
The improved fast Gauss transform

with

applications to machine learning

Vikas C. Raykar and Ramani Duraiswami

University of Maryland, CollegePark

{vikas,ramani}@cs.umd.edu

NIPS 2005 workshop

on

Large scale kernel machines

Whistler, December 15, 2005

Introduction

• Huge data sets containing

– millions of training examples (tall data)

– with large number of attributes (fat data)

are relatively easy to gather.

• Nonparametric methods in machine leaning scale as either

O(N3) or O(N2).

1

Supervised Learning

The key computational task is to compute a linear combination
of local kernel functions centered on the training data, i.e.,

f(x) =
N∑

i=1

qik(x, xi).

• Kernel machines (e.g. RLS, SVM) f is the regression/classification
function. [Representer theorem]

• Gaussian processes f is the mean prediction.

• Density estimation f is the kernel density estimate.

2

Prediction

The computation complexity to predict at M points given

N training examples scales as O(MN).

f(x) =
N∑

i=1

qik(x, xi).

3

Training

Training these models scales as O(N3) since most involve
solving the linear system of equation

(K + σ2I)ξ = y.

K is the N ×N Gram matrix where [K]ij = k(xi, xj).

• Direct inversion is O(N3).

• Iterative methods like conjugate-gradient can bring it down
to O(kN2).

• The quadratic complexity is due to the matrix-vector product
Kq for some q.

4

Unsupervised Learning

Methods like kernel principal component analysis, spectral

clustering, or Laplacian eigenmaps involve computing the eigen

vectors of the Gram/Laplacian matrix.

• Direct is O(N3).

• Iterative methods can bring it down to O(kN2).

• The quadratic complexity is due to the matrix-vector product

Kq for some q.

5

Recently, such problems have been collectively referred to as

N-body problems in learning∗

in analogy with the Coulombic N-body problems occurring in

computational physics.

∗A. Gray and A. Moore. N-body problems in statistical learning. In Advances
in Neural Information Processing Systems, pages 521-527, 2001.

6

Gaussian kernel

The most commonly used kernel function is the Gaussian kernel

K(x, y) = e−‖x−y‖2/h2
,

where h is called the bandwidth of the kernel.

7

Discrete Gauss transform

The sum of multivariate Gaussian kernels – O(MN).

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

.

{qi ∈ R}i=1,...,N are the N source weights.

{xi ∈ Rd}i=1,...,N are the N source points.

{yj ∈ Rd}j=1,...,M are the M target points.

h ∈ R+ is the source scale or bandwidth.

8

ε-exact approximation

Given any ε > 0

an approximation Ĝ(yj) to G(yj)

such that

the maximum absolute error relative to the total weight
Q =

∑N
i=1 |qi|

is upper bounded by ε, i.e.,

max
yj

[|Ĝ(yj)−G(yj)|
Q

]
≤ ε.

9

Outline

Fast Gauss transform

Improved fast Gauss transform

Error bounds and choosing parameters

Results

Extension to variable bandwidth.

Extension to derivative estimation.

Choosing ε for iterative methods

Gaussian process regression

10

Fast Gauss transform (FGT)

• ε−exact approximation algorithm – computational complexity
is O(M + N).

• Proposed by Greengard and Strain ∗ and applied successfully
to a few lower dimensional applications in mathematics and
physics.

• However the algorithm has not been widely used much in
statistics, pattern recognition, and machine learning applica-
tions where higher dimensions occur commonly.

∗Greengard, L. and Strain, J. 1991. The fast gauss transform. SIAM J. Sci.
Stat. Comput. 12, 1,79-94.

11

FGT degrades for d > 3

1. The number of the terms in the Hermite expansion grows

exponentially with dimensionality d.

2. The space subdivision scheme is a uniform box subdivision

scheme which is tolerable in lower dimensions but is ineffi-

cient in higher dimensions.

3. The constant term due to the translation of the far-field Her-

mite series to the local Taylor series grows exponentially fast

with dimension making it impractical for dimensions greater

than three.

12

Improved fast Gauss Transform (IFGT)∗

1. Different series expansion [Taylor’s series]–reduces the num-

ber of the expansion terms to the polynomial order.

2. k-center algorithm is applied to subdivide the space which is

more efficient.

3. No translation – Our expansion can act both as a far-field

and local expansion.

∗C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the
improved fast Gauss transform. In Advances in Neural Information Process-
ing Systems, pages 15611568, 2005.

13

IFGT–New improvements∗

• A tighter point-wise error bound.

• Truncation number for each source is different.

• Automatic choice of the algorithm parameters.

• Careful comparison with the original FGT algorithm.

∗V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast compu-
tation of sums of Gaussians in high dimensions. CS-TR-4767, Department
of Computer Science, University of Maryland, CollegePark, 2005.

