The improved fast Gauss transform with applications to machine learning

Vikas C. Raykar and Ramani Duraiswami University of Maryland, CollegePark {vikas,ramani}@cs.umd.edu

> NIPS 2005 workshop on Large scale kernel machines Whistler, December 9, 2005

Introduction

- Huge data sets containing
 - millions of training examples (tall data)
 - with large number of attributes (*fat data*)
 - are relatively easy to gather.
- Nonparametric methods in machine leaning scale as either $\mathcal{O}(N^3)$ or $\mathcal{O}(N^2)$.

Supervised Learning

The key computational task is to compute a linear combination of local kernel functions centered on the training data, i.e.,

$$f(x) = \sum_{i=1}^{N} q_i k(x, x_i).$$

- Kernel machines (e.g. RLS, SVM) f is the regression/classification function. [Representer theorem]
- Gaussian processes f is the mean prediction.
- Density estimation f is the kernel density estimate.

Prediction

The computation complexity to predict at M points given N training examples scales as $\mathcal{O}(MN)$.

$$f(x) = \sum_{i=1}^{N} q_i k(x, x_i).$$

Training

Training these models scales as $\mathcal{O}(N^3)$ since most involve solving the linear system of equation

$$(\mathbf{K} + \sigma^2 \mathbf{I})\xi = \mathbf{y}.$$

K is the $N \times N$ Gram matrix where $[\mathbf{K}]_{ij} = k(x_i, x_j)$.

- Direct inversion is $\mathcal{O}(N^3)$.
- Iterative methods like conjugate-gradient can bring it down to $\mathcal{O}(kN^2)$.
- The quadratic complexity is due to the matrix-vector product $\mathbf{K}q$ for some q.

Unsupervised Learning

Methods like kernel principal component analysis, spectral clustering, or Laplacian eigenmaps involve computing the eigen vectors of the Gram/Laplacian matrix.

- Direct is $\mathcal{O}(N^3)$.
- Iterative methods can bring it down to $\mathcal{O}(kN^2)$.
- The quadratic complexity is due to the matrix-vector product $\mathbf{K}q$ for some q.

Gaussian kernel

The most commonly used kernel function is the Gaussian kernel

$$K(x,y) = e^{-\|x-y\|^2/h^2},$$

where h is called the *bandwidth* of the kernel.

Sum of multivariate Gaussian kernels is called the discrete Gauss transform – $\mathcal{O}(MN)$.

$$G(y_j) = \sum_{i=1}^{N} q_i e^{-\|y_j - x_i\|^2 / h^2}$$

Improved fast Gauss transform

Speed up of these tasks using rigorous ϵ -exact approximation algorithms to achieve

- $\mathcal{O}(N)$ training time.
- $\mathcal{O}(1)$ prediction/classification time.

One such algorithm was presented for the **Gaussian kernel** in NIPS2005*the improved fast Gauss transform (IFGT).

*C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In Advances in Neural Information Processing Systems, pages 15611568, 2005.

 ϵ can be arbitrarily small (e.g., machine precision) and speedup is maintained

Effectively we have an FFT like algorithm that is "drop-in," with no accuracy penalty.

Enables large scale kernel machines

Brief idea of the IFGT

- Step 1a Determine parameters of algorithm based on specified error bound, kernel bandwidth, and data distribution
- Step 1b Subdivide the *d*-dimensional space using a *k*-center clustering based geometric data structure $(\mathcal{O}(N \log K))$.
- Step 2 Build a p truncated representation of kernels inside each cluster using a set of decaying basis functions $(\mathcal{O}(Nd^p))$.
- Step 3 Collect the influence of all the the data in a neighborhood using coefficients at cluster center and evaluate $(\mathcal{O}(Md^p))$.

The code was publicly made available for non-commercial use.

IFGT Illustration

Sample results

For example in three dimensions and 1 million training and test points [h=0.4]

- IFGT 6 minutes.
- Direct 34 hours.

with an error of 10^{-8} .

IFGT can handle large dimensions $[h = \sqrt{d}]$

Segmentation using adaptive mean-shift

1.34 hours vs 2.1 minutes

Issues with IFGT presented in Yang et.al. 2005

- The error bounds were tight but very pessimistic.
- Parameter selection was not automatic.
- Users^{*†} found the selection of parameters hard. Incorrect choice of algorithm parameters by these authors sometimes lead to poor reported performance of IFGT.
- Method for IFGT parameter selection presented in Lang et.al. is not optimal[‡].

