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Introduction

• Huge data sets containing

– millions of training examples (tall data)

– with large number of attributes (fat data)

are relatively easy to gather.

• Nonparametric methods in machine leaning scale as either

O(N3) or O(N2).
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Supervised Learning

The key computational task is to compute a linear combination
of local kernel functions centered on the training data, i.e.,

f(x) =
N∑

i=1

qik(x, xi).

• Kernel machines (e.g. RLS, SVM) f is the regression/classification
function. [Representer theorem]

• Gaussian processes f is the mean prediction.

• Density estimation f is the kernel density estimate.
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Prediction

The computation complexity to predict at M points given

N training examples scales as O(MN).

f(x) =
N∑

i=1

qik(x, xi).
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Training

Training these models scales as O(N3) since most involve
solving the linear system of equation

(K + σ2I)ξ = y.

K is the N ×N Gram matrix where [K]ij = k(xi, xj).

• Direct inversion is O(N3).

• Iterative methods like conjugate-gradient can bring it down
to O(kN2).

• The quadratic complexity is due to the matrix-vector product
Kq for some q.
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Unsupervised Learning

Methods like kernel principal component analysis, spectral

clustering, or Laplacian eigenmaps involve computing the eigen

vectors of the Gram/Laplacian matrix.

• Direct is O(N3).

• Iterative methods can bring it down to O(kN2).

• The quadratic complexity is due to the matrix-vector product

Kq for some q.
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Recently, such problems have been collectively referred to as

N-body problems in learning∗

in analogy with the Coulombic N-body problems occurring in

computational physics.

∗A. Gray and A. Moore. N-body problems in statistical learning. In Advances
in Neural Information Processing Systems, pages 521-527, 2001.
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Gaussian kernel

The most commonly used kernel function is the Gaussian kernel

K(x, y) = e−‖x−y‖2/h2
,

where h is called the bandwidth of the kernel.
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Discrete Gauss transform

The sum of multivariate Gaussian kernels – O(MN).

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

.

{qi ∈ R}i=1,...,N are the N source weights.

{xi ∈ Rd}i=1,...,N are the N source points.

{yj ∈ Rd}j=1,...,M are the M target points.

h ∈ R+ is the source scale or bandwidth.
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ε-exact approximation

Given any ε > 0

an approximation Ĝ(yj) to G(yj)

such that

the maximum absolute error relative to the total weight
Q =

∑N
i=1 |qi|

is upper bounded by ε, i.e.,

max
yj

[|Ĝ(yj)−G(yj)|
Q

]
≤ ε.
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Outline

Fast Gauss transform

Improved fast Gauss transform

Error bounds and choosing parameters

Results

Extension to variable bandwidth.

Extension to derivative estimation.

Choosing ε for iterative methods

Gaussian process regression
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Fast Gauss transform (FGT)

• ε−exact approximation algorithm – computational complexity
is O(M + N).

• Proposed by Greengard and Strain ∗ and applied successfully
to a few lower dimensional applications in mathematics and
physics.

• However the algorithm has not been widely used much in
statistics, pattern recognition, and machine learning applica-
tions where higher dimensions occur commonly.

∗Greengard, L. and Strain, J. 1991. The fast gauss transform. SIAM J. Sci.
Stat. Comput. 12, 1,79-94.
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FGT degrades for d > 3

1. The number of the terms in the Hermite expansion grows

exponentially with dimensionality d.

2. The space subdivision scheme is a uniform box subdivision

scheme which is tolerable in lower dimensions but is ineffi-

cient in higher dimensions.

3. The constant term due to the translation of the far-field Her-

mite series to the local Taylor series grows exponentially fast

with dimension making it impractical for dimensions greater

than three.

12



Improved fast Gauss Transform (IFGT)∗

1. Different series expansion [Taylor’s series]–reduces the num-

ber of the expansion terms to the polynomial order.

2. k-center algorithm is applied to subdivide the space which is

more efficient.

3. No translation – Our expansion can act both as a far-field

and local expansion.

