
k, find a partition of the points into clusters S1, . . . , Sk, and also the cluster centers
c1, . . . , ck, so as to minimize the cost function – the maximum radius of clusters,
maxi maxx∈Si ‖x− ci‖.

The k-center problem is known to be NP-hard [Bern and Eppstein 1997]. Gonza-
lez [Gonzalez 1985] proposed a very simple greedy algorithm, called farthest-point
clustering, and proved that it gives an approximation factor of 2. Initially pick

CS-TR-4727/UMIACS-TR-2005-34
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Fig. 2. (a) Using the farthest point clustering algorithm 10,000 points uniformly distributed in a
unit square are divided into 22 clusters with the maximum radius of the clusters being 0.2. (b)
10,000 points normally distributed in a unit square are divided into 11 clusters with the maximum
radius of the clusters being 0.2.

an arbitrary point v0 as the center of the first cluster and add it to the center set
C. Then for i = 1 to k do the following: at step i, for every point v, compute
its distance to the set C: di(v, C) = minc∈C ‖v − c‖. Let vi be the point that is
farthest from C, i.e., the point for which di(vi, C) = maxv di(v, C). Add vi to set
C. Report the points v0, v1, . . . , vk−1 as the cluster centers. Each point is assigned
to its nearest center.

The direct implementation of farthest-point clustering has running time O(Nk).
Feder and Greene [Feder and Greene 1988] give a two-phase algorithm with optimal
running time O(N log k). The first phase of their algorithm clusters points into rec-
tangular boxes using Vaidya’s [Vaidya 1986]’s box decomposition– a sort of quadtree
in which cubes are shrunk to bounding boxes before splitting. The second phase
resembles the farthest-point clustering on a sparse graph that has a vertex for each
box. In practice, the initial point has little influence on the final approximation
radius, if number of the points is sufficiently large.

Fig. 2 displays the results of farthest-point algorithm on a sample two dimensional
data-set. After the end of the clustering procedure the center of each cluster is
recomputed as the mean of all the points lying in each cluster. The farthest point
algorithm is progressive. This means that if we have k centers and we wish to
compute the (k + 1)th center, the first k centers do not change.

3. IMPROVED FAST GAUSS TRANSFORM

Having discussed the Taylor series and the space subdivision we now present the
actual algorithm. For any point x∗ ∈ Rd the Gauss Transform at yj can be written
CS-TR-4727/UMIACS-TR-2005-34
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as,

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

i ,

=
N∑

i=1

qie
−‖(yj−x∗)−(xi−x∗)‖2/h2

i ,

=
N∑

i=1

qie
−‖xi−x∗‖2/h2

i e−‖yj−x∗‖2/h2
i e2(yj−x∗)·(xi−x∗)/h2

i . (23)

In Eq. 23 the first exponential inside the summation e−‖xi−x∗‖2/h2
i depends only

on the source coordinates xi and the source scales hi. However for the second and
the third exponential the source and target are entangled. The second exponential
e−‖yj−x∗‖2/h2

i depends on the target coordinates yj and the source scales hi, while
the third exponential e2(yj−x∗)·(xi−x∗)/h2

i depends on the source coordinates xi, the
target coordinates yj , and the source scales hi. The crux of the algorithm is to
separate this entanglement via the Taylor’s series expansion of the exponentials.

3.1 Factorization

Using Corollary 2.1 the series expansion for e−‖yj−x∗‖2/h2
i can be written as

e−‖yj−x∗‖2/h2
i =

pi
1−1∑

m=0

(−1)m

m!

(
1
h2

i

)m

‖yj − x∗‖2m + error1
pi
1
. (24)

Similarly, using Corollary 2.2 the series expansion for e2(yj−x∗)·(xi−x∗)/h2
i can be

written as,

e2(yj−x∗)·(xi−x∗)/h2
i =

pi
2−1∑

n=0

2n

n!

(
1
h2

i

)n

[(yj − x∗) · (xi − x∗)]
n + error2

pi
2
. (25)

Using the multi-index notation (Eq. 22), this expansion can be written as,

e2(yj−x∗)·(xi−x∗)/h2
i =

∑

|α|≤pi
2−1

2α

α!

