The improved fast Gauss transform with applications to machine learning

Vikas C. Raykar and Ramani Duraiswami
University of Maryland, CollegePark
{vikas,ramani}@cs.umd.edu

NIPS 2005 workshop
on
Large scale kernel machines
Whistler, December 9, 2005
Introduction

• Huge data sets containing

 – millions of training examples (*tall data*)
 – with large number of attributes (*fat data*)

are relatively easy to gather.

• Nonparametric methods in machine leaning scale as either $O(N^3)$ or $O(N^2)$.
Supervised Learning

The key computational task is to compute a linear combination of local kernel functions centered on the training data, i.e.,

$$ f(x) = \sum_{i=1}^{N} q_i k(x, x_i). $$

- Kernel machines (e.g. RLS, SVM) f is the regression/classification function. [Representer theorem]
- Gaussian processes f is the mean prediction.
- Density estimation f is the kernel density estimate.
Prediction

The computation complexity to predict at M points given N training examples scales as $O(MN)$.

$$f(x) = \sum_{i=1}^{N} q_i k(x, x_i).$$
Training

Training these models scales as $O(N^3)$ since most involve solving the linear system of equation

$$(K + \sigma^2 I)\xi = y.$$

K is the $N \times N$ Gram matrix where $[K]_{ij} = k(x_i, x_j)$.

- Direct inversion is $O(N^3)$.

- Iterative methods like conjugate-gradient can bring it down to $O(kN^2)$.

- The quadratic complexity is due to the matrix-vector product Kq for some q.
Unsupervised Learning

Methods like kernel principal component analysis, spectral clustering, or Laplacian eigenmaps involve computing the eigen vectors of the Gram/Laplacian matrix.

- Direct is $O(N^3)$.

- Iterative methods can bring it down to $O(kN^2)$.

- The quadratic complexity is due to the matrix-vector product K_q for some q.
Gaussian kernel

The most commonly used kernel function is the Gaussian kernel

\[K(x, y) = e^{-\|x-y\|^2/h^2}, \]

where \(h \) is called the bandwidth of the kernel.

Sum of multivariate Gaussian kernels is called the discrete Gauss transform \(-\mathcal{O}(MN)\).

\[G(y_j) = \sum_{i=1}^{N} q_i e^{-\|y_j-x_i\|^2/h^2}. \]
Improved fast Gauss transform

Speed up of these tasks using rigorous ϵ-exact approximation algorithms to achieve

- $O(N)$ training time.
- $O(1)$ prediction/classification time.

One such algorithm was presented for the Gaussian kernel in NIPS2005*-the improved fast Gauss transform (IFGT).

\(\epsilon \) can be arbitrarily small (e.g., machine precision) and speedup is maintained.

Effectively we have an FFT like algorithm that is “drop-in,” with no accuracy penalty.

Enables large scale kernel machines.
Brief idea of the IFGT

- **Step 1a** Determine parameters of algorithm based on specified error bound, kernel bandwidth, and data distribution.

- **Step 1b** Subdivide the d-dimensional space using a k-center clustering based geometric data structure ($O(N \log K)$).

- **Step 2** Build a p truncated representation of kernels inside each cluster using a set of decaying basis functions ($O(N d^p)$).

- **Step 3** Collect the influence of all the the data in a neighborhood using coefficients at cluster center and evaluate ($O(M d^p)$).

The code was publicly made available for non-commercial use.
IFGT Illustration
Sample results

For example in three dimensions and 1 million training and test points \([h=0.4]\)

- IFGT – 6 minutes.
- Direct – 34 hours.

with an error of \(10^{-8}\).
IFGT can handle large dimensions \[h = \sqrt{d} \]
Segmentation using adaptive mean-shift

1.34 hours vs 2.1 minutes
Issues with IFGT presented in Yang et.al. 2005

- The error bounds were tight but very pessimistic.

- Parameter selection was not automatic.

- Users*† found the selection of parameters hard. Incorrect choice of algorithm parameters by these authors sometimes lead to poor reported performance of IFGT.

- Method for IFGT parameter selection presented in Lang et.al. is not optimal‡.

Improvements to IFGT since NIPS 2005*

- A tighter point-wise error bound.

- Choice of the algorithm parameters completely automatic.

- Truncation number for each source is different.

Choice of parameters is crucial

For 3 dimensions using $N = 50,000$ and $h = 0.76$

- Lee et.al.* report that IFGT takes greater than two times the direct time.

- With the parameters automatically chosen by the algorithm we take only 1.522 secs.

IFGT expansion is both local as well as far-field!!

Hence we avoid the expensive translation operation that was required in the original FGT, and in some recently proposed algorithms.
Effect of bandwidth

- For small kernel bandwidth \((h)\) where each training point only influences the immediate vicinity speedup is poor.

- Can use dual-tree methods*.

- In high dimensions the tails of the density contribute significantly to the total probability mass and is unlikely we have a dense sampling in tails.

Some recent extensions
IFGT with variable source scales

\[
G(y_j) = \sum_{i=1}^{N} q_i e^{-\|y_j - x_i\|^2 / h_i^2}.
\]

Approach: Build a composite factorization that builds a Taylor series for \(h_i \) as well.

Resulting IFGT runs at about the same speed.

For example for \(N = M = 1,024,000 \) while the direct evaluation takes around 2.6 days the fast evaluation requires only 4.65 minutes with an error of around \(10^{-5} \).
Derivative of kernel sums Many procedures (e.g., those involving optimal parameter estimation) involve taking the derivative of kernel sums.

- Automatic bandwidth selection for kernel density estimation.
- Selecting hyperparameters in Gaussian Process regression.

The derivatives of Gaussian sums involve sums of products of polynomials and Gaussians. IFGT algorithms have been developed for such kernels

\[G_r(y_j) = \sum_{i=1}^{N} q_i H_r \left(\frac{y_j - x_i}{h_1} \right) e^{-\frac{(y_j-x_i)^2}{h_2^2}} \]
Gaussian process regression

- Gaussian processes handle nonparametric regression in a Bayesian framework.

- The regression function is represented by an ensemble of functions, on which we place a Gaussian prior.

- This prior is updated in the light of the training data.

- As a result we obtain predictions together with valid estimates of uncertainty.
Speedup GP regression via IFGT

<table>
<thead>
<tr>
<th></th>
<th>Direct Inversion</th>
<th>Conjugate gradient</th>
<th>Conjugate gradient + IFGT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Space</td>
<td>Time</td>
</tr>
<tr>
<td>Training phase $\xi = \tilde{\mathbf{K}}^{-1} \mathbf{y}$</td>
<td>$O(N^3)$</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Mean prediction $y = \mathbf{k}(x)^T \xi$</td>
<td>$O(N^2)$</td>
<td>$O(N)$</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Uncertainty $\mathbf{k}(x,x)$</td>
<td>$O(N^3)$</td>
<td>$O(N)$</td>
<td>$O(N^3)$</td>
</tr>
</tbody>
</table>
Conclusions

- The IFGT can reduce the computational complexity of numerous machine learning algorithms to linear time.

- Unlike methods which rely on choosing a subset of the dataset we use all the available points and still achieve $O(N)$ complexity.

- The IFGT is now completely tweak free.

- Extensions to variable bandwidth, derivative estimation, and Gaussian processes.

- Good speedup for large bandwidths. For small bandwidths dual-tree methods can be used.