*Lee, D., Gray, A., & Moore, A., Dual-tree fast Gauss transforms, NIPS 2006
[†]de Freitas, N., Wang, Y., Mahdaviani, M., and Lang, D., Fast Kylov Methods for N-body learning, NIPS 2006.

[‡]Lang, D., Klaas, M., and Freitas, N. 2005. Empirical testing of fast kernel density estimation algorithms. Tech. Rep. UBC TR-2005-03.

Improvements to IFGT since NIPS 2005*

- A tighter point-wise error bound.
- Choice of the algorithm parameters completely automatic.
- Truncation number for each source is different.

*V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast computation of sums of Gaussians in high dimensions. CS-TR-4767, Department of Computer Science, University of Maryland, CollegePark, 2005. https://drum.umd.edu/dspace/bitstream/1903/3020/1/CS-TR-4767.pdf

Choice of parameters is crucial

For 3 dimensions using N = 50,000 and h = 0.76

- Lee et.al.* report that IFGT takes greater than two times the direct time.
- With the parameters automatically chosen by the algorithm we take only 1.522 secs.

*Lee, D., Gray, A., & Moore, A., Dual-tree fast Gauss transforms, NIPS 2006

IFGT expansion is both local as well as far-field!!

Hence we avoid the expensive translation operation that was required in the original FGT, and in some recently proposed algorithms.

Effect of bandwidth

- For small kernel bandwidth (*h*) where each training point only influences the immediate vicinity speedup is poor.
- Can use dual-tree methods*.
- In high dimensions the tails of the density contribute significantly to the total probability mass and is unlikely we have a dense sampling in tails.

*A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In SIAM International conference on Data Mining, 2003. Some recent extensions

IFGT with variable source scales

$$G(y_j) = \sum_{i=1}^{N} q_i e^{-\|y_j - x_i\|^2 / h_i^2}.$$

Approach: Build a composite factorization that builds a Taylor series for h_i as well.

Resulting IFGT runs at about the same speed.

For example for N = M = 1,024,000 while the direct evaluation takes around 2.6 days the fast evaluation requires only 4.65 minutes with an error of around 10^{-5} .

Derivative of kernel sums Many procedures (e.g., those involving optimal parameter estimation) involve taking the derivative of kernel sums.

- Automatic bandwidth selection for kernel density estimation.
- Selecting hyperparameters in Gaussian Process regression.

The derivatives of Gaussian sums involve sums of products of polynomials and Gaussians. IFGT algorithms have been developed for such kernels

$$G_r(y_j) = \sum_{i=1}^N q_i H_r\left(\frac{y_j - x_i}{h_1}\right) e^{-(y_j - x_i)^2/h_2^2}$$

20

Gaussian process regression

- Gaussian processes handle nonparametric regression in a Bayesian framework.
- The regression function is represented by an ensemble of functions, on which we place a Gaussian prior.
- This prior is updated in the light of the training data.
- As a result we obtain predictions together with valid estimates of uncertainty.

Speedup GP regression via IFGT

	Direct		Conjugate		Conjugate	
	Inversion		gradient		gradient	
$\widetilde{\mathbf{K}} = \mathbf{K} + \sigma^2 \mathbf{I}$					+IFGT	
	Time	Space	Time	Space	Time	Space
Training phase						
$\xi = \widetilde{\mathrm{K}}^{-1}\mathrm{y}$	$\mathcal{O}(N^3)$	$\mathcal{O}(N^2)$	$\mathcal{O}(N^2)$	$\mathcal{O}(N)$	$\mathcal{O}(N)$	$\mathcal{O}(N)$
Mean prediction						
$y = \mathbf{k}(x)^T \xi$	$\mathcal{O}(N^2)$	$\mathcal{O}(N)$	$\mathcal{O}(N^2)$	$\mathcal{O}(N)$	$\mathcal{O}(N)$	$\mathcal{O}(N)$
Uncertainty						
$\mathbf{k}(x,x)$	$\mathcal{O}(N^3)$	$\mathcal{O}(N)$	$\mathcal{O}(N^3)$	$\mathcal{O}(N)$	$\mathcal{O}(N^2)$	$\mathcal{O}(N)$
$-\mathbf{k}(x)^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}(x)$						

Conclusions

- The IFGT can reduce the computational complexity of numerous machine learning algorithms to linear time.
- Unlike methods which rely on choosing a subset of the dataset we use all the available points and still achieve $\mathcal{O}(N)$ complexity.
- The IFGT is now completely tweak free.
- Extensions to variable bandwidth, derivative estimation, and Gaussian processes.
- Good speedup for large bandwidths. For small bandwidths dualtree methods can be used.