(
1
h2

i

)α

(yj − x∗)
α (xi − x∗)

α + error2
pi
2
. (26)

The truncation numbers pi
1 and pi

2 for each source xi is chosen based on the pre-
scribed error, the bandwidth hi, and the distance from the expansion center. A
strategy for choosing the truncation is discussed in a later section.

CS-TR-4727/UMIACS-TR-2005-34
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3.2 Regrouping

Ignoring the error terms G(yj) can be approximated as,

Ĝ(yj) =
N∑

i=1

qie
−‖xi−x∗‖2/h2

i e−‖yj−x∗‖2/h2
i e2(yj−x∗)·(xi−x∗)/h2

i

=
N∑

i=1

qie
−‖xi−x∗‖2/h2

i




pi
1−1∑

m=0

(−1)m

m!

(
1
h2

i

)m

‖yj − x∗‖2m





 ∑

|α|≤pi
2−1

2α

α!

(
1
h2

i

)α

(yj − x∗)
α (xi − x∗)

α




(27)

Let pmax
1 = maxi pi

1 and pmax
2 = maxi pi

2. Let 1m≤pi
1−1 be an indicator function for

m ≤ pi
1 − 1 and 1|α|≤pi

2−1 be an indicator function for |α| ≤ pi
2 − 1, i.e.,

1|α|≤pi
2−1 =

{
1 if |α| ≤ pi

2 − 1
0 if |α| > pi

2 − 1 . (28)

So now we have

Ĝ(yj) =
pmax
1 −1∑
m=0

∑

|α|≤pmax
2 −1

Cmα‖yj − x∗‖2m (yj − x∗)
α

,

(29)

where,

Cmα =
(−1)m2α

m!α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

i

(
1
h2

i

)m+|α|
(xi − x∗)

α 1m≤pi
1−11|α|≤pi

2−1.

(30)

The coefficients Cmα can be evaluated separately is O(N). Evaluation of Ĝr(yj)
at M points is O(M). Hence the computational complexity has reduced from the
quadratic O(NM) to the linear O(N +M). Detailed analysis of the computational
complexity will be provided later.

3.3 Space sub-divison

Thus far, we have used the Taylor’s series expansion about a certain point x∗.
However if we use the same x∗ for all the points we typically would require very high
truncation numbers since the Taylor’s series is valid only in a small open ball around
x∗. We use an data adaptive space partitioning scheme like the farthest point
clustering algorithm to divide the N sources into K clusters, Sk for k = 1, . . . ,K
with ck being the center of each cluster. The Gauss transform can be written as,

Ĝ(yj) =
K∑

k=1

pmax
1 −1∑
m=0

∑

|α|≤pmax
2 −1

Ck
mα‖yj − ck‖2m (yj − ck)α

,

(31)
CS-TR-4727/UMIACS-TR-2005-34
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where,

Ck
mα =

(−1)m2α

m!α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

i

(
1
h2

i

)m+|α|
(xi − ck)α 1m≤pi

1−11|α|≤pi
2−1.

(32)

3.4 Rapid decay of the Gaussian

Since the Gaussian decays very rapidly a further speedup is achieved if we ignore
all the sources belonging to a cluster if the cluster is greater than a certain distance
from the target point, ‖yj − ck‖ > rk

y . The cluster cutoff radius depends on the
desired precision ε and the bandwidth of the sources in the cluster. So now the
Gauss transform is evaluated as

Ĝ(yj) =
∑

‖yj−ck‖≤rk
y

pmax
1 −1∑
m=0

∑

|α|≤pmax
2 −1

Ck
mα‖yj − ck‖2m (yj − ck)α

,

(33)

where,

Ck
mα =

(−1)m2α

m!α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

i

(
1
h2

i

)m+|α|
(xi − ck)α 1m≤pi

1−11|α|≤pi
2−1.

(34)

4. COMPUTATIONAL AND SPACE COMPLEXITY

—The farthest point clustering has running time O(Nd log K) [Feder and Greene
1988].

—Computing the cluster coefficients Ck
mα for all the clusters is of O(Npmax

1 rpmax
2 d),

where rpmax
2 d =

(
pmax
2 +d

d

)
is the total number of d-variate monomials of degree

less than or equal to pmax
2 .