14

Separate out i and j

For any point x∗ ∈ Rd

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

=
N∑

i=1

qie
−‖(yj−x∗)−(xi−x∗)‖2/h2

,

=
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2
e2(yj−x∗)·(xi−x∗)/h2

.

The crux of the algorithm is to separate this entanglement via

the Taylor’s series expansion of the exponentials.

15

Factorization via multivariate Taylor’s series

e2(yj−x∗)·(xi−x∗)/h2
=

pi−1∑

n=0

2n

n!

[(
yj − x∗

h

)
·
(

xi − x∗
h

)]n
+ errorpi.

The truncation number pi for each source xi is chosen based

on the prescribed error ε,

the bandwidth h,

and

the distance from the expansion center ‖xi − x∗‖.
16

Multi-index notation

A multi-index α = (α1, α2 . . . , αd) is a d-tuple of nonnegative

integers.

length |α| = α1 + α2 + . . . + αd.

factorial α! = α1!α2! . . . αd!.

d-variate monomial xα is xα = x
α1
1 x

α2
2 . . . x

αd
d .

17

Multi-index notation

e2(yj−x∗)·(xi−x∗)/h2
=

pi−1∑

n=0

2n

n!

[(
yj − x∗

h

)
·
(

xi − x∗
h

)]n
+ errorpi.

(x · y)n =
∑
|α|=n

n!
α!x

αyα.

e2(yj−x∗)·(xi−x∗)/h2
=

∑

|α|≤pi−1

2α

α!

(
yj − x∗

h

)α(
xi − x∗

h

)α
+ errorpi.

18

Let us ignore the error and regroup

Ĝ(yj) =
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2

∑

|α|≤pi−1

2α

α!

(
yj − x∗

h

)α(
xi − x∗

h

)α

=
∑

|α|≤pmax−1

Cαe−‖yj−x∗‖2/h2
(

yj − x∗
h

)α
.

Cα =
2α

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α
1|α|≤pi−1.

19

Ĝ(yj) =
∑

|α|≤pmax−1

Cαe−‖yj−x∗‖2/h2
(

yj − x∗
h

)α
.

Cα =
2α

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α
1|α|≤pi−1.

The coefficients Cα can be evaluated separately is O(N).

Evaluation of Ĝ(yj) at M points is O(M).

Hence the computational complexity has reduced from the

quadratic O(NM) to the linear O(N + M).

20

Space subdivision

• Same x∗ for all the points may require very high truncation

numbers.

• We use an data adaptive space partitioning scheme like the

farthest point clustering algorithm to divide the N sources

into K clusters.

21

k-center problem

Given

a set of N points in d dimensions and

a predefined number of the clusters k,

find a partition of the points into clusters S1, . . . , Sk, and also

the cluster centers c1, . . . , ck,

so as to minimize the cost function – the maximum radius of

clusters,

maxi maxx∈Si
‖x− ci‖.

22

k-center clustering example

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

23

Rapid decay of the Gaussian

Consider only influential clusters.

Ĝ(yj) =
∑

‖yj−ck‖≤rk
y

∑

|α|≤pmax−1

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α
,

where,

Ck
α =

2α

α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α
1|α|≤pi−1.

24

IFGT

• Step 0 Choose the parameters.

• Step 1 Subdivide the source points into K clusters.

• Step 2 Compute the cluster coefficients at the center of

each cluster.

• Step 3 For each target point sum the contribution from

influential clusters.

25

IFGT Illustration

y
j

r

r
y
k

r
x
k

c
k

26

Computational complexity

O
(
N logK + Nr(pmax−1)d + Mnr(pmax−1)d

)
.

r(pmax−1)d =
(
pmax+d−1

d

)

is

the total number of d-variate monomials of degree less than or

equal to pmax − 1.

The d-variate monomials can be efficiently evaluated using the

Horner’s rule.

27

Storage complexity

O(Kr(pmax−1)d + N + M)

28

Choosing the parameters

Given any ε > 0, we want to choose the following parameters

• K (the number of clusters),

• {pi}Ni=1 (the truncation number for each source point xi),

• and the cut off radius {rk
y}Kk=1 for each cluster

such that for any target point yj we can guarantee that

|Ĝ(yj)−G(yj)|
Q

≤ ε,

where Q =
∑N

i=1 |qi|.
29

Point-wise error bounds

Define ∆ij to be the error contributed by the ith source xi.

|Ĝ(yj)−G(yj)| =
∣∣∣∣∣∣

N∑

i=1

∆ij

∣∣∣∣∣∣
≤

N∑

i=1

|∆ij| ≤ Qε =
N∑

i=1

|qi|ε.

One way to achieve this is to let

|∆ij| ≤ |qi|ε ∀i = 1, . . . , N.