∗C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the
improved fast Gauss transform. In Advances in Neural Information Process-
ing Systems, pages 15611568, 2005.
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IFGT–New improvements∗

• A tighter point-wise error bound.

• Truncation number for each source is different.

• Automatic choice of the algorithm parameters.

• Careful comparison with the original FGT algorithm.

∗V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov, Fast compu-
tation of sums of Gaussians in high dimensions. CS-TR-4767, Department
of Computer Science, University of Maryland, CollegePark, 2005.
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Separate out i and j

For any point x∗ ∈ Rd

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

=
N∑

i=1

qie
−‖(yj−x∗)−(xi−x∗)‖2/h2

,

=
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2
e2(yj−x∗)·(xi−x∗)/h2

.

The crux of the algorithm is to separate this entanglement via

the Taylor’s series expansion of the exponentials.
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Factorization via multivariate Taylor’s series

e2(yj−x∗)·(xi−x∗)/h2
=

pi−1∑

n=0

2n

n!

[(
yj − x∗

h

)
·
(

xi − x∗
h

)]n
+ errorpi.

The truncation number pi for each source xi is chosen based

on the prescribed error ε,

the bandwidth h,

and

the distance from the expansion center ‖xi − x∗‖.
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Multi-index notation

A multi-index α = (α1, α2 . . . , αd) is a d-tuple of nonnegative

integers.

length |α| = α1 + α2 + . . . + αd.

factorial α! = α1!α2! . . . αd!.

d-variate monomial xα is xα = x
α1
1 x

α2
2 . . . x

αd
d .
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Multi-index notation

e2(yj−x∗)·(xi−x∗)/h2
=

pi−1∑

n=0

2n

n!

[(
yj − x∗

h

)
·
(

xi − x∗
h

)]n
+ errorpi.

(x · y)n =
∑
|α|=n

n!
α!x

αyα.

e2(yj−x∗)·(xi−x∗)/h2
=

∑

|α|≤pi−1

2α

α!

(
yj − x∗

h

)α(
xi − x∗

h

)α
+ errorpi.
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Let us ignore the error and regroup

Ĝ(yj) =
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2




∑

|α|≤pi−1

2α

α!

(
yj − x∗

h

)α(
xi − x∗

h

)α




=
∑

|α|≤pmax−1

Cαe−‖yj−x∗‖2/h2
(

yj − x∗
h

)α
.

Cα =
2α

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α
1|α|≤pi−1.
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Ĝ(yj) =
∑

|α|≤pmax−1

Cαe−‖yj−x∗‖2/h2
(

yj − x∗
h

)α
.

Cα =
2α

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α
1|α|≤pi−1.

The coefficients Cα can be evaluated separately is O(N).

Evaluation of Ĝ(yj) at M points is O(M).

Hence the computational complexity has reduced from the

quadratic O(NM) to the linear O(N + M).
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Space subdivision

• Same x∗ for all the points may require very high truncation

numbers.

• We use an data adaptive space partitioning scheme like the

farthest point clustering algorithm to divide the N sources

into K clusters.
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k-center problem

Given

a set of N points in d dimensions and

a predefined number of the clusters k,

find a partition of the points into clusters S1, . . . , Sk, and also

the cluster centers c1, . . . , ck,

so as to minimize the cost function – the maximum radius of

clusters,

maxi maxx∈Si
‖x− ci‖.
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k-center clustering example
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Rapid decay of the Gaussian

Consider only influential clusters.

Ĝ(yj) =
∑

‖yj−ck‖≤rk
y

∑

|α|≤pmax−1

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α
,

where,

Ck
α =

2α

α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α
1|α|≤pi−1.
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IFGT

• Step 0 Choose the parameters.

• Step 1 Subdivide the source points into K clusters.

• Step 2 Compute the cluster coefficients at the center of

each cluster.

• Step 3 For each target point sum the contribution from

influential clusters.
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IFGT Illustration
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Computational complexity

O
(
N logK + Nr(pmax−1)d + Mnr(pmax−1)d

)
.

r(pmax−1)d =
(
pmax+d−1

d

)

is

the total number of d-variate monomials of degree less than or

equal to pmax − 1.