—Computing Ĝ(yj) is of O(Mnpmax
1 rpmax

2 d) where n if the maximum number of
influential neighbor clusters for each target.

Hence the total computational complexity is

O(dN log K + Npmax
1 rpmax

2 d + Mnpmax
1 rpmax

2 d). (35)

Assuming M = N , the total computational complexity can be written as

O(
[
d log K + (1 + n)pmax

1 rpmax
2 d

]
N). (36)

The constant term depends on the dimensionality, the bandwidth, and the accuracy
required. The constant rp2d is much smaller than pd

2 in the original FGT. For
example, when p2 = 10 and d = 10 then, rp2d = 18, 4756 while pd

2 = 1010. For
d →∞ and moderate p2, the number of terms is O(dp2).

A different truncation number is chosen for each data point depending on its
distance from the cluster center and the source bandwidth. A good consequence
of this strategy is that only a few points at the boundary of the clusters will have
high truncation numbers.
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Fig. 3. Efficient expansion of multivariate polynomials using Horner’s rule.

For each cluster we need to store pmax
1 rpmax

2 d coefficients. So the storage com-
plexity is O(Kpmax

1 rpmax
2 d + N + M).

5. EVALUATING MULTIVARIATE POLYNOMIALS USING HORNER’S RULE

Evaluating each d-variate monomial of degree n directly requires n multiplications.
Hence direct evaluation of of all d-variate monomials of degree less than or equal to n
requires

∑n
k=0 k

(
k+d−1

d−1

)
multiplications. The storage requirement is rnd. However,

efficient evaluation using the Horner’s rule requires rnd − 1 multiplications. The
required storage is rnd.

For a d-variate polynomial of order n, we can store all terms in a vector of length
rnd. Starting from the order zero term (constant 1), we take the following approach.
Assume we have already evaluated terms of order k − 1. We use an array of size
d to record the positions of the d leading terms (the simple terms such as ak−1,
bk−1, ck−1, . . . in Fig. 3) in the terms of order k − 1. Then terms of order k
can be obtained by multiplying each of the d variables with all the terms between
the variables leading term and the end, as shown in the Fig. 3. The positions of
the d leading terms are updated respectively. The required storage is rnd and the
computations of the terms require rnd − 1 multiplications.

6. CHOOSING THE PARAMETERS

Given any ε > 0, we want to choose the following parameters, K (the number
of clusters), {rk

y}K
k=1 (the cut off radius for each cluster), and {pi

1, p
i
2}N

i=1 (the
truncation numbers for each source point xi) such that for any target point yj we
can guarantee that

|Ĝ(yj)−G(yj)|
Q

≤ ε, (37)

where Q =
∑N

i=1 |qi|. Let us define ∆ij to be the point wise error in Ĝ(yj) con-
tributed by the ith source xi. We now require that

|Ĝ(yj)−G(yj)| =
∣∣∣∣∣

N∑

i=1

∆ij

∣∣∣∣∣ ≤
N∑

i=1

|∆ij | ≤ Qε =
N∑

i=1

|qi|ε. (38)
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One way to achieve this is to let

|∆ij | ≤ |qi|ε ∀i = 1, . . . , N. (39)

We choose this strategy because it helps us get tighter bounds. Also this strategy
is very useful in our case where the bandwidths are varying. If we decide a common
truncation number for all the sources then it has to be based on the minimum scale,
for which the truncation number can be quite large. Sources with large bandwidths
may not need such large truncation numbers.

Let ck be the center of the cluster to which xi belongs. There are two different
ways in which a source can contribute to the error. The first is due to ignoring the
cluster Sk if it is outside a given radius rk

y from the target point yj . In this case,

∆ij = qie
−‖yj−xi‖2/h2

i . (40)

The second source of error is due to truncation of the two Taylor’s series. For
all clusters which are within a distance rk

y from the target point the error is due to
the truncation of the Taylor’s series after order pi

1 and pi
2. From Equations 23, 24,

and 26 the error can be written as,

∆ij = qie
−‖xi−ck‖2/h2

i

(
e−‖yj−ck‖2/h2

i − error1
pi
1

)
error2

pi
2

+ qie
−‖xi−ck‖2/h2

i

(
e2(yj−ck)·(xi−ck)/h2

i − error2
pi
2

)
error1

pi
1

+ qie
−‖xi−ck‖2/h2

i error1
pi
1
error2

pi
2
. (41)

Our strategy for choosing the parameters is as follows. The cutoff radius rk
y for

each cluster is chosen based on Equation 40 and the radius of each cluster rk
x.