• Can get tighter bounds.

• Easier to choose a different truncation number for each
source.

30

A source can err in two ways

1. Due to ignoring the cluster to which it belongs.

∆ij = qie
−‖yj−xi‖2/h2

if ‖yj − ck‖ > rk
y.

2. Due to truncation of the Taylor’s series.

∆ij = qie
−‖xi−ck‖2/h2

e−‖yj−ck‖2/h2
errorpi if ‖yj − ck‖ ≤ rk

y.

31

Cutoff radius for each cluster

rk
y = rk

x + min
(
R, h

√
ln(1/ε)

)
.

• rk
x is the radius of the cluster Sk.

• R is the maximum distance between any source and target

point.

32

Truncation number for each source

errorpi ≤
2pi

pi!

(‖xi − ck‖
h

)pi
(‖yj − ck‖

h

)pi

e2‖xi−ck‖‖yj−ck‖/h2
.

Hence

∆ij ≤ qi
2pi

pi!

(‖xi − ck‖
h

)pi
(‖yj − ck‖

h

)pi

e−(‖xi−ck‖−‖yj−ck‖)2/h2
.

We will have to bound this such that it is independent of

‖yj − ck‖.
33

Truncation number for each source

The error increases as a function of ‖yj − ck‖,

reaches a maximum

and then starts decreasing.

The maximum is attained at

‖yj − ck‖ = ‖yj − ck‖∗ =
‖xi − ck‖+

√
‖xi − ck‖2 + 2pih

2

2
.

34

0 1 2 3 4 5
10

−40

10
−30

10
−20

10
−10

10
0

10
10

p=5
p=15

||y
j
−c

k
||

∆
ij

h=0.5 ||x
i
−c

k
||=0.5

Truncation number for each source

Hence out strategy for choosing pi is

|∆ij|
∣∣∣‖yj−ck‖=‖yj−ck‖∗ ≤ |qi|ε.

35

Truncation numbers for different source points

36

Choosing the number of clusters.

We optimize K assuming a uniform distribution of source

points.

Choose K such that the constant term in the complexity is

minimum

c = logK + (1 + n)r(pmax−1)d.

37

Constant term as a function of K

0 50 100 150 200
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

K

c

38

Fast multipole methods

• The FGT belongs to a more general class of methods called
fast multipole methods ∗.

• The fast multipole method has been called one of the ten
most significant algorithms in scientific computation discov-
ered in the 20th century† and won its inventors, Vladimir
Rokhlin and Leslie Greengard, the 2001 Steele prize, in ad-
dition to getting Greengard the ACM 1987 best dissertation
award.

∗L. F. Greengard and V. Rokhlin. A fast algorithm for particle simulation.
Journal of Computational Physics, 73(2):325–348, 1987.
†Dongarra, J. and Sullivan, F. 2000. The top ten algorithms of the century.
Computing in Science and Engineering 2, 1, 22–3.

39

Expansions

The general fast multipole methods use two kinds of

factorization

Far-field expansion and Local expansion.

x∗
xi

y

R∗

1

x∗

xi

y

r∗

1

40

Comparison with FGT expansions

e−‖y−xi‖2/h2
=

∑

α≥0

[
1

α!

(
xi − x∗

h

)α]
hα

(
y − x∗

h

)
[far-field Hermite expansion]

e−‖y−xi‖2/h2
=

∑

β≥0

[
1

β!
hβ

(
xi − x∗

h

)] (
y − x∗

h

)β
[local Taylor expansion]

Compare this with the single IFGT expansion

e−‖y−xi‖2/h2
=

∑

|α|≥0

[
2α

α!
e−‖xi−x∗‖2/h2

(
xi − x∗

h

)α
]

e−‖yj−x∗‖2/h2
(

yj − x∗
h

)α
.

41

IFGT expansion is both local as well as far-field

Hence we avoid the expensive translation operation.

−5 0 5
10

−15

10
−10

10
−5

10
0

10
5

y

A
bs

ol
ut

e
E

rr
or

p=5

x
*

FGT Hermite
FGT Taylor
IFGT Taylor

42

FGT vs IFGT complexity

FGT

O(pdN) + O(pdM) + O(dpd+1(2n + 1)dmin((
√

2rh)−d/2, M)).

IFGT

O(logKN) + O(r(p−1)dN) + O(nr(p−1)dM).

43

FGT-Explosive growth with d

FGT IFGT
d # of boxes p # of terms n Constant K p # of terms

(Nd
side) (pd) term (r(p−1)d)

1 3 9 9 2 7.0+002 5 9 9
2 9 10 100 2 1.5e+005 7 15 120
3 27 10 1000 2 1.9e+007 15 16 816
4 81 11 14641 2 3.6e+009 29 17 4845
5 243 11 161051 2 4.3e+011 31 20 42504
6 729 12 2985984 2 9.0e+013 62 20 177100
7 2187 14 105413504 2 3.7e+016 67 22 1184040

44

Numerical experiments

• Programmed in C++ with MATLAB bindings.