The d-variate monomials can be efficiently evaluated using the

Horner’s rule.
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Storage complexity

O(Kr(pmax−1)d + N + M)
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Choosing the parameters

Given any ε > 0, we want to choose the following parameters

• K (the number of clusters),

• {pi}Ni=1 (the truncation number for each source point xi),

• and the cut off radius {rk
y}Kk=1 for each cluster

such that for any target point yj we can guarantee that

|Ĝ(yj)−G(yj)|
Q

≤ ε,

where Q =
∑N

i=1 |qi|.
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Point-wise error bounds

Define ∆ij to be the error contributed by the ith source xi.

|Ĝ(yj)−G(yj)| =
∣∣∣∣∣∣

N∑

i=1

∆ij

∣∣∣∣∣∣
≤

N∑

i=1

|∆ij| ≤ Qε =
N∑

i=1

|qi|ε.

One way to achieve this is to let

|∆ij| ≤ |qi|ε ∀i = 1, . . . , N.

• Can get tighter bounds.

• Easier to choose a different truncation number for each
source.
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A source can err in two ways

1. Due to ignoring the cluster to which it belongs.

∆ij = qie
−‖yj−xi‖2/h2

if ‖yj − ck‖ > rk
y.

2. Due to truncation of the Taylor’s series.

∆ij = qie
−‖xi−ck‖2/h2

e−‖yj−ck‖2/h2
errorpi if ‖yj − ck‖ ≤ rk

y.
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Cutoff radius for each cluster

rk
y = rk

x + min
(
R, h

√
ln(1/ε)

)
.

• rk
x is the radius of the cluster Sk.

• R is the maximum distance between any source and target

point.
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Truncation number for each source

errorpi ≤
2pi

pi!

(‖xi − ck‖
h

)pi
(‖yj − ck‖

h

)pi

e2‖xi−ck‖‖yj−ck‖/h2
.

Hence

∆ij ≤ qi
2pi

pi!

(‖xi − ck‖
h

)pi
(‖yj − ck‖

h

)pi

e−(‖xi−ck‖−‖yj−ck‖)2/h2
.

We will have to bound this such that it is independent of

‖yj − ck‖.
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Truncation number for each source

The error increases as a function of ‖yj − ck‖,

reaches a maximum

and then starts decreasing.

The maximum is attained at

‖yj − ck‖ = ‖yj − ck‖∗ =
‖xi − ck‖+

√
‖xi − ck‖2 + 2pih

2

2
.
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Truncation number for each source

Hence out strategy for choosing pi is

|∆ij|
∣∣∣‖yj−ck‖=‖yj−ck‖∗ ≤ |qi|ε.
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Truncation numbers for different source points
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Choosing the number of clusters.

We optimize K assuming a uniform distribution of source

points.

Choose K such that the constant term in the complexity is

minimum

c = logK + (1 + n)r(pmax−1)d.
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Constant term as a function of K
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Fast multipole methods

• The FGT belongs to a more general class of methods called
fast multipole methods ∗.

• The fast multipole method has been called one of the ten
most significant algorithms in scientific computation discov-
ered in the 20th century† and won its inventors, Vladimir
Rokhlin and Leslie Greengard, the 2001 Steele prize, in ad-
dition to getting Greengard the ACM 1987 best dissertation
award.

∗L. F. Greengard and V. Rokhlin. A fast algorithm for particle simulation.
Journal of Computational Physics, 73(2):325–348, 1987.
†Dongarra, J. and Sullivan, F. 2000. The top ten algorithms of the century.
Computing in Science and Engineering 2, 1, 22–3.
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Expansions

The general fast multipole methods use two kinds of

factorization

Far-field expansion and Local expansion.

x∗
xi

y

R∗

1

x∗

xi

y

r∗

1
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Comparison with FGT expansions

e−‖y−xi‖2/h2
=

∑

α≥0

[
1

α!