Given rk
y and ‖xi − ck‖ the truncation numbers for each source is chosen based

on Equation 41. Towards the end we suggest a strategy to choose the number of
clusters K.

6.1 Automatically choosing the cut off radius for each cluster

We ignore all sources belonging to a cluster Sk if ‖yj−ck‖ > rk
y . rk

y should be chosen
such that for all sources in cluster Sk the error |∆ij | = |qi|e−‖yj−xi‖2/h2

i ≤ |qi|ε.
This implies that

‖yj − xi‖ > hi

√
ln(1/ε) (42)

Using the reverse triangle inequality, ‖a − b‖ ≥ ∣∣‖a‖ − ‖b‖∣∣, and the fact that
‖yj − ck‖ > rk

y and ‖xi − ck‖ ≤ rk
x, we have

‖yj − xi‖ = ‖yj − ck + ck − xi‖ = ‖(yj − ck)− (xi − ck)‖,
≥ ∣∣‖(yj − ck)‖ − ‖(xi − ck)‖∣∣,
>

∣∣rk
y − rk

x

∣∣. (43)

So in order that the error due to ignoring the faraway clusters is less than qiε we
have to choose rk

y and rk
x such that,

∣∣rk
y − rk

x

∣∣ > hi

√
ln(1/ε). (44)
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If we choose rk
y > rk

x then,

rk
y > rk

x + hk
max

√
ln(1/ε), (45)

where hk
max = maxxi∈Sk

hi is the maximum source scale in cluster Sk. Let R be the
maximum distance between any source and target point. For example if the data
were distributed in a d-dimensional hypercube of length a, then R ≤

√
da, i.e., the

length of the maximum diagonal. Hence,

rk
y > rk

x + min
(
R, hk

max

√
ln(1/ε)

)
. (46)

6.2 Automatically choosing the truncation numbers for each source

For all clusters which are within a distance rk
y from the target point the error is due

to the truncation of the Taylor’s series after order pi
1 and pi

2. From Equation 41 it
can seen that the error consists of three components.

∆ij = ∆1
ij + ∆2

ij −∆3
ij , (47)

where

∆1
ij = qie

−‖xi−ck‖2/h2
i e−‖yj−ck‖2/h2

i error2
pi
2
,

∆2
ij = qie

−‖xi−ck‖2/h2
i e2(yj−ck)·(xi−ck)/h2

i error1
pi
1
,

∆3
ij = qie

−‖xi−ck‖2/h2
i error1

pi
1
error2

pi
2
. (48)

For a given source xi we have to choose pi
1 and pi

2 such that

|∆ij | = |∆1
ij + ∆2

ij −∆3
ij | ≤ |∆1

ij |+ |∆2
ij |+ |∆3

ij | ≤ |qi|ε. (49)

One way to achieve this is to let

|∆1
ij | ≤ |qi|ε/3 and |∆2

ij | ≤ |qi|ε/3. (50)

Before we proceed we show that if Equation 50 is satisfied then |∆3
ij | ≤ |qi|ε/3.

|∆3
ij | = |qi|e−‖xi−ck‖2/h2

i |error1
pi
1
||error2

pi
2
|,

= (1/|qi|)|∆1
ij ||∆2

ij |e‖yj−xi‖2/h2
i . (51)

Using the fact that ‖yj − xi‖ < hi

√
ln(1/ε) we have,

|∆3
ij | < (1/ε|qi|)|∆1

ij ||∆2
ij | < |qi|ε/9 < |qi|ε/3. (52)

From Corollary 2.1 and 2.2 we have,

|error1
pi
1
| <

2pi
11.09

(2pi
1)1/12

√
(2pi

1)!

(‖xi − ck‖
hi

)2pi
1

, (53)

|error2
pi
2
| <

2pi
2

pi
2!

