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Introduction

e Huge data sets containing
— millions of training examples (tall data)
— with large number of attributes (fat data)
are relatively easy to gather.

e Nonparametric methods in machine leaning scale as either
O(N3) or O(N?).



Supervised Learning

The key computational task is to compute a linear combination
of local kernel functions centered on the training data, i.e.,

N
fx) =) qik(z,x;).
i=1

e Kernel machines (e.g. RLS, SVM) f is the regression/classification
function. [Representer theorem]

e Gaussian processes f is the mean prediction.

e Density estimation f is the kernel density estimate.



Prediction

The computation complexity to predict at M points given
N training examples scales as O(MN).

N
fx) =) qik(z,z;).
i=1



Training

Training these models scales as @(N3) since most involve
solving the linear system of equation

(K+ oD =y.
K is the N x N Gram matrix where [K];; = k(z;, ;).

e Direct inversion is O(N3).

e [terative methods like conjugate-gradient can bring it down
to O(kN?2).

e [ he quadratic complexity is due to the matrix-vector product
Kqg for some q.



Unsupervised Learning

Methods like kernel principal component analysis, spectral
clustering, or Laplacian eigenmaps involve computing the eigen
vectors of the Gram/Laplacian matrix.

e Direct is O(N3).

e Iterative methods can bring it down to O(kN?2).

e [ he quadratic complexity is due to the matrix-vector product
Kqg for some q.



Recently, such problems have been collectively referred to as

N-body problems in learning*

in analogy with the Coulombic N-body problems occurring in
computational physics.

*A. Gray and A. Moore. N-body problems in statistical learning. In Advances
in Neural Information Processing Systems, pages 521-527, 2001.



Gaussian kernel

The most commonly used kernel function is the Gaussian kernel
K(m) y) e e_Hx_yHQ/h27

where h is called the bandwidth of the kernel.



Discrete Gauss transform

The sum of multivariate Gaussian kernels — O(MN).

N lly—ml2/n2
G(y;) = ) ge WWi™% :
=1

{¢; € R};=1 . n are the N source weights.
{x; € Rd}izl,m,N are the N source points.
{y; € Rd}jzl,._.,M are the M target points.

h € Rt is the source scale or bandwidth.



e-exact approximation
Given any € > 0
an approximation G(y;) to G(y;)
such that

the maximum absolute error relative to the total weight

Q= fo\él |Qz|

IS upper bounded by ¢, i.e.,

< €

Yj

@

ax [|@(yj) - G(yj)|]
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Fast Gauss transform (FGT)

e c—exact approximation algorithm — computational complexity
is O(M + N).

e Proposed by Greengard and Strain * and applied successfully
to a few lower dimensional applications in mathematics and

physics.

e However the algorithm has not been widely used much in
statistics, pattern recognition, and machine learning applica-
tions where higher dimensions occur commonly.

*Greengard, L. and Strain, J. 1991. The fast gauss transform. SIAM J. Sci.
Stat. Comput. 12, 1,79-94.
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FGT degrades for d > 3

1. The number of the terms in the Hermite expansion grows
exponentially with dimensionality d.

2. The space subdivision scheme is a uniform box subdivision
scheme which is tolerable in lower dimensions but is ineffi-
cient in higher dimensions.

3. The constant term due to the translation of the far-field Her-
mite series to the local Taylor series grows exponentially fast
with dimension making it impractical for dimensions greater
than three.
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Improved fast Gauss Transform (IFGT)*

1. Different series expansion [Taylor's series]—reduces the num-
ber of the expansion terms to the polynomial order.

2. k-center algorithm is applied to subdivide the space which is
more efficient.

3. No translation — Our expansion can act both as a far-field
and local expansion.

*C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the
improved fast Gauss transform. In Advances in Neural Information Process-
ing Systems, pages 15611568, 2005.
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IFGT—New improvements®

e A tighter point-wise error bound.

e [runcation number for each source is different.

e Automatic choice of the algorithm parameters.

e Careful comparison with the original FGT algorithm.

*V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast compu-
tation of sums of Gaussians in high dimensions. CS-TR-4767, Department
of Computer Science, University of Maryland, CollegePark, 2005.
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Separate out i and j

For any point zs € R?

[
1= 1= 1=

G(y;)

gie— i ad2/h2 =y =242 /h2 2(y;=a)-(zi—w) /12

The crux of the algorithm is to separate this entanglement via
the Taylor’'s series expansion of the exponentials.
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Factorization via multivariate Taylor’s series

Pi—1 An n
2( _x*)(x@_x*) h2 L 2 yj — TIx . L; — Tx
e M= K h ) ( h )] T errorp;

n=0
The truncation number p; for each source z; is chosen based
on the prescribed error ¢,
the bandwidth h,
and

the distance from the expansion center |[xz; — x«||.
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Multi-index notation

A multi-index a = (a1,as...,a4) is a d-tuple of nonnegative
integers.

length |a| = a1 +as+ ...+ a4.
factorial a! = ajlas! ... ay4l.