(
xi − x∗

h

)α]
hα

(
y − x∗

h

)
[far-field Hermite expansion]

e−‖y−xi‖2/h2
=

∑

β≥0

[
1

β!
hβ

(
xi − x∗

h

)] (
y − x∗

h

)β
[local Taylor expansion]

Compare this with the single IFGT expansion

e−‖y−xi‖2/h2
=

∑

|α|≥0

[
2α

α!
e−‖xi−x∗‖2/h2

(
xi − x∗

h

)α
]

e−‖yj−x∗‖2/h2
(

yj − x∗
h

)α
.
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IFGT expansion is both local as well as far-field

Hence we avoid the expensive translation operation.
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FGT vs IFGT complexity

FGT

O(pdN) + O(pdM) + O(dpd+1(2n + 1)dmin((
√

2rh)−d/2, M)).

IFGT

O(logKN) + O(r(p−1)dN) + O(nr(p−1)dM).
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FGT-Explosive growth with d

FGT IFGT
d # of boxes p # of terms n Constant K p # of terms

(Nd
side) (pd) term (r(p−1)d)

1 3 9 9 2 7.0+002 5 9 9
2 9 10 100 2 1.5e+005 7 15 120
3 27 10 1000 2 1.9e+007 15 16 816
4 81 11 14641 2 3.6e+009 29 17 4845
5 243 11 161051 2 4.3e+011 31 20 42504
6 729 12 2985984 2 9.0e+013 62 20 177100
7 2187 14 105413504 2 3.7e+016 67 22 1184040
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Numerical experiments

• Programmed in C++ with MATLAB bindings.

• Run on a 1.6 GHz Pentium M processor with 512Mb of RAM.

• Code available.
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Speedup as a function of N [d = 3 and h = 1.0]
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Speedup as a function of N and d
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Speedup as a function of d [h = 2.0]
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Speedup as a function of d [h =
√

d]
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Speedup as a function of ε
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Speedup as a function of h
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Other related methods

• Methods based on sparse data-set representation.

• Binned Approximation based on FFT∗.

• Dual-tree methods†.

∗B. W. Silverman. Algorithm AS 176: Kernel density estimation using the
fast Fourier transform. Journal of Royal Statistical society Series C: Applied
statistics, 31(1):93–99, 1982.
†A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward
computational tractability. In SIAM International conference on Data Min-
ing, 2003.
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Some Extensions
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IFGT with variable source scales

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

i .
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Variable bandwidth density estimation

(a) h=0.05 (b) h=0.70 

(c) h=0.36 (d) Variable h

TV=0.239

TV=0.092

TV=0.128

TV=0.062

55



Segmentation using adaptive mean-shift

1.34 hours vs 2.1 minutes

56



Optimal bandwidth estimation for KDE

Most automatic bandwidth selection procedures for kernel

density estimation require estimates of quantities involving the

density derivatives.

Gr(yj) =
N∑

i=1

qiHr

(
yj − xi

h1

)
e−(yj−xi)

2/h2
2
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Gaussian Process Regression

• Coupled with the Conjugate-gradient the IFGT reduces the

computational cost of GP regression to O(N).

• For example for N=25,600 training takes around 3 secs.

(compare to 10 hours[direct] or 17 minutes[CG]).

58



GP regression

Direct Conjugate Conjugate
Inversion gradient gradient

K̃ = K + σ2I +IFGT
Time Space Time Space Time Space

Training phase

ξ = K̃−1y O(N3) O(N2) O(N2) O(N) O(N) O(N)
Mean prediction
y = k(x)T ξ O(N2) O(N) O(N2) O(N) O(N) O(N)
Uncertainty
k(x, x) O(N3) O(N) O(N3) O(N) O(N2) O(N)

−k(x)T K̃−1k(x)
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How to choose ε

Use the theory of inexact Krylov subspace methods∗

εk ≤ δ
N
‖y−K̃ξ0‖
‖r̃k−1‖ .

This guarantees that

‖y − K̃ξk‖2 ≤ (η + δ)‖y − K̃ξ0‖2.

Matrix-vector product may be performed in an increasingly
inexact manner as the iteration progresses and still allow

convergence to the solution.
∗V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods
and applications to scientific computing. SIAM J. Sci. Comput., 25(2):454–
477, 2004.

60