(‖xi − ck‖
hi

)pi
2
(‖yj − ck‖

hi

)pi
2

e2‖xi−ck‖‖yj−ck‖/h2
i . (54)
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Hence we have

|∆1
ij | < |qi|2

pi
2

pi
2!

e−(‖xi−ck‖−‖yj−ck‖)2/h2
i

(‖xi − ck‖
hi

)pi
2
(‖yj − ck‖

hi

)pi
2

,

|∆2
ij | < |qi| 2pi

11.09
(2pi

1)1/12
√

(2pi
1)!

e−‖xi−ck‖2/h2
i e2‖yj−ck‖‖xi−ck‖/h2

i

(‖xi − ck‖
hi

)2pi
1

.

(55)

|∆1
ij | and |∆2

ij | depend both on distance between the source and the cluster center,
i.e., ‖xi − ck‖ and the distance between the target and the cluster center, i.e.,
‖yj − ck‖. The speedup is achieved because at each cluster Sk we sum up the effect
of all the sources. As a result we do not have a knowledge of ‖yj − ck‖. So we will
have to bound the right hand side of Equation 55, such that it is independent of
‖yj − ck‖.

The error |∆1
ij | increases as a function of ‖yj− ck‖, reaches a maximum and then

starts decreasing. The maximum is attained at

‖yj − ck‖ = ‖yj − ck‖∗ =
‖xi − ck‖+

√
‖xi − ck‖2 + 2pi

2h
2
i

2
. (56)

Hence we choose pi
2 such that,

|∆1
ij |

∣∣‖yj−ck‖=‖yj−ck‖∗ ≤ |qi|ε/3. (57)

In case ‖yj − ck‖∗ > rk
y we need to choose pi

2 based on rk
y , since ∆ij will be much

lower there.
Hence out strategy for choosing pi

2 is,

|∆1
ij |

∣∣∣[‖yj−ck‖=min (‖yj−ck‖∗,rk
y)] ≤ |qi|ε/3. (58)

Similarly we choose pi
1 such that

|∆2
ij |

∣∣∣[‖yj−ck‖=rk
y ] ≤ |qi|ε/3. (59)

6.3 Automatically choosing the number of clusters

The only free parameter is the number of clusters K, which can be set to any
reasonable value. If the source and the target points are uniformly distributed in
a unit hypercube 2 then rx ∼ K−1/d. Based on this we choose K such that rx is
approximately equal to hmax. Hence,

K ∼
⌈
(hmax + hmin/2)−d

⌉
. (60)

Figure 4 demonstrates the computational advantage of using pointwise error
bounds to choose the truncation numbers. The bandwidths were normally distrib-
uted with mean 1.0 and standard deviation 0.1 as shown in Figure 4(a). Figures 4(b)
and (c) show the histogram of the truncation numbers p1 and p2 respectively. The

2If the data lies on a lower dimensional manifold, as usually is the case for structured data in high
dimensions, we use the relation rx ∼ K−1/deff . deff is the actual intrinsic dimensionality of the
data.
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Fig. 4. The histogram of (a) bandwidths, (b) truncation number p1, and (c) truncation number
p2.

truncation numbers are also roughly normally distributed. Only sources with small
bandwidths will have a large truncation number.

7. NUMERICAL EXPERIMENTS

The algorithms were programmed in C++ and was run on a 1.6 GHz Pentium M
processor with 512Mb of RAM. The code is available by contacting the first author
for academic use.

N points were uniformly distributed in a unit hypercube. The weights qi were
uniformly distributed between 0 and 1. The Gauss transform was evaluated at
M = N points uniformly distributed in the unit hypercube. The parameters were
chosen such that the maximum absolute error relative to the total weight Q was
less than 10−3, which is a reasonable choice for most kernel density estimation in
nonparametric statistics.

Table I shows the running time for the direct evaluation and the fast method, for
different values of N for d = 3. The source strengths hi were normally distributed
with mean 2.0 and standard deviation 0.1. We see that the running time of the
IFGT grows linearly as the number of sources and targets increases, while that of
the direct evaluation grows quadratically. For example for N = M = 1, 024, 000
while the direct evaluation takes around 2.6 days the fast evaluation requires only
4.65 minutes with an error of around 10−5.