d-variate monomial z¢ is % = z71z252. ..xgd.
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Multi-index notation

2(yi—x+)-(z;—x%) /2 — 2¢ <yj B m*>a< '
e \Yj > ;

la|<p;—1
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G(y;)

Let us ignore the error and regroup

N 6" . 6"
S g lzimelP /02 =y P/ |5 2 (y] 5’?) (

=1 | <p;—1

S Cge Iyl (u)“

h
|04|§pma:1:—1

2o N i l12/12 (T — T\
o= or 25 0 P (F57) Hispn
1=
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. (@
|Oé|§pmax—1

2o N g l12/B2 [(T5 — Tx\
caza‘zlqie i)/ ( - ) Laj<pr1-
1=

The coefficients C, can be evaluated separately is O(N).
Evaluation of G(y;) at M points is O(M).
Hence the computational complexity has reduced from the

quadratic O(NM) to the linear O(N + M).
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Space subdivision

e Same x4 for all the points may require very high truncation
numbers.

e \We use an data adaptive space partitioning scheme like the
farthest point clustering algorithm to divide the N sources
into K clusters.

21



k-center problem
Given
a set of N points in d dimensions and
a predefined number of the clusters k,

find a partition of the points into clusters Sq,...,Sk, and also
the cluster centers cq,...,c,

sO as to minimize the cost function — the maximum radius of
clusters,

max; max,es, |z — cill
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k-center clustering example
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Rapid decay of the Gaussian

Consider only influential clusters.

R «
Cy)= Y S Ckellyel?/n? (u)

h
||yj_ckz||§7“§ lot| <pmazr—1

where,

ple M l2/B2 (T — CE\ &
Ck="_% gellmimel®/ ( — ) 1jaj<p—1-
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IFGT

Step 0 Choose the parameters.

Step 1 Subdivide the source points into K clusters.

Step 2 Compute the cluster coefficients at the center of
each cluster.

Step 3 For each target point sum the contribution from
influential clusters.
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IFGT Illustration
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Computational complexity

O (NIog K + Nr,  1yq4 Mnrg, qyq).

T(pma:c—l)d — (pm@l‘;}'d_ 1)

IS

the total number of d-variate monomials of degree less than or
equal to pmazr — 1.

The d-variate monomials can be efficiently evaluated using the
Horner'’s rule.
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Storage complexity

OKT (pygp—1)a + N + M)
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Choosing the parameters

Given any € > 0, we want to choose the following parameters
e K (the number of clusters),

o {pz-},f\le (the truncation number for each source point z;),
e and the cut off radius {rf}_, for each cluster

such that for any target point y; We can guarantee that
G(u:) — Gy
Gly) — Gl _
Q

where Q@ = SN |g;l.
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Point-wise error bounds

Define A;; to be the error contributed by the ith source x;.

N N N
G(y;) — G|l =D Ayl < D 18] < Qe= D |gle.
i=1 ' '

=1 =1

One way to achieve this is to let

[Ajl < lgile Vi=1,...,N.
e Can get tighter bounds.

e Easier to choose a different truncation number for each
source.
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A source can err in two ways

. Due to ignoring the cluster to which it belongs.

M 2 H2
Ay = qe W=l e |y — o]l > k.

. Due to truncation of the Taylor’'s series.

282 e 11212 ,
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Cutoff radius for each cluster

ri = rf + min (R, m/ln(l/e)).

e 7% is the radius of the cluster Sj.

e R is the maximum distance between any source and target
point.
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Truncation number for each source

Pi — 2 . 12
errory, < 2P (llwz Ck”) (Hyy Ck”) o2llzi—cglllyj—ckll /h2.
p;! h h

Hence

i . Pi . Y2

A< qi2p |z — ekl 1y = ekl \™ —Clz—crll—lly—cil)2/n2.
= Tp h h

We will have to bound this such that it is independent of

ly; — el
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Truncation number for each source

The error increases as a function of ||y; — ¢
reaches a maximum
and then starts decreasing.

The maximum is attained at

i = exll + y/llzi — gl + 2pih?
: .

ly; — ckll = lly; — ckllx =
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Truncation number for each source

Hence out strategy for choosing p; is

2051 |y — el = lyy—exlls < lile

35



Truncation numbers for different source points
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Choosing the number of clusters.

We optimize K assuming a uniform distribution of source
points.

Choose K such that the constant term in the complexity is
minimum

c=log K+ (1+ n)r(pma:c—l)d°
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Constant term as a function of K
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Fast multipole methods

e The FGT belongs to a more general class of methods called
fast multipole methods *.

e [ he fast multipole method has been called one of the ten
most significant algorithms in scientific computation discov-
ered in the 20th c:enturyT and won its inventors, Vladimir
Rokhlin and Leslie Greengard, the 2001 Steele prize, in ad-
dition to getting Greengard the ACM 1987 best dissertation
award.