• Run on a 1.6 GHz Pentium M processor with 512Mb of RAM.

• Code available.

45

Speedup as a function of N [d = 3 and h = 1.0]

10
2

10
4

10
6

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

10
2

10
4

10
6

10
−20

10
−15

10
−10

10
−5

N

M
a

x
.
a

b
s
.
e

rr
o

r
/
Q

Target error
IFGT
FGT

46

Speedup as a function of N and d

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

N

T
im

e
 (

s
e

c
)

 d=3

 d=3

 d=4

 d=4Direct
IFGT
FGT

10
2

10
3

10
4

10
5

10
−20

10
−15

10
−10

10
−5

N

M
a

x
.
a

b
s
.
e

rr
o

r
/
Q

Target
IFGT
FGT

47

Speedup as a function of d [h = 2.0]

0 2 4 6 8 10
10

−2

10
0

10
2

10
4

10
6

d

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

0 2 4 6 8 10
10

−12

10
−10

10
−8

10
−6

d

M
a

x
.
a

b
s
.
e

rr
o

r
/
Q

Target
IFGT
FGT

48

Speedup as a function of d [h =
√

d]

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

d

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

d

M
a

x
.

a
b

s
.

e
rr

o
r

/
Q

Target
IFGT
FGT

49

Speedup as a function of ε

10
−8

10
−6

10
−4

10
−2

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

 d=4

 d=4

T
im

e
 (

s
e

c
)

Direct
IFGT
FGT

ε
10

−8
10

−6
10

−4
10

−2
10

0
10

−15

10
−10

10
−5

10
0

ε

T
im

e
 (

s
e

c
)

Target error
IFGT
FGT

ε

50

Speedup as a function of h

0 0.5 1 1.5 2
10

−1

10
0

10
1

10
2

10
3

10
4

h

T
im

e
 (

s
e

c
)

 d=3

 d=3

Direct
IFGT
FGT

0.5 1 1.5
10

−12

10
−10

10
−8

10
−6

h

M
a

x
.
a

b
s
.
e

rr
o

r
/
Q

Target
IFGT
FGT

51

Other related methods

• Methods based on sparse data-set representation.

• Binned Approximation based on FFT∗.

• Dual-tree methods†.

∗B. W. Silverman. Algorithm AS 176: Kernel density estimation using the
fast Fourier transform. Journal of Royal Statistical society Series C: Applied
statistics, 31(1):93–99, 1982.
†A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward
computational tractability. In SIAM International conference on Data Min-
ing, 2003.

52

Some Extensions

53

IFGT with variable source scales

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

i .

54

Variable bandwidth density estimation

(a) h=0.05 (b) h=0.70

(c) h=0.36 (d) Variable h

TV=0.239

TV=0.092

TV=0.128

TV=0.062

55

Segmentation using adaptive mean-shift

1.34 hours vs 2.1 minutes

56

Optimal bandwidth estimation for KDE

Most automatic bandwidth selection procedures for kernel

density estimation require estimates of quantities involving the

density derivatives.

Gr(yj) =
N∑

i=1

qiHr

(
yj − xi

h1

)
e−(yj−xi)

2/h2
2

57

Gaussian Process Regression

• Coupled with the Conjugate-gradient the IFGT reduces the

computational cost of GP regression to O(N).

• For example for N=25,600 training takes around 3 secs.

(compare to 10 hours[direct] or 17 minutes[CG]).

58

GP regression

Direct Conjugate Conjugate
Inversion gradient gradient

K̃ = K + σ2I +IFGT
Time Space Time Space Time Space

Training phase

ξ = K̃−1y O(N3) O(N2) O(N2) O(N) O(N) O(N)
Mean prediction
y = k(x)T ξ O(N2) O(N) O(N2) O(N) O(N) O(N)
Uncertainty
k(x, x) O(N3) O(N) O(N3) O(N) O(N2) O(N)

−k(x)T K̃−1k(x)

59

How to choose ε

Use the theory of inexact Krylov subspace methods∗

εk ≤ δ
N
‖y−K̃ξ0‖
‖r̃k−1‖ .

This guarantees that

‖y − K̃ξk‖2 ≤ (η + δ)‖y − K̃ξ0‖2.

Matrix-vector product may be performed in an increasingly
inexact manner as the iteration progresses and still allow

convergence to the solution.
∗V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods
and applications to scientific computing. SIAM J. Sci. Comput., 25(2):454–
477, 2004.

60