Fig. 5(a) shows the the running time in seconds for the direct and the fast methods
as a function of N for different dimensions d. The bandwidths were normally
distributed with mean d and variance 0.1. As the dimensionality increases the
volume enclosed by a unit hypercube increases. As a result relative to the volume,
the Gaussian appears to be at a smaller scale as the dimensionality of the space
increases. Hence we have chosen scales to increase with dimension to fairly span
the volume.

8. CONCLUSION

In this paper we extended the improved fast Gauss transform to handle variable
source bandwidths. For each source point we choose different truncation numbers
depending on its bandwidth and distance to the cluster center. Extremely good
speedups were achieved for large bandwidths. For very small bandwidths the trun-
CS-TR-4727/UMIACS-TR-2005-34
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Fig. 5. (a) Comparison of the time taken by the direct and the fast method as a function of the
number of points N for different values of d. (b) The corresponding maximum absolute error
relative to the total weight Q. The bandwidths were normally distributed with mean h = d and
variance 0.1. The target error was set to 10−3. The source and target points were uniformly
distributed in a unit hypercube. The weights qi were uniformly distributed between 0 and 1. For
N > 25, 600 the timing results for the direct evaluation were obtained by evaluating the Gauss
transform at M = 100 points and then extrapolating the results.
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Algorithm 1: The improved fast Gauss transform with variable source scales.
Input :

xi ∈ Rd i = 1, . . . , N /* N sources in d dimensions. */
qi ∈ R i = 1, . . . , N /* source weights. */
hi ∈ R+ i = 1, . . . , N /* source bandwidths. */

yj ∈ Rd j = 1, . . . , M /* M targets in d dimensions. */
ε > 0 /* Desired error. */

Output: Computes an approximation Ĝ(yj) to G(yj) =
∑N

i=1 qie
−‖yj−xi‖2/h2

i .

such that the |Ĝ(yj)−G(yj)|Q ≤ ε, where Q =
∑N

i=1 |qi|.

Step 0 Define δ1(p, h, a, b) = 1
p!

(
2ab
h2

)p
e−(a−b)2/h2

, b∗(p, h, a) = a+
√

a2+2ph2

2 ,

and δ2(p, h, a, b) = 1.09

(2p)1/12
√

(2p)!

(
2a2

h2

)p

e−(a2−2ab)/h2
;

Step 1 Choose the number of clusters K ∼
⌈
(hmax + hmin/2)−d

⌉
where

hmax = maxi hi and hmin = mini hi;

Step 2 Divide the N sources into K clusters, {Sk}K
k=1, using the Feder and

Greene’s farthest-point clustering algorithm. Let ck and rk
x be the center and

radius respectively of the kth cluster ;

Step 3 For each cluster Sk with center ck compute the coefficients Ck
α.

Ck
mα =

(−1)m2α

m!α!

∑
xi∈Sk

qie
−‖xi−ck‖2/h2

i

(
1
h2

i

)m+|α|
(xi − ck)α 1m≤pi

1−11|α|≤pi
2−1.

The truncation numbers pi
1 and pi

2 for each source are selected such that such
that

δ1(p = pi
2, h = hi, a = ‖xi − ck‖, b = min

[
b∗(pi

2, hi, ‖xi − ck‖), rk + rk
x

]
) ≤ ε/3

δ2(p = pi
1, h = hi, a = ‖xi − ck‖, b = rk + rk

x) ≤ ε/3
where rk = min

(
R, hk

max

√
ln(1/ε)

)
and hk

max = maxxi∈Sk
hi;

Step 4 For each target yj the discrete Gauss transform is evaluated as

Ĝ(yj) =
∑
‖yj−ck‖≤rk+rk

x

∑pmax
1 −1

m=0

∑
|α|≤pmax

2 −1 Ck
mα‖yj − ck‖2m (yj − ck)α;

cation number required are pretty large. One way to handle very small bandwidths
is to introduce a cutoff hc. For all sources hi < hc the nearest neighbor search-
ing algorithms can be used to directly sum the Gaussians which have significant
influence on the target point.
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