*L. F. Greengard and V. Rokhlin. A fast algorithm for particle simulation.
Journal of Computational Physics, 73(2):325—348, 1987.

fDongarra, J. and Sullivan, F. 2000. The top ten algorithms of the century.
Computing in Science and Engineering 2, 1, 22-3.
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Expansions

The general fast multipole methods use two kinds of
factorization

Far-field expansion and Local expansion.

x; Z;
1 T 1 ey




Comparison with FGT expansions

o—lly—zl|2/n* — S [ | (xz hx*> ] he (y haj*> [far-field Hermite expansion]
oS0 Lot

e_Hy_xZHQ/hQ e Z

4>0 61 h

1 , — Lk — I'x p
—hg (wz ud )] (y hx ) [local Taylor expansion]

Compare this with the single IFGT expansion

o—lly—zil|2/h? — S

al>0

2% |lasal2/2 (B2} ety (W 2)
ol h h
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IFGT expansion is both local as well as far-field

Hence we avoid the expensive translation operation.

. p=5
10 ‘
10°
S
o
L
(4B) -5
E 10
(@)
n
®)
<
10—10
- - - FGT Hermite
— - FGT Taylor
_15|L— IFGT Taylor Xy
10 ; %
-5 0 5
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FGT vs IFGT complexity

FGT

O(@?N) + 0@ M) 4+ O(dp?T1(2n + 1)4min((v2rh) =92, M)).

IFGT

O(log KN) -I— O(?“(p_l)dN) —I— O(nr(p—l)dM)'
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FGT-Explosive growth with d

FGT IFGT

d || # of boxes | p # of terms | n | Constant | K | p # of terms
(N¢,) (p%) term ("(p—1)d)

1|3 9 |9 217.04002 |5 |9 |9

219 10 | 100 2115e4005 |7 |15 120

3| 27 10 | 1000 211.9e4007 | 15| 16 | 816

4 || 81 11 | 14641 2| 3.6e+009 || 29| 17 | 4845

51 243 11| 161051 2 4.3e4+011 | 31 | 20 | 42504

6| 729 12 | 2985984 219.0e4013 62|20 | 177100

7 | 2187 14 | 105413504 | 2 | 3.7e4016 | 67 | 22 | 1184040
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Numerical experiments

e Programmed in C4++4+ with MATLAB bindings.

e Runona l.6 GHz Pentium M processor with 512Mb of RAM.

e Code available.
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Time (sec)

Speedup as a function of N [d =3 and h = 1.0]
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Speedup as a function of N and d
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Speedup as a function of d [h = 2.0]
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Time (sec)
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Speedup as a function of d [k = V/d]
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Speedup as a function of ¢
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Speedup as a function of A
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Other related methods

e Methods based on sparse data-set representation.

e Binned Approximation based on FFT*.

e Dual-tree methods'.

*B. W. Silverman. Algorithm AS 176: Kernel density estimation using the
fast Fourier transform. Journal of Royal Statistical society Series C: Applied
statistics, 31(1):93—99, 1982.

fA. G. Gray and A. W. Moore. Nonparametric density estimation: Toward
computational tractability. In SIAM International conference on Data Min-
ing, 2003.
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Some Extensions
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IFGT with variable source scales

L ly—wil2/n2
G(y;) = > qe” Wim =/l
=1

54



Variable bandwidth density estimation

(a) h=0.05 (b) h=0.70

| — Tv=0.239 | — Tv=0.128

(c) h=0.36 (d) Variable h

| — Tv=0.092 | — Tv=0.062
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Segmentation using adaptive mean-shift

1.34 hours vs 2.1 minutes
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Optimal bandwidth estimation for KDE

Most automatic bandwidth selection procedures for kernel
density estimation require estimates of quantities involving the
density derivatives.

N

 — Iy N2 /12

Grly) = 3 aiHy (yﬂhl ) o~ (=) /13
1=1
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Gaussian Process Regression

e Coupled with the Conjugate-gradient the IFGT reduces the
computational cost of GP regression to O(N).

e For example for N=25,600 training takes around 3 secs.
(compare to 10 hours[direct] or 17 minutes[CG]).

58



GP regression

Direct Conjugate Conjugate
Inversion gradient gradient
K = K + 021 +HIFGT
Time | Space | Time | Space | Time | Space
Training phase
§=K1ly O(N3) | O(N?) | O(N?) | O(N) | O(N) | O(N)
Mean prediction
y =k(z)'¢ O(N?) | O(N) | O(N?) | O(N) | O(N) | O(N)
Uncertainty
k(x,z) O(N3) | O(N) | O(N3) | O(N) | O(N?) | O(N)
—k(z)TK1k(2)
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How to choose ¢

Use the theory of inexact Krylov subspace methods*®

ly—Ke&oll
|75—1]]

€L S %
This guarantees that

ly — Képllo < (n+ 8)|ly — Kéollo.

Matrix-vector product may be performed in an increasingly
inexact manner as the iteration progresses and still allow
convergence to the solution.

*V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods
and applications to scientific computing. SIAM J. Sci. Comput., 25(2):454—
477, 2004.
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